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§4 Normal modes

So far we have studied the Euler-Lagrange equations abstractly, but we have not spent
much effort actually trying to solve them, except on some fairly elementary examples. The
reason for this is simple: in most cases we cannot solve the equations in closed form. Even
if we can, it is rarely the case that the answer can be written in terms of elementary
functions. Recall, for instance, example 2.3.2 above, where we discussed the pendulum.
We found that the Euler-Lagrange equations of motion were of the form

θ̈ +
g

ℓ
sin(θ) = 0 .

This equation can be solved in closed form, in terms of a class of special functions known as
“elliptic functions”, but the solution is relatively involved, and not particularly illuminating
for our current purposes. Rather than insisting in solving the problem exactly from the
outset, it is often illuminating to instead try to understand what the system does for small
displacements away from equilibrium. That is, for small values of θ. In this regime we
have that sin(θ) ≈ θ, and the equation of motion becomes

θ̈ +
g

ℓ
θ = 0

which can be solved straightforwardly to give

θ = a cos(ωt) + b sin(ωt)

with ω =
√

g
ℓ

and a, b constants that depend on the initial conditions.
The technology of normal modes, which we introduce in this section, is a way of for-

malizing this observation, and applying it systematically to more complicated systems.

§4.1 Canonical kinetic terms

Let us restrict ourselves to the neighbourhood of minima of the potential. Assume, to start
with, that we have a Lagrangian

L =
1

2

n∑
i=1

q̇2i − V (q) . (4.1.1)

This particularly simple form for the kinetic term T = 1
2

∑n
i=1 q̇

2
i is known as a canonical

kinetic term.
Assume that there is a stationary point of V (q) at q = 0, that is

∂V

∂qi

∣∣∣
q=0

= 0 ∀i .
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If the stationary point we are interested in is at some other position q = (a1, . . . , aN), we
can simply introduce new variables q′i = qi − ai such that the stationary point is now at
q′ = 0. Clearly in doing this the form of equation (4.1.1) is preserved, so for simplicity we
will assume henceforth that the stationary point we are studying is indeed at q = 0.

We can write an approximate Lagrangian, describing the dynamics around this ex-
tremum, by expanding V (q) to second order in q

Lapprox =
1

2

n∑
i=1

q̇2i −
1

2

∑
i,j

Aijqiqj (4.1.2)

with
Aij =

∂2V

∂qi∂qj

∣∣∣∣
q=0

. (4.1.3)

The equations of motion arising from the approximate Lagrangian are given in matrix
notation by

q̈+ Aq = 0 . (4.1.4)
The approximate equations of motion are linear, since they can be written as

DAq :=

(
d2

dt2
+ A

)
q = 0 . (4.1.5)

where we have defined DA := d2

dt2
+ A. This is a linear operator, meaning that given any

two vectors a and b we have DA(a+ b) = DAa+DAb, and also for any c ∈ R and vector
a we have DA(ca) = cDAa. We have n equations, and the equations are of second order
and linear, so we expect to be able to express any solution of the approximate equations
of motion as a linear superposition of some 2n basic solutions.

To find these solutions, let us start by noticing that the n × n matrix A is real and
symmetric (for any potential whose second partial derivatives are continuous, which will
be the case during this course), so it has real eigenvalues and eigenvectors. We denote the
set of eigenvalues of A by λ(i), and the n corresponding eigenvectors by v(i), so that

Av(i) = λ(i)v(i) . (4.1.6)

Let us now take an ansatz11

q(i)(t) = f (i)(t)v(i) (4.1.7)
for some function f (i)(t) that we will determine. Since v(i) is an eigenvector with eigenvalue
λ(i), we have that (

d2

dt2
+ A

)
q(i)(t) =

(
d2

dt2
+ A

)
f (i)(t)v(i)

= v(i)

(
d2

dt2
+ λ(i)

)
f (i)(t)

= 0 .

