2.4 IGNORABLE COORDINATES AND CONSERVATION OF GENERALISED MOMENTA 20

§2.4 Ignorable coordinates and conservation of generalised momenta

It is useful to formalize what we just saw happen in example 2.3.3.
Definition 2.4.1. Given a set $\left\{q_{1}, \ldots, q_{N}\right\}$ of generalized coordinates, we say that a specific coordinate q_{i} in the set is ignorable if the Lagrangian function, expressed in these generalised coordinates, does not depend on q_{i}. That is, a coordinate is ignorable iff

$$
\frac{\partial L\left(q_{1}, \ldots, q_{N}, \dot{q}_{1}, \ldots, \dot{q}_{N}\right)}{\partial q_{i}}=0 .
$$

Definition 2.4.2. The generalized momentum p_{i} associated to a generalized coordinate is

$$
p_{i}:=\frac{\partial L}{\partial \dot{q}_{i}} .
$$

With these two definitions in place we have
Proposition 2.4.3. The generalized momentum associated to an ignorable coordinate is conserved.

Proof. This follows immediately from the Euler-Lagrange equation for the ignorable coordinate. Denoting the ignorable coordinate q_{i} and its associated generalized momentum p_{i}, we have

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=\frac{d p_{i}}{d t}-0=\frac{d p_{i}}{d t}=0 .
$$

Example 2.4.4. We already found a ignorable coordinate in example 2.3.3. We have that θ was ignorable, and it associated generalized momentum is

$$
p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta}
$$

Example 2.4.5. An even simpler example is the free particle moving in d dimensions. In Cartesian coordinates we have

$$
L=T-V=\frac{1}{2} m \sum_{i=1}^{d} \dot{x}_{i}^{2},
$$

so every coordinate is ignorable. The associated generalized momenta are

$$
p_{i}=\frac{\partial L}{\partial \dot{x}_{i}}=m \dot{x}_{i} .
$$

In this case conservation of generalized momenta is simply conservation of linear momentum.

2.4 IGNORABLE COORDINATES AND CONSERVATION OF GENERALISED MOMENTA 21

Example 2.4.6. Let us look again to the free particle, but this time in two dimensions $(d=2)$, and in polar coordinates. We have

$$
L=T-V=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right) .
$$

We have that θ is ignorable. The associated conserved generalized momentum is

$$
p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta} .
$$

You might recognize this as the angular momentum of the particle (that is, linear momentum \times position vector), which should indeed be conserved for the free particle.

