This result motivates the following definition:
Definition 3.1.8. A transformation $\varphi(\epsilon)$ is a symmetry if, to first order in ϵ, there exists some function $F(\mathbf{q}, t)$ such that the change in the Lagrangian is a total time derivative of $F(\mathbf{q}, t)$:

$$
L \rightarrow L^{\prime}=L\left(\phi\left(q_{1}, \epsilon\right), \ldots, \phi\left(q_{N}, \epsilon\right)\right)=L+\epsilon \frac{d F\left(q_{1}, \ldots, q_{N}, t\right)}{d t}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Remark 3.1.9. I emphasize that $F(\mathbf{q}, t)$ is only defined up to a constant: if some $F(\mathbf{q}, t)$ exists such that

$$
L^{\prime}=L+\epsilon \frac{d F(\mathbf{q}, t)}{d t}+\mathcal{O}\left(\epsilon^{2}\right)
$$

any other $F^{\prime}(\mathbf{q}, t)=F(\mathbf{q}, t)+c$ with c is a constant will also satisfy the same equation. The specific choice of c is arbitrary, and any choice will lead to correct results. In what follows I will simply pick a convenient representative $F(\mathbf{q}, t)$ - for instance $F(\mathbf{q}, t)=0$ whenever this is possible.

Example 3.1.10. Whenever we have an ignorable coordinate q_{i}, the symmetry associated to shifting it by constants, $q_{i} \rightarrow q_{i}+c_{i}$, is clearly a symmetry, since by definition the coordinate does not appear in the Lagrangian, and \dot{q}_{i} stays invariant. So in this case F can be chosen to be 0 .

As an example, consider the example of the rotating spring discussed in example 2.3.3. In polar coordinates (r, θ), we have

$$
L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{1}{2} \kappa r^{2} .
$$

In this case the θ coordinate is ignorable, so the associated shift $\theta \rightarrow \theta+\epsilon$ is a symmetry. The generators of the symmetry are

$$
a_{r}=0 \quad ; \quad a_{\theta}=1 \quad ; \quad \dot{a}_{r}=0 \quad ; \quad \dot{a}_{\theta}=0
$$

Example 3.1.11. Let us study the same system as in the previous example, but now in Cartesian coordinates. We have

$$
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-\frac{1}{2} \kappa\left(x^{2}+y^{2}\right) .
$$

The transformation $\theta \rightarrow \theta+\epsilon$ is a rotation around the origin. Whenever $\epsilon \ll 1$, we have

$$
\begin{aligned}
x \rightarrow x^{\prime} & =x-\epsilon y+\mathcal{O}\left(\epsilon^{2}\right) \\
y \rightarrow y^{\prime} & =y+\epsilon x+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

as we argued in example 3.1.6. And accordingly, for the time derivatives we have

$$
\begin{aligned}
\dot{x} \rightarrow \dot{x}^{\prime} & =\dot{x}-\dot{y} \epsilon+\mathcal{O}\left(\epsilon^{2}\right) \\
\dot{y} \rightarrow \dot{y}^{\prime} & =\dot{y}+\dot{x} \epsilon+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

Note that this transformations imply that

$$
x^{2}+y^{2} \rightarrow x^{\prime 2}+y^{\prime 2}=(x+\epsilon y)^{2}+(y-\epsilon x)^{2}=x^{2}+y^{2}+\mathcal{O}\left(\epsilon^{2}\right)
$$

and similarly that

$$
\dot{x}^{2}+\dot{y}^{2} \rightarrow \dot{x}^{\prime 2}+\dot{y}^{\prime 2}=\dot{x}^{2}+\dot{y}^{2}+\mathcal{O}\left(\epsilon^{2}\right)
$$

The action of the symmetry on the Lagrangian is then, to first order in ϵ :

$$
L \rightarrow L^{\prime}=L\left(x^{\prime}, y^{\prime}, \dot{x}^{\prime}, \dot{y}^{\prime}\right)=L+\mathcal{O}\left(\epsilon^{2}\right)
$$

so we also see in this coordinate system that the rotation is a symmetry.
Note that this argument generalizes straightforwardly for any Lagrangian of the form

$$
L=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right)-V\left(x^{2}+y^{2}\right)
$$

with $V(r)$ an analytic function of r, since in this case

$$
V\left(x^{2}+y^{2}+\mathcal{O}\left(\epsilon^{2}\right)\right)=V\left(x^{2}+y^{2}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

Example 3.1.12. Consider a system with Lagrangian

$$
L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)-y \dot{x}-\frac{1}{2} x^{2}
$$

and a transformation generated by

$$
\begin{aligned}
x & \rightarrow x^{\prime}=x \\
y & \rightarrow y^{\prime}=y+\epsilon
\end{aligned}
$$

Then $\dot{x}^{\prime}=\dot{x}$ and $\dot{y}^{\prime}=\dot{y}$ and

$$
\delta L=L\left(x^{\prime}, y^{\prime}, \dot{x}^{\prime}, \dot{y}^{\prime}\right)-L(x, y, \dot{x}, \dot{y})=-y^{\prime} \dot{x}^{\prime}+y \dot{x}=-\epsilon \dot{x}
$$

So this is also a symmetry, this time with $F=-x$.

Note 3.1.13

It is important to notice that the definition of symmetry above does not involve the equations of motion: the Lagrangian must stay invariant (up to a total derivative) without using the equations of motion. That is, the Lagrangian must be invariant also for those paths in configuration space that do not extremize S.

