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§2.1 Calculus of variations

Let us start by reviewing how to find the maxima and minima of a function f(s) : R → R.
As you will recall, this can be done by solving the equation

df

ds
= 0

as a function of s. As an example, if our function is f(s) = 1
2
s2 − s we have

df

ds
= s− 1

so the function has an extremum (a minimum, in this case) at s = 1. An alternative way
of formulating the same condition makes use of the definition of derivative as encoding the
change in the function under small changes in s. For a small δs ∈ R, we have

f(s+ δs) = f(s) +
df(s)

ds
δs+R(s, δs)

where R(s, δs) is an error term. It is convenient to introduce the notation

δf := f(s+ δs)− f(s)

so the statement above becomes

δf =
df(s)

ds
δs+R(s, δs) .

We note that the usual definition of the derivative implies

lim
δs→0

R(s, δs)

δs
= 0 .

In these cases we say that “δf vanishes to first order in δs”. The functions that we will
study will almost always admit a well-behaved Taylor expansion, so this result implies that
R(s, δs) is at least of quadratic order in δs. Henceforth we will encode this vanishing to
first order by writing O((δs)2) instead of R(s, δs).

So, finally, we can say that the extrema of f(s) are located at the points where

δf = O((δs)2) .

The same reasoning can be applied in the case of functions of multiple variables. Con-
sider a function f(s1, . . . , sN) : RN → R, and introduce a small displacement si → si + δsi.
In this case the partial derivatives ∂f/∂si are defined by

δf =
N∑
i=1

∂f

∂si
δsi +O(δs2)



2.1 CALCULUS OF VARIATIONS 5

where the error term includes terms vanishing faster than δsi (so terms of the form δs21,
δs1δs2, . . .). Stationary points1 of f are located wherever δf vanishes to first order in δsi.

In fact, we need to go one step further, and work with functionals : these are maps from
functions to R. One (heuristic, but sometimes useful) way of thinking of them is as the
limit of the previous multi-variate case when the number of variables N goes to infinity.
From instance, we could have a functional S[y(t)] defined by

S[y(t)] =

∫ b

a

y(t)2 dt

for some fixed choice of (a, b). I emphasize that one should think of S as the analogue of
f above, and the different functions y(t) as the “points” in the domain of this functional.

We want to define a meaning for a function y(t) to give an extremal value for the
functional S. In analogy with what happened in the finite dimensional case above, we
can study the variation of S as we displace y(t) slightly. We need to be a bit careful
when specifying which class of functions y(t) we are going to include in our extremization
problem. In the case of interest to us, we will extremize over the set of smooth2 functions
y(t) with fixed values at the endpoints a and b. That is, we fix y(a) = ya and y(b) = yb,
for some fixed values of ya and yb.

Definition 2.1.1. We say that a function y(t) is stationary (for the functional S) if

dS[y(t) + ϵz(t)]

dϵ

∣∣∣∣
ϵ=0

= 0

for all smooth z(t) such that z(a) = z(b) = 0.

Remark 2.1.2. This definition encodes the idea that the path y(t) extremises the action S
in the space of paths starting at ya and ending at yb. To see this, think of the function
z(t) as an arbitrary choice of direction in the space of deformations. The condition is then
saying that S[y(t)] is extremised along this direction. Since z(t) is arbitrary, we have that
the condition is satisfied in every direction in function space. It might help to compare
with how you could impose that an ordinary function f(x) depending on a vector x has
an extremum at x0. You could impose

df(x0 + ϵz)

dϵ

∣∣∣∣
ϵ=0

=

[
d

dϵ

(
f(x0) + ϵ

∑
i

zi
∂f(x)

∂xi

∣∣∣∣
x=x0

+O(ϵ2)

)]
ϵ=0

=
n∑

i=1

zi
∂f(x)

∂xi

∣∣∣∣
x=x0

= 0

for every choice of vector z. This is equivalent to imposing the familiar condition

∂f(x)

∂xi

∣∣∣∣
x=x0

= 0

for all i, which ensures the existence of an extremum (or saddle point) at x = x0.

