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Now, for the systems that we will study during this term, it will be the case that S can
be expressed in a particularly nice way as the time integral of a Lagrangian. That is, we
will have .

1
S[a] = / dt L(x (), #(t)) (2.1.2)
to
for some function L(a,b) of two real variables, where Z(t) := fl—f.

Whenever a Lagrangian exists, the variational principle together with the fundamental
lemma of the calculus of variations leads to a set of differential equations that determine
x(t). The argument is as follows. If we Taylor expand the perturbed Lagrangian to first
order in dz(t) we get?

oL oL

L(a(t) + 8a(t), #() + 6()) = L(a(t), #()) + 5_0w(t) + 50a(t) + ...

Putting this expansion of the Lagrangian into the variation of the action we have

58 = /t b L((t) + 5a(t), (1) + (1)) — Lix(t), (1))

(0L oL _.
= /to dt (%5x(t)+%5:p(t)>

where we have omitted terms of second order or higher in dz.° For notational simplicity I
will often write 0L/0x instead of the more precise but much more cumbersome
OL(r, s)
or

(2.1.3)

(r,s)=(2(t),(t))

where (7, s) are names for the two arguments of the Lagrangian L (which are conventionally,
but somewhat confusingly, also named x and z, a convention that I will follow most of the
time. . . but here I want to be as clear as possible about what I mean). Similarly

a_L . OL(r,s)
ot~ Os

(r,s)=(2(t),&(t))

4To bring the main point to light here: note that from the point of view of the Lagrangian x(t), dz(t),
z(t) and 0&(¢t) are simply numbers, not functions. Let me call them a, ex, b and €8, respectively, to
emphasize this point, where a,a,b, 8 € R, and € € R is as in definition 2.1.1. Then all we are doing here
is taking the first order in the Taylor expansion of the Lagrangian in e:

8L(7“’ s) 8L(r, S)

L(a+ ea,b+€8) = L(a,b) + ex 3 —
r

+ef

4+ ...
(r,s)=(a,b) s (r,s)=(a,b)

Recall from definition 2.1.1 that any time we talk about expanding on dz we are really expanding on
a small parameter € inside dz(t) = ez(¢) (where z(¢) is as in definition definition 2.1.1). The variation
di(t) = €z(t) clearly has the same dependence on €, since € is just a constant that does not depend on
time. We therefore have that “di(t) is first order in dx(t)”, at least for the purposes of counting degrees
when expanding.
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We proceed by noting that 5m'(t) = i(éx(t)), so we can write the above as

8L d

Integration by parts of the second term6 now allows us to rewrite this as

55:/:0& Kg—’;—— (gﬁ))a 0+ (5 (t)g—i)] |

The last term is a total derivative, so we can integrate it trivially to give:

pnIL hoooh (9L d (0L
Now we have that dz(ty) = 593(251) = 0, as the paths that we consider all start and end on
the same positions. This implies that the first term vanishes, so

55 — /dt <%——(g§)>5:c(t).

Recall that the action principle demands that this variation cancels (to first order in
dxz(t), i.e. ignoring possible terms that we have not written) for arbitrary oz (t). By the
fundamental lemma of the calculus of variations, the only way that this could possibly be
true is if the function multiplying dz(¢) in the integral vanishes:

oL d (0L

This is known as the Euler-Lagrange equation, in the case of one-dimensional problems.

Note 2.1.6

There is a somewhat subtle point in the Lagrangian formulation that I want to make
explicit. Note that the Lagrangian L is an ordinary function of two parameters, and
it knows nothing about paths. (In general it is a function of 2N parameters, with
N the number of “generalised coordinates” that we need to describe the system, see

6Recall that

A1) _ W) ) 4 dot)
dt

dt dt
or equivalently
) ds;it) _ d(f(z)tg(t)) _ dj;it)g(t).
In the text we have 5L
f) === 5 gt)=02(t).
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below.) Let me emphasize this by writing L(r, s). When using the Lagrangian function
to construct the action we evaluated the Lagrangian function at (r,s) = (z(t),z(t)) at
each instant in time, but it is important to keep in mind that the Lagrangian itself
treats r and s as independent variables: they are simply the two arguments to the
function.

In general, if we want to study how this function changes under small displacements
of r and s we would use the chain rule:

L(r +or,s+ds) = L(T,s)+g—£5r+g—§5s—l—...

where the dots denote terms of higher order in ér and ds. This is what we did above
in (2.1.3), again with (r,s) = (x(t), £(t)).

What this all means is that the partial derivatives appearing in the Euler-Lagrange
equations treat the first and second arguments of the Lagrangian function indepen-
dently, leading to the somewhat funny-looking rules:

Jxr 0z

il 0. (2.1.5)
This would probably be a little clearer if we used a different notation for & (such as v)
when writing Lagrangians, to emphasize that in the Lagrangian formalism 2 should be
treated as a variable which is entirely independent of x itself. But I will stick to the
standard (if somewhat puzzling at first) notation, with the understanding that in the
Lagrangian formalism one should impose (2.1.5).

This also makes clear that (2.1.5) is not something you should generically expect to

hold outside the Lagrangian formalism. And indeed, when we study the Hamiltonian
framework below this rule will be replaced by a different one.



