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Example 4.1.5. Consider two pendula, each of length one with mass one, suspended a
distance d apart. Connecting the masses is a spring of constant κ and also of natural
length d.

The velocity of the left hand mass is simply ((− cos(θ1)θ̇)
2
1 + (sin(θ1)θ̇1)

2) = θ̇21. We get a
similar result for the right hand mass so the total kinetic energy T is

T =
1

2

(
θ̇21 + θ̇22

)
.

The potential comes from gravity, which gives a contribution g(− cos(θ1) − cos(θ2)), and
from the spring. For a spring of constant κ, its potential energy is given by κ(l − d)2/2,
where l−d is the extension of the spring. The length l of the spring is given by Pythagoras
Theorem as

l =
√
(sin(θ1)− sin(θ2) + d)2 + (cos(θ1)− cos(θ2))2.

Thus the Lagrangian for the system is given by

L =
1

2

(
θ̇21 + θ̇22

)
+ g(cos(θ1) + cos(θ2))

− κ

2

(√
(sin(θ1)− sin(θ2) + d)2 + (cos(θ1)− cos(θ2))2 − d

)2
.

Finding the exact solution to the equations of motion resulting from this Lagrangian seems
hopeless. However, it is clear that the system would be happy to sit at θ1 = θ2 = 0, as
this configuration minimises both the gravitational potential energy, and the spring energy
since the spring would be at its natural unextended length d. Let us now try to find an
approximate Lagrangian which describes the system when θi ≪ 1.

Approximating the gravitational potential is easy. cos(θ) ≈ 1− θ2/2 +O(θ4) so we can
take

−g(cos(θ1) + cos(θ2)) = −g
(
2− θ21

2
− θ22

2

)
.

The constant term −2g can be discarded using the usual reason that additions of constants
to potentials/Lagrangians has no effect. The spring potential looks more tricky to deal with,
but note that to calculate κ(l − d)2/2 to quadratic order in the small θi we only need to
calculate l − d to order θi, since it is linear in the θi:

l − d =
√

(sin(θ1)− sin(θ2) + d)2 + (cos(θ1)− cos(θ2))2 − d

=
√

(sin(θ1)− sin(θ2) + d)2 − d+O(θ2)

= θ1 − θ2.
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Finally we can write the approximate Lagrangian as

Lapprox =
1

2

(
θ̇21 + θ̇22

)
− g

2

(
θ21 + θ22

)
− κ

2
(θ1 − θ2)

2 .

The equations which follow from this are

θ̈1 + (g + κ)θ1 − κθ2 = 0

θ̈2 − κθ1 + (g + κ)θ2 = 0.

If one arranges the equations of motion in this way, so that all the terms proportional to
θ1 and those proportional to θ2 appear in columns then it is straightforward to read the
elements of matrix A from the equations as

A =

(
g + κ −κ
−κ g + κ

)
.

Solving for the eigenvalues of A we find that λ = g or g + 2κ, with eigenvectors (1, 1) or
(1,−1) respectively. So we can write the normal modes as(

θ1
θ2

)
=

(
1
1

)
e±i

√
gt or

(
θ1
θ2

)
=

(
1
−1

)
e±i

√
g+2κt

The first of these has θ1 = θ2 whilst the second has θ1 = −θ2. These two normal modes
can be pictured as follows: For the normal mode which has θ1 = θ2, the spring always

remains exactly length d and therefore remains unextended and exerts no force. The result
of this is that the angular frequency or this normal mode is √

g which does not involve κ
the spring constant. On the other hand, for the second normal mode the pendula move in
opposite directions, and in this case the spring stretches and contracts, enhancing the effect
of gravity which results in an angular frequency

√
g + 2κ which is greater than that of the

first normal mode in which only gravity plays a role.
The general solution of the system is thus given by(

θ1
θ2

)
=

(
1
1

)[
α(1) cos(t

√
g) + β(1) sin(t

√
g)
]

+

(
1
−1

)[
α(2) cos(t

√
g + 2κ) + β(2) sin(t

√
g + 2κ)

]
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with α(i) and β(i) arbitrary constants. To see how the general solution we found helps in
practice when studying the motion of the system, let us use this solution to study what
happens if we release the two masses from rest at t = 0 from θ1 = −θ2 = δ. Setting
θ1 = −θ2 = δ at t = 0 we find (

δ
−δ

)
=

(
α(1) + α(2)

α(1) − α(2)

)
(4.1.8)

so α(1) = 0 and α(2) = δ. Similarly, the condition that the masses are released from rest is
encoded in (

θ̇1(t = 0)

θ̇2(t = 0)

)
=

(
0
0

)
(4.1.9)

which taking derivatives in our general solution is easily shown to lead to(
0
0

)
=

(
β(1) + β(2)

β(1) − β(2)

)
(4.1.10)

which implies β(1) = β(2) = 0. So we find that the motion is given by(
θ1
θ2

)
=

(
δ
−δ

)
cos(t

√
g + 2κ)

which is an oscillatory motion in which the masses move oppositely, without changing the
centre of mass, as one might have guessed.


