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§5.7 Strings with Boundaries

Now that we know how to deal with infinitely long strings which run from x = −∞ to
x = ∞, let us complicate the situation a bit by introducing a boundary, or end, to our
string at x = 0. The string is still infinitely long but now runs from x = −∞ to x = 0. In
such a situation it is necessary to specify a boundary condition at x = 0, specifying how
the string interacts with the boundary. The most natural thing that we can impose is that
no energy flows into the boundary. This is what one should expect if the string is attached
to a rigid boundary of infinite mass: in this (idealised) case the vibrations of the string do
not affect the boundary at all, and in particular there is no energy flow into the boundary.

We have seen above that the right-moving energy flux for the string is Ttx = −τuxut.
So the condition that no energy flows into the boundary is

lim
x→0−

Ttx(x, t) = − lim
x→0−

τux(x, t)ut(x, t) = 0 .

There are two natural solutions to this equation: limx→0− ut(x, t) = 0 and limx→0− ux(x, t) =
0. For convenience, at the cost of some slight imprecision, we will refer to these conditions
as ut(0, t) = 0 and ux(0, t) = 0. We study them in turn.

§5.7.1 Dirichlet boundary condition

The first case, ut(0, t) = 0 is perhaps the most natural: it enforces that the endpoint of
the string at x = 0 does not change with time, or in other words u(0, t) is a constant. This
is what you get if you simply tie a string to a wall. Given that there is a shift symmetry
for u, let us simply assume that the condition is that u(0, t) = 0. This is called a Dirichlet
boundary condition. It is quite straightforward to find the general solution in this case.

We know that u(x, t) satisfies the wave equation for x < 0, so the solution must be of
D’Alembert’s form

u(x, t) = f(x− ct) + g(x+ ct) = f(x− ct) + h(−x− ct)
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where for convenience we have introduced a function h(ξ) = g(−ξ). The boundary condi-
tion tells us that

u(0, t) = 0 = f(−ct) + h(−ct),

from which it follows that h(ξ) = −f(ξ). It follows that u(x, t) = f(x− ct)− f(−x− ct).
To understand this solution a little better, note that, considered as a function on the

whole of the x-axis, u(x, t) is an odd function in x; that is u(x, t) = −u(−x, t). The figure

shows the solution u(x, t) for all x. In the physical region there is a wave moving towards
the boundary. The dotted line represents a mirror image of the physical string. This mirror
image moves to the left, and after some time will pass the line x = 0, emerging into the
physical region x < 0 as the reflected wave. At later times the solution will look like below.

So we see from this that waves reflect off the boundary and are turned upside down by
this boundary condition.
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§5.7.2 Neumann boundary condition

The other classic boundary condition for a string is the Neumann (sometimes called free)
boundary condition ux(0, t) = 0. Again the flux of energy into the boundary vanishes, so
that energy is conserved on the string. Once more we can deduce the general solution from
D’Alembert’s solution u(x, t) = f(x− ct) + h(−x− ct). Demanding that ux(0, t) = 0 gives
us that

ux(0, t) = f ′(0− ct)− h′(0− ct) = 0

from which we deduce that it is possible to take f(ξ) = h(ξ) (up to a constant shift of u),
so that

u(x, t) = f(x− ct) + f(−x− ct).

In this case, the function u(x, t) considered over the whole line is an even function. As

before, given enough time the mirror image of the incoming wave emerges from behind the
boundary x = 0 as the reflected wave, but in this case since u(x, t) is even rather than odd
it will emerge the same way up as the incoming wave.


