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This result motivates the following definition:

Definition 3.1.8. A transformation ¢(€) is a symmetry if, to first order in €, there exists
some function F'(q,t) such that the change in the Lagrangian is a total time derivative of
F(q,t):

dF(q,t)

L — Ll = L(¢1(q7 6)7 s 7¢N(q> 6)7 él(qa (L 6)7 s >¢N(q7 (L 6)) = L(qa q)+€T+O(€2) :

Remark 3.1.9. I emphasize that F'(q,t) is only defined up to a constant: if some F(q,1)
exists such that
dF(q,1)

dt

any other F'(q,t) = F(q,t) + ¢ with ¢ is a constant will also satisfy the same equation.
The specific choice of ¢ is arbitrary, and any choice will lead to correct results. In what
follows I will simply pick a convenient representative F'(q,t) — for instance F'(q,t) = 0
whenever this is possible.

L'=L(q,q) +€ +0(e”)

Example 3.1.10. Whenever we have an ignorable coordinate q;, the symmetry associated
to shifting it by constants, q; — q; + ¢;, is clearly a symmetry, since by definition the
coordinate does not appear in the Lagrangian, and ¢; stays invariant. So in this case F
can be chosen to be 0.

As an example, consider the example of the rotating spring discussed in example 2.3.3.
In polar coordinates (r,0), we have

1 . 1
L= im(f’2 +1r%0%) — 5/4:7“2.

In this case the 6 coordinate is ignorable, so the associated shift 0 — 6 + € is a symmetry.
The generators of the symmetry are

a. =0 ; ag =1 ; a. =0 ; ag=0.

Example 3.1.11. Let us study the same system as in the previous example, but now in
Cartesian coordinates. We have
L oo .9 L s 2
Lzﬁm(m +79 )—EI{(I +y°).

The transformation 6 — 6 + € is a rotation around the origin. Whenever ¢ < 1, we have

v =1 =x—ey+ O
y—y =y+er+ O).

as we argued in example 3.1.6. And accordingly, for the time derivatives we have

i — i’ =i —ye+ O()
=y =9 +ict+ O(H).
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Note that this transformations imply that
Py sy = () + (y -] =2+ + O(E)

and similarly that
P4t =i+ =+ + O(F)

The action of the symmetry on the Lagrangian is then, to first order in €:
L— L =Ly, i 7)) =L+ 0O
so we also see in this coordinate system that the rotation is a symmetry.
Note that this argument generalizes straightforwardly for any Lagrangian of the form
L= (i) = Ve + )
with V(r) an analytic function of r, since in this case
V(2> +y* + O(2) = V(z® + ) + O(é?) .
Example 3.1.12. Consider a system with Lagrangian

1
L= (3% +77) —yi — 52,

and a transformation generated by

r — ==,

y = ¥ =y+e.
Then &' = & and ' = vy and

5L = L(IE/,y/,f',,’y,) - L(%?J,w,y} — —y/x" + y.I’ = —€XT.

So this is also a symmetry, this time with F = —z.

Note 3.1.13

It is important to notice that the definition of symmetry above does not involve the
equations of motion: the Lagrangian must stay invariant (up to a total derivative)
without using the equations of motion. That is, the Lagrangian must be invariant
also for those paths in configuration space that do not extremize S.



