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§5.2 Example: the wave equation from the Lagrangian for a string

Our main example will be a Lagrangian density that can be thought of the Lagrangian
density for the one-dimensional string oscillating in one dimension. The standard name
for this Lagrangian is the “massless scalar field” Lagrangian.

Definition 5.2.1. The massless scalar field Lagrangian is

L =
1

2
ρu2t −

1

2
τu2x .

We refer to the constants ρ and τ as the density and tension, respectively. The field “u”
in this expression is the massless scalar.

Remark 5.2.2. It is in fact possible, and we do this in section 5.2.1 below, to derive this La-
grangian density from the physics of an idealized string in the limit in which the oscillations
are small. This explains the origin of the labels “density” and “tension” above. I empha-
size that the uses of this Lagrangian in Mathematical Physics go well beyond explaining
vibrating strings.

Definition 5.2.3. The Euler-Lagrange equations for fields immediately imply the equation
of motion

ρutt − τuxx = 0

for the massless scalar u, where

utt :=
∂2u

∂t2
=
∂ut
∂t

and similarly for uxx. Introducing for convenience c2 = τ/ρ (both the tension and the
density are assumed to be positive, so c is real), the equation of motion for the massless
scalar becomes:

utt = c2uxx .

We will refer to this equation as the wave equation. More precisely, what we are describing
here is known as the wave equation in one spatial dimension.

§5.2.1 Derivation of the massless scalar Lagrangian from a physical system

i This section is not examinable. i

We will now derive the massless scalar Lagrangian from the dynamics of a string vibrat-
ing in one dimension, in the approximation where the displacements are small. Similarly
to the case of point particles, the Lagrangian density can be constructed in terms of the
kinetic and potential energy densities. That is, if we have

T (u, ux, ut, x, t) =

∫
dx T (u, ux, ut, x, t)
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and
V (u, ux, ut, x, t) =

∫
dxV(u, ux, ut, x, t)

for the total kinetic energy T and total potential energy V of the string, then we call T
and V the corresponding densities of kinetic and potential energy, and we have

L = T − V

So we need to find expressions for the kinetic and potential energy densities. We will work
to leading (that is, quadratic) order in ux and ut. This is the regime in which the oscillations
are neither too large nor too fast. We do this because it leads to much simpler equations,
while still being quite useful for modelling many systems in Nature. Similarly, we will
assume that the string is only displaced vertically, without any horizontal displacement.

The kinetic energy can be obtained relatively straightforwardly by subdividing the
string into small pieces. Consider the small piece lying between x and x + δx. If the
segment is small enough its behaviour will be approximately point-like; therefore its kinetic
energy will be of the form m

2
v2. The mass of the small segment of string is given by

m = ρ ds ≈ ρ
√

1 + (ux)2 δx ≈ ρ δx.

Here ρ is the density of the string (which we take to be constant), and ds the arc-length
of the string segment. The final approximation follows from taking ux ≪ 1. Since u(x, t)
denotes the vertical displacement of the string it is clear that the vertical velocity is ut. The
contribution to the kinetic energy from the small piece of string that we are considering
is then 1

2
(ut)

2ρ δx. We then immediately obtain the kinetic energy of the whole string by
integrating over all the segments to find that the kinetic energy is given by

T =
ρ

2

∫ ∞

−∞
dx (ut)

2

so the kinetic energy density is
T =

ρ

2
(ut)

2 .

Obtaining the potential energy is a little bit more subtle. We know that the tension in
the string is a constant, which we call τ . It follows that the work done in extending the
string’s length by a distance δl will be τδl. If we imagine extruding the entire length of
the string from a point we reach the conclusion that the potential energy of the string is
τ times its length. Of course, our string is infinitely long, so that this may initially be a
concern, until we recall that adding a constant to the potential energy makes no difference.
We are not really interested in the absolute value of the potential energy, but rather
the differences in potential energy between string in various configurations. Therefore we
will take the potential energy of a string in some configuration u(x, t) to be defined as τ
times the difference in length between the string with shape u(x, t) and the length of the
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undisturbed string lying along the x-axis for which u(x, t) = 0. To be more precise we have

V = τ

(∫ ∞

−∞
ds−

∫ ∞

−∞
dx

)
= τ

(∫ ∞

−∞
(
√

1 + (ux)2 − 1)dx

)
≈ τ

(∫ ∞

−∞
(1 +

(ux)
2

2
− 1)dx

)
=

τ

2

∫ ∞

−∞
(ux)

2 dx

again to leading order in oscillations. From here we obtain the potential energy density

V =
τ

2
(ux)

2

and thus the Lagrangian density

L = T − V =
ρ

2
(ut)

2 − τ

2
(ux)

2 .


