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§5.3 D’Alembert’s Solution to the Wave Equation

The general solution to the wave equation in one spatial dimension was given by D’Alembert,
and it is simply

u(x, t) = f(x− ct) + g(x+ ct)

where f and g are arbitrary functions. The part of the solution f(x − ct) corresponds to
a wave moving to the right with speed c, whilst the remaining part g(x+ ct) corresponds
to a wave moving to the left with speed c.

Theorem 5.3.1. D’Alembert’s solution u(x, t) = f(x−ct)+g(x+ct) is the general solution
to the wave equation.

Proof. We introduce new variables x+ = x + ct and x− = x − ct, or equivalently x =
1
2
(x+ + x−) and t = 1

2c
(x+ − x−). By the Chain Rule:
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Taking derivatives again, once more using the Chain Rule:

∂2u

∂x2
=

∂

∂x

(
∂u

∂x+
+

∂u

∂x−

)
=

∂

∂x+

(
∂u

∂x+
+

∂u

∂x−

)
+

∂

∂x−

(
∂u

∂x+
+

∂u

∂x−

)
=
∂2u

∂x2+
+
∂2u

∂x2−
+ 2

∂2u

∂x+∂x−

∂2u

∂t2
= c

∂

∂t

(
∂u

∂x+
− ∂u

∂x−

)
= c2

∂

∂x+

(
∂u

∂x+
− ∂u

∂x−

)
− ∂

∂x−

(
∂u

∂x+
− ∂u

∂x−

)
= c2

(
∂2u

∂x2+
+
∂2u

∂x2−
− 2

∂2u

∂x+∂x−

)
As usual, we have used the assumption that partial derivatives commute. We see that in
these variables the wave equation utt = c2uxx becomes

utt − c2uxx = −4c2
∂2u(x+, x−)

∂x+∂x−
= 0 .

The general solution of this equation is indeed

u(x+, x−) = f(x−) + g(x+) .
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In practice, we are often interested in understanding what happens if we release a string
from a given configuration. How does the string evolve? This is an initial value problem,
which D’Alembert also solved in general. Assume that we are told that at t = 0 the string
has profile ψ(x), that is

u(x, 0) = φ(x)

and in addition we know with which speed the string is moving at that instant:

ut(x, 0) = ψ(x) .

In terms of f and g, which parametrise the general form of the solution, these equation are

f(x) + g(x) = φ(x)

and
−cf ′(x) + cg′(x) = ψ(x) .

This last equation can be integrated (formally) to give

g(x)− f(x) = d+
1

c
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with d some unknown constant. We now have two equations for two unknowns, so solving
for f and g we find
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so we finally find

u(x, t) = f(x− ct) + g(x+ ct)

=
φ(x− ct) + φ(x+ ct)
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