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§2.2 Configuration space and generalized coordinates

We now want to extend the Lagrangian formalism to deal with more general situations,
beyond the rather special case of a particle moving in one dimension. We start with

Definition 2.2.1. The set of all possible (in principle) instantaneous configurations for a
given physical system is known as configuration space. We will denote it by C.

It is important to note that this includes positions, but it does not include velocities.
One informal way of thinking about configuration space is as the space of all distinct
photographs one can take of the system, at least in principle.

Additionally, in constructing configuration space we make no statement about dynam-
ics: we need to construct configuration space before we construct a Lagrangian, which
tells us about the dynamics in this configuration space.

Example 2.2.2. A particle moving in Rd (that is, d-dimensional euclidean space) has
configuration space Rd. We discussed the d = 1 example above, where we had a particle
moving in the one dimensional line R, which we parametrized by the coordinate x.

Example 2.2.3. N particles moving freely in the Rd have configuration space (Rd)N =
RdN . (Assuming that we can always distinguish the particles. I leave it as an amusing
exercise to think what is the configuration space if you cannot distinguish the particles.)

Example 2.2.4. N electrically charged particles moving in Rd: since particles are elec-
trically charged they repel or attract. But this is a dynamical question, and configuration
space is insensitive to such matters, it is still RdN . One way to see this is that you can
always place a set of N particles at any desired positions in Rd (barring some singular
points where particles overlap, so the system has infinite energy and is unphysical, but we
can ignore such subtleties here). After being released, the particles will subsequently move
in a manner described by the Euler-Lagrange equations, but any initial choice is permitted.

Example 2.2.5. Two particles joined by a rigid rod of length ℓ in d-dimensions: without
the rod the configuration space is R2d, but the rod introduces the constraint that the particles
are at fixed distance ℓ from each other. This can be written as

||x⃗1 − x⃗2||2 = ℓ2

where x⃗1 and x⃗2 are the positions of the two particles in Rd. The configuration space is
2d− 1 dimensional, given by the surface defined by this equation inside R2d.

Example 2.2.6. Finally, consider a rigid body in R3, a desk for instance. We can view it as
formed by 1027 atoms, joined by atomic forces. But for the purposes of classical mechanics
we certainly do not care about the motion of the individual atoms (we are doing classical
mechanics, not quantum mechanics, so we would get the answer wrong anyway, even if
we could compute it!). Rather, for classical dynamics we can think about the classical
configurations that the desk can take. And this is a six-dimensional space, given (for
instance) by the position of the centre of mass of the desk, and three rotational angles.
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Definition 2.2.7. Given a configuration space C for a physical system S, we say that S
has dim(C) degrees of freedom.

Although it is illuminating to think of configuration space abstractly, in practice we will
often want to put coordinates on it, so that we can write and analyse concrete equations. I
emphasize that this is a matter of convenience: any choice of coordinate system is equally
valid, and the Lagrangian formalism holds regardless of the choice.

Definition 2.2.8. Given a configuration space C, any set of coordinates in this space is
known as a set of generalized coordinates. Conventionally, when we want to indicate that
some equation holds for arbitrary choices of generalized coordinates, we will use “qi” for the
coordinate names, with i ∈ {1, . . . , dim(C)}, and “q” (without indices) for the coordinate
vector with components qi.

Example 2.2.9. Consider the case of a particle moving on R2. The configuration space
is R2. There are two natural sets of coordinates in this space (although I emphasize again
that any choice is valid): we could choose the ordinary Cartesian coordinates (x, y), or it
might be more convenient to choose polar coordinates r, θ satisfying

x = r cos(θ) ,

y = r sin(θ) .

Example 2.2.10. Consider instead the case of a bead attached to a circular wire of unit
radius on R2, defined by the equation x2+y2 = 1. The configuration space is the circle, S1.
A possible coordinate in this space is the angular variable θ appearing in the description of
the circle in polar coordinates.

Note 2.2.11

We will only be dealing with unconstrained generalized coordinates when describing
configuration space. That is, we want a set of exactly dim(C) coordinates (and no
more) that describes, at least locally, the geometry of the configuration space C. So
in example 2.2.10 we can take θ as our generalized coordinate, but we do not want to
consider (x, y) as generalized coordinates, as they are subject to the constraint x2 +
y2 = 1. While there is nothing wrong geometrically with such systems of coordinates,
the existence of the constraint implies that we cannot vary x and y independently
in our variational problem (as we we will implicitly do below), and this complicates
the analysis of the problem somewhat. So, for simplicity, we will just declare that
henceforth we are dealing with unconstrained systems of generalized coordinates.


