§5.3 D'Alembert's Solution to the Wave Equation

The general solution to the wave equation in one spatial dimension was given by D^{\prime} 'Alembert, and it is simply

$$
u(x, t)=f(x-c t)+g(x+c t)
$$

where f and g are arbitrary functions. The part of the solution $f(x-c t)$ corresponds to a wave moving to the right with speed c, whilst the remaining part $g(x+c t)$ corresponds to a wave moving to the left with speed c.

Theorem 5.3.1. D'Alembert's solution $u(x, t)=f(x-c t)+g(x+c t)$ is the general solution to the wave equation.

Proof. We introduce new variables $x_{+}=x+c t$ and $x_{-}=x-c t$, or equivalently $x=$ $\frac{1}{2}\left(x_{+}+x_{-}\right)$and $t=\frac{1}{2 c}\left(x_{+}-x_{-}\right)$. By the Chain Rule:

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial x_{+}} \frac{\partial x_{+}}{\partial x}+\frac{\partial u}{\partial x_{-}} \frac{\partial x_{-}}{\partial x^{\prime}}=\frac{\partial u}{\partial x_{+}}+\frac{\partial u}{\partial x_{-}} \\
\frac{\partial u}{\partial t} & =\frac{\partial u}{\partial x_{+}} \frac{\partial x_{+}}{\partial t}+\frac{\partial u}{\partial x_{-}} \frac{\partial x_{-}}{\partial t}=c\left(\frac{\partial u}{\partial x_{+}}-\frac{\partial u}{\partial x_{-}}\right)
\end{aligned}
$$

Taking derivatives again, once more using the Chain Rule:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x_{+}}+\frac{\partial u}{\partial x_{-}}\right)=\frac{\partial}{\partial x_{+}}\left(\frac{\partial u}{\partial x_{+}}+\frac{\partial u}{\partial x_{-}}\right)+\frac{\partial}{\partial x_{-}}\left(\frac{\partial u}{\partial x_{+}}+\frac{\partial u}{\partial x_{-}}\right) \\
& =\frac{\partial^{2} u}{\partial x_{+}^{2}}+\frac{\partial^{2} u}{\partial x_{-}^{2}}+2 \frac{\partial^{2} u}{\partial x_{+} \partial x_{-}} \\
\frac{\partial^{2} u}{\partial t^{2}} & =c \frac{\partial}{\partial t}\left(\frac{\partial u}{\partial x_{+}}-\frac{\partial u}{\partial x_{-}}\right)=c^{2} \frac{\partial}{\partial x_{+}}\left(\frac{\partial u}{\partial x_{+}}-\frac{\partial u}{\partial x_{-}}\right)-\frac{\partial}{\partial x_{-}}\left(\frac{\partial u}{\partial x_{+}}-\frac{\partial u}{\partial x_{-}}\right) \\
& =c^{2}\left(\frac{\partial^{2} u}{\partial x_{+}^{2}}+\frac{\partial^{2} u}{\partial x_{-}^{2}}-2 \frac{\partial^{2} u}{\partial x_{+} \partial x_{-}}\right)
\end{aligned}
$$

As usual, we have used the assumption that partial derivatives commute. We see that in these variables the wave equation $u_{t t}=c^{2} u_{x x}$ becomes

$$
u_{t t}-c^{2} u_{x x}=-4 c^{2} \frac{\partial^{2} u\left(x_{+}, x_{-}\right)}{\partial x_{+} \partial x_{-}}=0
$$

The general solution of this equation is indeed

$$
u\left(x_{+}, x_{-}\right)=f\left(x_{-}\right)+g\left(x_{+}\right) .
$$

In practice, we are often interested in understanding what happens if we release a string from a given configuration. How does the string evolve? This is an initial value problem, which D'Alembert also solved in general. Assume that we are told that at $t=0$ the string has profile $\psi(x)$, that is

$$
u(x, 0)=\varphi(x)
$$

and in addition we know with which speed the string is moving at that instant:

$$
u_{t}(x, 0)=\psi(x)
$$

In terms of f and g, which parametrise the general form of the solution, these equation are

$$
f(x)+g(x)=\varphi(x)
$$

and

$$
-c f^{\prime}(x)+c g^{\prime}(x)=\psi(x) .
$$

This last equation can be integrated (formally) to give

$$
g(x)-f(x)=d+\frac{1}{c} \int_{-\infty}^{x} d s \psi(s)
$$

with d some unknown constant. We now have two equations for two unknowns, so solving for f and g we find

$$
\begin{aligned}
& f(x)=\frac{1}{2}\left(\varphi(x)-d-\frac{1}{c} \int_{-\infty}^{x} d s \psi(s)\right) \\
& g(x)=\frac{1}{2}\left(\varphi(x)+d+\frac{1}{c} \int_{-\infty}^{x} d s \psi(s)\right)
\end{aligned}
$$

so we finally find

$$
\begin{aligned}
u(x, t) & =f(x-c t)+g(x+c t) \\
& =\frac{\varphi(x-c t)+\varphi(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} d s \psi(s) .
\end{aligned}
$$

