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We are finally in a position to state and prove Noether’s theorem.

Theorem 3.1.14 (Noether). Consider a transformation generated by ai(q1, . . . , qN) (in a
given set of generalized coordinates), such that

L→ L+ ϵ
dF (q1, . . . , qN , t)

dt
+O(ϵ2) ,

so that it is a symmetry. Then

Q :=

(
N∑
i=1

ai
∂L

∂q̇i

)
− F

is conserved (that is, dQ
dt

= 0). The conserved quantity Q is known as the Noether charge.

Proof. I will start by giving the intuitive idea behind the proof. Recall that physical
trajectories qi(t) are those that satisfy δS = 0 to first order in δqi(t), keeping the endpoints
qi(t0) and qi(t1) fixed. A general transformation acts as qi(t) → q(t)+ϵai(q, t), but crucially
it does not necessarily keep the endpoints qi(t0) and qi(t1) fixed. So the action of a physical
path can change to first order in ϵ under a generic transformation. But it does so in a
fairly localised way: only the behaviour near the endpoints of the path, at t0 and t1, can
contribute to δS. If the transformation is furthermore a symmetry, we can compute δS
(to first order in ϵ) in a second way, as a function of quantities at t0 and t1 only, using our
result (3.1.1) above. Equating the result of both approaches leads to Noether’s theorem.

In detail, this goes a follows. We want to understand the variation of the action under
the transformation

qi → qi + δqi = qi + ϵai

in two different ways. On one hand, as for any other variation of the path, we can Taylor
expand to obtain

δS =

∫ t1

t0

dt
N∑
i=1

(
ϵai

∂L

∂qi
+ ϵȧi

∂L

∂q̇i

)
+O(ϵ2)

which becomes, using the Euler-Lagrange equations

δS =

∫ t1

t0

dt
N∑
i=1

(
ϵai

d

dt

(
∂L

∂q̇i

)
+ ϵȧi

∂L

∂q̇i

)
+O(ϵ2)

=

∫ t1

t0

dt ϵ
d

dt

(
N∑
i=1

ai
∂L

∂q̇i

)
+O(ϵ2)

= ϵ

[
N∑
i=1

ai
∂L

∂q̇i

]t1
t0

+O(ϵ2) .
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Note that we have used the Euler-Lagrange equations of motion in going from the first to
the second line, so the result will only be valid along the path that satisfies the equations
of motion.

On the other hand, using the fact that the variation is a symmetry, we have

δS = S[q+ δq]− S[q]

=

∫ t1

t0

dt

((
L+ ϵ

dF

dt
+O(ϵ2)

)
− L

)
= ϵ [F ]t1t0 +O(ϵ2) .

Equation both results, we immediately obtain that Q(t1) = Q(t0). Since the choice of t0
and t1 is arbitrary, the result now follows easily: choose t1 = t0 + ϵ. We have

Q(t1)−Q(t0) = Q(t0 + ϵ)−Q(t0) = ϵ
dQ

dt
+O(ϵ2) = 0

so dQ
dt

= 0.

Example 3.1.15. Whenever the coordinate qi is ignorable, we have a symmetry (with
f = 0) generated by qi → qi + ϵ, leaving the other coordinates constant. That is,

ak = δik :=

{
1 if i = k .

0 otherwise.

The corresponding Noether charge is then

Q =
N∑
k=1

ak
∂L

∂q̇i
=

N∑
k=1

δki
∂L

∂q̇i
=
∂L

∂q̇i

as expected.

Example 3.1.16. Let us come back to the conservation of angular momentum in rota-
tionally symmetric systems, expressed in Cartesian coordinates. Assume that we have a
system with Lagrangian

L =
1

2
m(ẋ2 + ẏ2)− V (x2 + y2) .

We saw in example 3.1.11 that rotations around the origin, which are generated by

ax = −y ; ay = x ,

are a symmetry of the system with F = 0.
Noether’s theorem then tells us that the associated charge is

Q = ax
∂L

∂ẋ
+ ay

∂L

∂ẏ
= m(−yẋ+ xẏ) .

It is a simple exercise to show that this is indeed equal to mr2θ̇.
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Example 3.1.17. Finally, let us revisit example 3.1.12. We have a Lagrangian

L =
m

2

(
ẋ2 + ẏ2

)
− yẋ− 1

2
x2 ,

and a transformation generated by

x → x′ = x ,

y → y′ = y + ϵ .

That is, ax = 0 and ay = 1. We found in example 3.1.12 that this transformation is a
symmetry with F = −x. The associated Noether charge is

Q = ax
∂L

∂ẋ
+ ay

∂L

∂ẏ
− F = mẏ + x .

We can check that this is conserved from the equations of motion, which are

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= mẍ− ẏ + x = 0 ,

d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
= mÿ + ẋ = 0 .

Note in particular that the second equation is precisely dQ
dt

= 0.


