§4.2 Non-canonical kinetic terms

Finally, we consider configurations with non-canonical kinetic terms of the form

$$
\begin{equation*}
L=\frac{1}{2} \sum_{i, j} \mathrm{~B}_{i j}(q) \dot{q}_{i} \dot{q}_{j}-V(q) . \tag{4.2.1}
\end{equation*}
$$

We still obtain a linear differential operator if we restrict $\mathrm{B}(q) \rightarrow \mathrm{B}(0)$. Physically, this corresponds to considering oscillations with not too much kinetic energy, which makes sense if we want to stay at the minimum. The resulting equations of motion are

$$
\begin{equation*}
\mathrm{B} \ddot{\mathbf{q}}+\mathrm{A} \mathbf{q}=0 \tag{4.2.2}
\end{equation*}
$$

where we have defined $B \equiv B(0)$, a constant matrix. B generally does not have zero eigenvalues (since this would correspond to generalised coordinates without a kinetic term), so we assume no zero eigenvalues. This implies that $\operatorname{det}(B) \neq 0$, and so B^{-1} exists. We then have an equivalent set of equations

$$
\begin{equation*}
\ddot{\mathbf{q}}+\mathrm{B}^{-1} \mathrm{Aq}=0 \tag{4.2.3}
\end{equation*}
$$

which reduces to the case we have already studied if you define $C:=B^{-1} A$.
There is one small subtlety that needs to be mentioned here: the fact that A was symmetric was quite important in our discussion above, since it ensured that its eigenvalues were real, but in general $B^{-1} A$ will not be symmetric, even if both B^{-1} and A separately are. Let us assume that A is positive semi-definite: that is, all its eigenvalues are either positive or zero. Then it exists a symmetric matrix $A^{\frac{1}{2}}$ such that $\left(A^{\frac{1}{2}}\right)^{2}=A .{ }^{12}$ We can use this matrix to rewrite

$$
C:=B^{-1} A=A^{-\frac{1}{2}}\left(A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}\right) A^{\frac{1}{2}}
$$

so we find that C is similar (in the sense of similarity transformations of matrices) to $A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}$. This matrix is manifestly symmetric, so its eigenvalues are real. Since similar matrices have the same eigenvalues, the eigenvalues of C will be real too. It is straightforward to check that if \mathbf{v} is an eigenvector of $A^{\frac{1}{2}} B^{-1} A^{\frac{1}{2}}$ with eigenvalue λ, then $A^{-\frac{1}{2}} \mathbf{v}$ will be an eigenvector of C with the same eigenvalue. So, in practice, we can simply compute the eigenvalues and eigenvectors of C , and proceed as we did above.

[^0]
[^0]: ${ }^{12}$ The simplest way to prove this is to note that A is real symmetric, and thus diagonalisable by an orthogonal transformation O as $\mathrm{A}=O D O^{t}$. We can then define $\mathrm{A}^{\frac{1}{2}}=O D^{\frac{1}{2}} O^{t}$.

