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§5.5 The Energy-Momentum Tensor

In addition to the conservation laws for transformations of the field itself, we also expect
conservation laws associated to transformations of x and t. This is analogous to the fact
that for systems with discrete degrees of freedom, we could construct an energy that
satisfied

dE

dt
= −∂L

∂t
Since t does not appear explicitly in the Lagrangian density for the string, we would expect
energy to be conserved for oscillations of the string too. And indeed, it will prove quite
easy to show that the total energy of the string is conserved. But the situation for the
string is more interesting than that for the point particle. The string’s energy is distributed
along its length; some places may have no energy, whilst other parts of the string may be
very energetic. As a wave packet travels, regions that had no energy may energise for some
time, and then come back to having no energy. So we should not expect to have that the
energy density at any given point is conserved. Additionally, in the case of fields the t and
x directions are treated on equal footing, so there should be some generalised notion that
treat the x variable the same as the t variable.

Definition 5.5.1. The energy-momentum tensor is

Tij :=
∂L
∂uj

∂u

∂xi
− δijL . (5.5.1)

Definition 5.5.2. The energy density E is defined to be equal to T00.

Note 5.5.3

As for the case of the point particle, you can convince yourself that this definition of
the energy density agrees with the ordinary one whenever the Lagrangian density is of
the form L = 1

2
ρu2t − 1

2
τu2x − V(u); that is, a kinetic energy density minus a potential

energy contribution (which in this case contains a possible contribution from the string
tension, plus an additional term V(u) containing arbitrary extra contributions to the
potential energy). See for instance example 5.5.6 below. In cases where the Lagrangian
density is not of this form we can still define the energy-momentum tensor, and we
simply define the energy density to be the T00 component.

Theorem 5.5.4. The conservation laws for the energy-momentum tensor are:

d∑
j=0

∂ Tij
∂xj

= 0 . (5.5.2)
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Proof. Consider the variation of the Lagrangian density L(u, u0, . . . , ud) as we move in the
xi direction.15 By the Chain Rule, this is given by

∂L
∂xi

=
∂L
∂u

∂u

∂xi
+

d∑
j=0

∂L
∂uj

∂2u

∂xi∂xj

Using the Euler-Lagrange equations for the field, we can rewrite this as

∂L
∂xi

=

(
d∑

j=0

∂

∂xj

(
∂L
∂uj

))
∂u

∂xi
+

d∑
j=0

∂L
∂uj

∂2u

∂xi∂xj

=
d∑

j=0

∂

∂xj

(
∂L
∂uj

∂u

∂xi

)
or equivalently

d∑
j=0

∂

∂xj

(
∂L
∂uj

∂u

∂xi
− δijL

)
= 0 .

Remark 5.5.5. Note that we have d+ 1 conservation equations for the energy-momentum
tensor, one for each choice of “i”.

Example 5.5.6. This may look a little complicated, but it is not hard to evaluate in prac-
tice. For instance, for our string we have

Ttt = ut
∂L
∂ut

− L =
ρ

2
(ut)

2 +
τ

2
(ux)

2

which is indeed the energy density for the string. The rest of the components can be com-
puted similarly, with the result

T =

(
ρ
2
(ut)

2 + τ
2
(ux)

2 −τutux
ρutux −ρ

2
(ut)

2 − τ
2
(ux)

2

)
The conservation laws in the case of the string are then:

∂Ttt
∂t

+
∂Ttx
∂x

= 0

and similarly
∂Txt
∂t

+
∂Txx
∂x

= 0

15We could consider more general cases, in which the Lagrangian density also depends explicitly on the
space and time coordinates t, x0, . . . , xd. I leave the generalization of the discussion to this case as an
(optional) exercise.
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In order to see what these laws mean physically, let us denote the energy in the piece of
string lying between x = a and x = b by E(a,b)(t). Since we had that the energy density is
given by Ttt, we have that

E(a,b) =

∫ b

a

Ttt dx.

The energy in this piece of string will not be conserved. It might be at rest at one time,
and then a few seconds later acquire energy as a wave passes between x = a and x = b,
and then later, lose all its energy as the wave passes on. How the energy in this portion of
the string varies is given by

d

dt
(E(a,b)(t)) =

d

dt

∫ b

a

Ttt dx

=

∫ b

a

∂Ttt
∂t

dx

= −
∫ b

a

∂Ttx
∂x

dx

= − [Ttx]
b
a

= (Ttx)x=a − (Ttx)x=b

where in going from the second to the third line we have used the conservation law. In this
way, the rate of change in the energy in the interval (a, b) can be expressed in terms of the
difference of a function evaluated at x = a and x = b. If we interpret Ttx = −τutux as the
flux of energy moving from left to right, then our formula can be interpreted as the rate of
change of energy of the string in the interval (a, b) is equal to the flux of energy coming
into the segment of string from the left at x = a minus the flux of energy leaving the string
segment to the right at x = b.

Note that the the rate of change of E, the total energy on the whole string, is given by

dE

dt
=

d

dt

(
E(−∞,∞)

)
= τ [utux]

∞
−∞ .

This rate of change vanishes, so that the total energy is conserved, provided that utux → 0
as |x| → ∞. In other words, the energy is conserved provided none of it leaks away at
infinity. If we disturb the string at t = 0 near x = 0, it will take an infinite amount of
time before the disturbance propagates out to infinity, so indeed energy will be conserved.


