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Alternative proof. Here 1 will present a less straightforward but (in my opinion) more
illuminating proof, closer in spirit to the one we used in proving Noether’s theorem.

4] This alternative proof is not examinable. (i)

Imagine that we take a path q(t) satisfying the equations of motion, and we displace it
to a new path q'(t) = q(t — €). That is, we move the whole path slightly forward in time,
keeping its shape. We have
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We can compute this expression in two different ways. First, by the Chain Rule, we
have that

Lig(t—e€),....an(t —€),q1(t —€),...,Gn(t —€),t) =

N
. . oL. 0L, 9
Lqi(t), . qn(t),qu(t), ..., qn(t), ) — € <i1 a—qi%‘ + 8_qqu> +O(€) .

Using the Euler-Lagrange equations of motion, we can write this as
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Substituting these expressions into the action, we have just proven that
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On the other hand, introducing a new variable t' =t — ¢, we can write
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We can expand this as a series in € using Leibniz’s rule (see equation (A.0.1) in the appendix
for a reminder), to get:
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Now we note that that, by the Chain Rule, we have
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The theorem now follows from equating the two expressions for S’ that we found. ]