1You might want to remind yourself of section 1.9 of the Calculus I Epiphany notes.
2My conventions are that smooth functions are those which have continuous derivatives to all orders.
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Note 2.1.3

Consider the Taylor expansion in ϵ (which is a constant) of S[y(t) + ϵz(t)]:

S[y(t) + ϵz(t)] = S[y(t)] + ϵ
dS[y(t) + ϵz(t)]

dϵ

∣∣∣∣
ϵ=0

+
1

2
ϵ2
d2S[y(t) + ϵz(t)]

dϵ2

∣∣∣∣
ϵ=0

+ . . .

The condition for y(t) to be stationary is that the term proportional to ϵ vanishes:

δS := S[y(t) + ϵz(t)]− S[y(t)] = O(ϵ2) .

It is useful to think of the combination ϵz(t) as a small variation of y(t), which we
denote δy(t) := ϵz(t). We define O((δy(t))n) to mean simply O(ϵn). In particular, we
can rewrite the stationary condition as

δS = O((δy(t))2) .

If you are ever confused about the expansions in δy(t) below, you can replace δy(t)
with ϵz(t), and expand in the constant ϵ. For instance, consider the integral∫

g(t)(δy(t))ndt

For any positive integer n and any function g(t). I claim that this is O((δy(t))n). The
proof is as follows: replacing δy(t) with ϵz(t) we have∫

g(t)ϵnz(t)ndt = ϵn
∫
g(t)z(t)ndt .

(Here we have used that ϵ is a constant.) In our O((δy(t)n)) notation, this means that∫
O((δy(t))n)dt = O((δy(t))n) .

That is, integration does not change the order in δy(t) (which, once more, when talking
about action functionals I define to be really just the order in ϵ).

Note 2.1.4

Because our interest in dynamical problems, we will often refer to the functions y(t)
as paths, so that the conditions above define what an “stationary path” is.

We are now in a position to introduce the action principle. Assume that we have
an action functional (or simply action) S : {functions} → R, which takes functions, and
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generates a real number. In the Lagrangian formalism all of the physical content of the
theory can be summarized in the choice of action functional.

For now we also assume that we have a particle moving in one dimension, and we
want to determine its motion. Its trajectory is given by a function x(t), with t the time
coordinate. For many physical problems equations of motion are second order in x(t), so
we need data to fix two integration constants. In the Lagrangian formalism these are given
by fixing the initial and final positions. That is, we will assume that we know the initial
position x(t0) of the particle at time t0, and its final position x(t1) at time t1.

The action principle3 then states that for arbitrary smooth small deformations δx(t)
around the “true” path x(t) (that is, the path that the particle will actually follow) we have

δS := S[x+ δx]− S[x] = O((δx)2) . (2.1.1)

Or in other words:

Action principle:
It is possible to choose an action functional S[x(t)] such that the
paths described by physical particles are stationary paths of S.

In a moment we will need an important result known as the fundamental lemma of the
calculus of variations. It goes as follows:

Lemma 2.1.5 (Fundamental lemma of the calculus of variations). Consider a function
f(x) continuous in the interval [a, b] (we assume a < b) such that∫ b

a

f(x)g(x) dx = 0

for all smooth functions g(x) in [a, b] such that g(a) = g(b) = 0. Then f(x) = 0 for all
x ∈ (a, b).

Proof. I will prove the result by contradiction. Assume that there is a point p ∈ (a, b) such
that f(p) > 0 (the case f(p) < 0 can be proven analogously). By continuity of f(x), there
will be some non-vanishing interval [p0, p1] where f(x) > 0. Construct

g(x) =

{
ν(x− p0)ν(p1 − x) if x ∈ (p0, p1)

0 otherwise.

with ν(x) = exp(−1/x). It is an interesting exercise in first year calculus to prove that
this function is smooth everywhere, including at p0 and p1 (it is an example of “bump

3This goes under various names in the literature. Common ones are action principle, least action
principle, extremal action principle and (less precisely) variational principle. I will mostly use “action
principle”, which has the advantage of being concise.
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functions”, useful in many domains). Clearly f(x)g(x) > 0 for x ∈ (p0, p1), and vanishes
otherwise. This implies that∫ b

a

f(x)g(x) dx =

∫ p1

p0

f(x)g(x) dx > 0

which is a contradiction.


