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We can now repeat the derivation of the Euler-Lagrange equations for a general con-
figuration space C. Consider a general path in configuration space given by q(t) ∈ C,7 and
assume the existence of a Lagrangian function, L(q, q̇), such that the action for the path
is given by

S =

∫ t1

t0

dt L(q(t), q̇(t)) .

The variational principle states that, if we fix the initial and final positions in configuration
space, that is q(t0) = q(0) and q(t1) = q(1), the path taken by the physical system satisfies

δS = 0

to first order in δq(t). The derivation runs parallel to the one above (here N := dim(C)):

δS =

∫ t1

t0

dt
N∑
i=1

∂L

∂qi
δqi +

N∑
i=1

∂L

∂q̇i
δq̇i

=

∫ t1

t0

dt
N∑
i=1

∂L

∂qi
δqi +

N∑
i=1

∂L

∂q̇i

d

dt
(δqi)

=

∫ t1

t0

dt
N∑
i=1

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
δqi +

d

dt

(
δqi

∂L

∂q̇i

)

=

[
N∑
i=1

δqi
∂L

∂q̇i

]t1
t0

+

∫ t1

t0

dt
N∑
i=1

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
δqi .

As mentioned above, we are dealing with unconstrained coordinates, meaning that we
can vary the qi independently in configuration space. Since there are dim(C) independent
coordinates, applying the fundamental lemma of the calculus of variations leads to the
system of dim(C) equations

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 ∀i ∈ {1, . . . , dim(C)} (2.2.1)

known as the Euler-Lagrange equations. I want to emphasize the fact that we have not
made any assumptions about the specific choice of coordinate system used in deriving these
equations, so the Euler-Lagrange equations are valid in any coordinate system.8

7We know that q lives in C, by definition. Where does q̇ live? Imagine that at each point in C we
attach a tangent space T (q), the space of all tangent vectors at that point. The vector q̇ is a velocity,
so it is a vector in T (q). The total space of all such tangent spaces over all points in C is known as TC
(the “tangent bundle”). So, if I wanted to be fully precise, I would say that L : TC → R. While this is
the true geometric nature of the Lagrangian function, and the resulting geometric ideas are beautiful to
explore, during the course we will take the more pedestrian approach of looking at things locally in TC,
where TC ≈ Rdim(C) × Rdim(C). The Lagrangian is then L : Rdim(C) × Rdim(C) → R, that is, a function of
two vectors, which we call q and q̇.

8Alternatively, you can derive the Euler-Lagrange equations in any fixed coordinate system, and check
that they stay invariant when you change to a different coordinate system, as done in the appendix.
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Note 2.2.12

We emphasized in note 2.1.6 above that in the case of systems with one degree of
freedom the Lagrangian is a function of the coordinate x (a coordinate in the one-
dimensional configurations space) and ẋ, and these should be treated as independent
variables when writing down the Euler-Lagrange equations for the system.

Similarly, for N -dimensional configuration spaces, with generalized coordinates qi
with i ∈ {1, . . . , N}, we have in the Lagrangian formalism

∂qi
∂q̇j

=
∂q̇i
∂qj

= 0 (2.2.2)

and
∂qi
∂qj

=
∂q̇i
∂q̇j

= δij =

{
1 if i = j ,

0 otherwise.
(2.2.3)

Note 2.2.13

We will later on include the possibility of Lagrangians that depend on time explicitly.
We indicate this as L(q, q̇, t), an example could be L = 1

2
mẋ2 − t2x2.

This is a mild modification of the discussion above, and it does not affect the form
of the Euler-Lagrange equations, but there are a couple of things to keep in mind:

1. When taking partial derivatives, t should be taken to be independent from q and
q̇. The reasoning for this is as in note 2.1.6: the Lagrangian is now a function of
2 dim(C) + 1 arguments (the generalized coordinates, their velocities, and time),
which are unrelated to each other. It is only when we use the Lagrangian to
build the action that the parameters become related, but the partial derivatives
that appear in the functional variation do not care about this, since they arise in
computing the variation of the action under small changes in the path.

For instance, for L = 1
2
mẋ2 − 1

2
t2x2 we have

∂L

∂ẋ
= mẋ ;

∂L

∂x
= xt2 ;

∂L

∂t
= −tx2 .

2. Since in extremizing the action we change the path, but leave the time coordinate
untouched, there is no Euler-Lagrange equation associated to t. In the example
above there would be a single Euler-Lagrange equation, of the form

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= mz̈ + t2z = 0 .


