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Note 3.2.4

It is not obvious that the quantity E that is conserved if %—f = 0 is what is usually

known as “energy” in classical mechanics. But this is easy to verify. Assume that we
have a particle with Lagrangian

L= T(i’l, cee ,i’N) - V(Il,. .. ,I‘N)
with T'(dq,...,4n) = 2m(if + ... 4 43), as we often do in classical mechanics. Then
applying the definition 3.2.1 above one easily finds the expected relation

E=T+V.
The result holds more generally. Consider a Lagrangian of the form

L= (Z Kij(qu, - .- ,QN)Qin> —V(q)

1,j=1

J/

T(g,4)

with the K;;(¢) and V(q) arbitrary functions on configuration space C. Then it is easy
to verify that

E=T+V.

Example 3.2.5. Say that we have a spring that becomes weaker with time, with a spring
constant k(t) = e~'. A mass attached to the spring can then be described by a Lagrangian

L= -mi* — ~k(t)x*.
The resulting equation of motion is
mi + k(t)x =0.
The enerqy of the system is . .
2

E = §mi2 + éli(t)l’ :

Since the Lagrangian depends explicitly on time, we expect that energy is not conserved.
And indeed:

E 1
Cil_t = mii + k(t)zd + §$2d2—(tt)
1
— i(mi + r(t)x) + §x2—d’;§t>

A
1 ,dk(t)
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where in the last step we have used the equation of motion. On the other hand

OL 1 ,dx(t)

ot 2" Tt

since time appears explicitly only in k(t). So we have verified that

e _ 0L
da ot

Example 3.2.6. Note that our definition 3.2.1 for the energy does not require the La-
grangian to have the specific form L =T — V. Consider for instance the Lagrangian

L:—m(\/1—:'c2—y2—z'2).

(This specific Lagrangian is in fact fairly important, as it describes the motion of a particle
in R3 in special relativity.) Definition 3.2.1 gives

oL 9L 0L
E=d— +§mr +4

o: Vg Tz
We have
.OL ma?
xrT— =
ot \/1_3';2_92_22’
and similarly for vy and %. Putting everything together we find
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