5.3 D'ALEMBERT'S SOLUTION TO THE WAVE EQUATION

§5.3 D'Alembert's Solution to the Wave Equation

The general solution to the wave equation in one spatial dimension was given by D'Alembert, and it is simply

$$u(x,t) = f(x - ct) + g(x + ct)$$

where f and g are arbitrary functions. The part of the solution f(x - ct) corresponds to a wave moving to the right with speed c, whilst the remaining part g(x + ct) corresponds to a wave moving to the left with speed c.

Theorem 5.3.1. D'Alembert's solution u(x,t) = f(x-ct)+g(x+ct) is the general solution to the wave equation.

Proof. We introduce new variables $x_+ = x + ct$ and $x_- = x - ct$, or equivalently $x = \frac{1}{2}(x_+ + x_-)$ and $t = \frac{1}{2c}(x_+ - x_-)$. By the Chain Rule:

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x_{+}} \frac{\partial x_{+}}{\partial x} + \frac{\partial u}{\partial x_{-}} \frac{\partial x_{-}}{\partial x} = \frac{\partial u}{\partial x_{+}} + \frac{\partial u}{\partial x_{-}},$$
$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x_{+}} \frac{\partial x_{+}}{\partial t} + \frac{\partial u}{\partial x_{-}} \frac{\partial x_{-}}{\partial t} = c \left(\frac{\partial u}{\partial x_{+}} - \frac{\partial u}{\partial x_{-}}\right)$$

Taking derivatives again, once more using the Chain Rule:

$$\begin{split} \frac{\partial^2 u}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x_+} + \frac{\partial u}{\partial x_-} \right) = \frac{\partial}{\partial x_+} \left(\frac{\partial u}{\partial x_+} + \frac{\partial u}{\partial x_-} \right) + \frac{\partial}{\partial x_-} \left(\frac{\partial u}{\partial x_+} + \frac{\partial u}{\partial x_-} \right) \\ &= \frac{\partial^2 u}{\partial x_+^2} + \frac{\partial^2 u}{\partial x_-^2} + 2 \frac{\partial^2 u}{\partial x_+ \partial x_-} \\ \frac{\partial^2 u}{\partial t^2} &= c \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial x_+} - \frac{\partial u}{\partial x_-} \right) = c^2 \frac{\partial}{\partial x_+} \left(\frac{\partial u}{\partial x_+} - \frac{\partial u}{\partial x_-} \right) - \frac{\partial}{\partial x_-} \left(\frac{\partial u}{\partial x_+} - \frac{\partial u}{\partial x_-} \right) \\ &= c^2 \left(\frac{\partial^2 u}{\partial x_+^2} + \frac{\partial^2 u}{\partial x_-^2} - 2 \frac{\partial^2 u}{\partial x_+ \partial x_-} \right) \end{split}$$

As usual, we have used the assumption that partial derivatives commute. We see that in these variables the wave equation $u_{tt} = c^2 u_{xx}$ becomes

$$u_{tt} - c^2 u_{xx} = -4c^2 \frac{\partial^2 u(x_+, x_-)}{\partial x_+ \partial x_-} = 0.$$

The general solution of this equation is indeed

$$u(x_+, x_-) = f(x_-) + g(x_+).$$

In practice, we are often interested in understanding what happens if we release a string from a given configuration. How does the string evolve? This is an initial value problem, which D'Alembert also solved in general. Assume that we are told that at t = 0 the string has profile $\psi(x)$, that is

$$u(x,0) = \varphi(x)$$

and in addition we know with which speed the string is moving at that instant:

$$u_t(x,0) = \psi(x) \,.$$

In terms of f and g, which parametrise the general form of the solution, these equation are

$$f(x) + g(x) = \varphi(x)$$

and

$$-cf'(x) + cg'(x) = \psi(x) \,.$$

This last equation can be integrated (formally) to give

$$g(x) - f(x) = d + \frac{1}{c} \int_{-\infty}^{x} ds \,\psi(s)$$

with d some unknown constant. We now have two equations for two unknowns, so solving for f and g we find

$$f(x) = \frac{1}{2} \left(\varphi(x) - d - \frac{1}{c} \int_{-\infty}^{x} ds \, \psi(s) \right)$$
$$g(x) = \frac{1}{2} \left(\varphi(x) + d + \frac{1}{c} \int_{-\infty}^{x} ds \, \psi(s) \right)$$

so we finally find

$$u(x,t) = f(x-ct) + g(x+ct)$$
$$= \frac{\varphi(x-ct) + \varphi(x+ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} ds \,\psi(s) \,.$$