11An ansatz is an assumed form for the solution of the problem. We test the assumption by inserting
the ansatz into the equation, and verifying that it does provide a solution for an appropriate choice of f(t).
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Since v(i) ̸= 0, this implies that (
d2

dt2
+ λ(i)

)
f (i)(t) = 0 .

Solving this equation is elementary, but the form of the solution depends on the sign of
λ(i). We have

f (i)(t) =


α(i) cos(

√
λ(i)t) + β(i) sin(

√
λ(i)t) if λ(i) > 0

C(i)t+D(i) if λ(i) = 0

α(i) cosh(
√
−λ(i)t) + β(i) sinh(

√
−λ(i)t) if λ(i) < 0

where the α(i), β(i), C(i) and D(i) are constants to be fixed by initial conditions. Note that
whatever the value of λ(i), each eigenvector leads to a two-dimensional space of solutions.
Since the eigenvectors span n-dimensional space, our ansatz gives us the full 2n-dimensional
space of solutions to the linear equation. So we can write the general solution of the system
in terms of the ansatz (4.1.7) as

q(t) =
N∑
i=1

v(i)f (i)(t)

with the f (i) as above.
The qualitative behaviour of the solution depends on the sign of the eigenvalues λ(i). For

λ(i) all being positive we are at a local minimum, and we have oscillatory behaviour around
the minimum. If we have a negative eigenvalue we instead have exponential behaviour away
from the stationary point. This agrees with expectations: if we are at a maximum along
some direction, small perturbations away the point will quickly grow, and we are trying to
expand around an unstable solution. Finally, zero eigenvalues are associated with motion
with constant velocity, displaying no oscillatory behaviour.

Definition 4.1.1. Each basic solution

q(t) = v(i)
(
α(i) cos(

√
λ(i)t) + β(i) sin(

√
λ(i)t)

)
associated with an eigenvalue λ(i) > 0 is a normal mode.

Definition 4.1.2. Each basic solution

q(t) = v(i)
(
C(i)t+D(i)

)
associated with a zero eigenvalue λ(i) = 0 is a zero mode.

Definition 4.1.3. Each basic solution

q(t) = v(i)
(
α(i) cosh(

√
−λ(i)t) + β(i) sinh(

√
−λ(i)t)

)
associated with an eigenvalue λ(i) < 0 is an instability.
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The general solution in the absence of instabilities is the superposition of the ordinary
normal modes for the non-zero eigenvalues and the zero modes

q(t) =
n∑

i=1
λ(i) ̸=0

v(i)
(
α(i) cos(ω(i)t+ β(i) sin(ω(i)t))

)
+

n∑
i=1

λ(i)=0

v(i)
(
C(i)t+D(i)

)
.

Note 4.1.4

Let me emphasize that the existence of zero modes is fairly brittle: if we slightly deform
our starting potential V (q) in a generic way, then the eigenvalues of A will generically
change slightly, and the zero eigenvalues will generically becomes either positive or
negative. So whenever we find a zero mode in a real physical system this tells us very
valuable information: we expect to be able to find some principle that restricts the
possible deformations of V (q)!

As an example, imagine that we have two particles with the same mass moving in
one dimension, located at x1 and x2. Assume that the physics is independent of the
choice of origin of coordinates, or equivalently that there is a symmetry

x1 → x1 + ϵa

x2 → x2 + ϵa

for any constant a. Then the potential can only depend on the difference x1 − x2, and
we have

L =
1

2
m(ẋ21 + ẋ22)− V (x1 − x2) .

This symmetry will then always lead to the existence of a zero mode, associated with
translation of the centre of mass of the system. We can see this explicitly if we introduce
new coordinates x+ := 1√

2
(x1 + x2), x− := 1√

2
(x1 − x2). Then our Lagrangian can be

written as
L =

1

2
m(ẋ2+ + ẋ2−)− V (

√
2x−)

which clearly leads to a zero mode for x+, no matter the specific form of V . So in
this case we find that the existence of the zero mode is ultimately protected by the
translation symmetry!


