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§3 Symmetries, Noether’s theorem and conservation laws

§3.1 Ordinary symmetries

Our discussion of ignorable coordinates hints at a connection between symmetries and
conservation laws: the fact that the Lagrangian does not depend on qi can be rephrased
as the statement that the Lagrangian is invariant under the transformation qi → qi + ϵai,
with ϵai an arbitrary constant shift. (We will define all these concepts more carefully
momentarily.) And we saw that whenever this happens, there is a conserved quantity, the
generalized momentum pi.

This result is somewhat unsatisfactory, in that we can only understand the appearance
of the conserved charges in carefully chosen coordinate systems. And, as we saw in the
example of the free particle above, we might need to patch together results in different
coordinate systems in order to access all the conserved charges in the system.

Noether’s theorem fixes these deficiencies, providing a coordinate-independent connec-
tion between symmetries and conservation laws. Before we get to the theorem itself, we
will need some preliminary results and definitions.

Definition 3.1.1. Consider a uniparametric family of smooth maps φ(ϵ) : C → C from
configuration space to itself, with the property that φ(0) is the identity map. We call this
family of maps a transformation depending on ϵ. In any given coordinate system we can
write the transformation as

qi → ϕi(q1, . . . , qN , ϵ)

with ϕi a set of N := dim(C) functions representing the finite transformation in the given
coordinate system. We take the change in velocities to be

q̇i →
d

dt
ϕi .

Note 3.1.2

At the level of the Lagrangian we treat qi and q̇i as independent variables, so it is not
automatic that the transformation of the velocities q̇i is as given. One should take the
prescription q̇i → d

dt
ϕi as part of the definition above.

Remark 3.1.3. A word on notation: when it is clear from the context which transformation
we are talking about, we often write q′i instead of ϕi(q, ϵ). That is, we often write

qi → q′i = . . .

where the omitted terms are some function of qi and ϵ.
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Definition 3.1.4. The generator of φ is

dφ(ϵ)

dϵ

∣∣∣
ϵ=0

:= lim
ϵ→0

φ(ϵ)− φ(0)

ϵ
.

In any given coordinate system we have

qi → ϕi(q, ϵ) = qi + ϵai(q) +O(ϵ2)

where
ai =

∂ϕi(q, ϵ)

∂ϵ

∣∣∣
ϵ=0

is a function of the generalized coordinates. So, in coordinates, the generator of the trans-
formation is ai. Similarly, for the velocities we have

q̇i → q̇i + ϵȧi(q1, . . . , qN , q̇1, . . . , q̇N) +O(ϵ2)

generated by ȧi.

Example 3.1.5. A particle moving in Rd can be described in Cartesian coordinates xi. The
transformation associated to translations of the origin of coordinates in the first direction
is x1 → x1+ϵ, with the other coordinates constant. So we have that shifts of the coordinate
system in the x1 direction are generated by

ai =

{
1 for i = 1 ,

0 otherwise

and ȧi = 0.

Example 3.1.6. Say that we have a particle moving in two dimensions, and we want
to consider the finite transformations given by rotations around the origin. In Cartesian
coordinates we have

x→ x cos(ϵ)− y sin(ϵ)

y → x sin(ϵ) + y cos(ϵ) .

In order to find the generators, we can derive the associated infinitesimal transformations
by using the expansions sin(ϵ) = ϵ+O(ϵ3) and cos(ϵ) = 1 +O(ϵ2). We find

x→ x− yϵ+O(ϵ2)

y → y + xϵ+O(ϵ2) .

This implies that the transformation is generated in Cartesian coordinates by

ax = −y ; ay = x ; ȧx = −ẏ ; ȧy = ẋ .
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Lemma 3.1.7. The equations of motion do not change if we modify the Lagrangian by
addition of a total derivative of a function of coordinates and time. That is,

L→ L+
dF (q1, . . . , qN , t)

dt

does not affect the equations of motion.

Proof. Since the term that we add is a total time derivative, the effect on the action is

S =

∫ t1

t0

dt L→ S ′ = S + F (q1(t1), . . . , qN(t1), t1)− F (q1(t0), . . . , qN(t0), t0) . (3.1.1)

Now, recall that the variational principle tells us that the equations of motion are obtained
by imposing that δS vanishes to first order in δqi(t), keeping the qi fixed at the endpoints
of the path. This implies that in the variational problem both F (q1(t0), . . . , qN(t0), t0) and
F (q1(t1), . . . , qN(t1), t1) are kept fixed. So

δS ′ = S ′[q+ δq]− S ′[q]

= S[q+ δq] + F (q1(t1), . . . , qN(t1), t1)− F (q1(t0), . . . , qN(t0), t0)

− (S[q] + F (q1(t1), . . . , qN(t1), t1)− F (q1(t0), . . . , qN(t0), t0))

= S[δq]− S[q] = δS .

We learn that the addition of dF
dt

to the Lagrangian does not affect the variation of the
action in the variational problem, so it cannot affect the equations of motion.


