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§5.8 Junctions

Junctions or defects afford another possible way of introducing boundary conditions. We
shall explain the idea of junctions through an example.

Figure 3: String with a spring of constant κ attached at x = 0.

Consider a setup in which we attach at x = 0 a spring, with constant κ and zero natural
length, to the string, as in figure 3. We can view this system as two strings, one on the right
and another on the left, joined at a junction at x = 0. Away from the junction at x = 0 we
have a vanilla string, so we expect the monochromatic wave to be a good solution there.
We want to understand what happens to such a monochromatic wave coming from the left
as it hits the junction. Physically, we expect that part of the wave will be transmitted
across the junction, and part will be reflected.

In order to solve the problem, it is essential to introduce junction conditions, describing
which conditions should u satisfy as we cross the junction. The first condition is straight-
forward, namely that u is continuous at x = 0:

lim
ϵ→0+

u(ϵ, t) = lim
ϵ→0−

u(ϵ, t) (5.8.1)

The second condition is energy conservation across the junction. In order to formulate
this, note that on an infinitesimal neighbourhood [−ϵ, ϵ] of x = 0 we have the energy
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That is, there is a contribution coming from the vibrating string between ϵ and ϵ, and a
contribution from the extended spring at x = 0. We will assume that
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so the only contribution to the total energy of the small interval in the limit ϵ → 0 is the
one coming from the extension of the spring. Conservation of energy tells us

d

dt

(
lim
ϵ→0

E(−ϵ, ϵ)
)
= lim

ϵ→0
(Ttx)x=−ϵ − lim

ϵ→0
(Ttx)x=ϵ . (5.8.2)

As an example, suppose that we send in a monochromatic wave of unit amplitude. We
expect that upon encountering the spring, this will be partially reflected into a left moving
wave on the left side of the string, and partially transmitted to a right moving wave on the
right side of the string. Putting this together our ansatz is

u(x, t) =

{
ℜ ((eipx +Re−ipx) e−ipct) for x ≤ 0

ℜ
(
Teip(x−ct)

)
for x > 0

where T gives the amplitude/phase of the transmitted wave. Away from x = 0 we have
monochromatic waves, which satisfy the wave equation. All that remains is to ensure that
the ansatz also satisfies the junction conditions, by adjusting R and T . Continuity of
u(x, t) at x = 0 — that is, equation (5.8.1) — implies

ℜ((1 +R)e−ipct) = ℜ(Te−ipct) .

This will hold for all t if and only if16

1 +R = T .

This is our first junction condition in this case.
In order to study energy conservation, as given by equation (5.8.2), it is convenient to

note that for our monochromatic wave solution continuity of u(x, t) at x = 0 (or equiva-
lently 1 +R = T , as we just showed) implies

lim
x→0−

ut(x, t) = lim
x→0+

ut(x, t) .

In other words, ut(x, t) is continuous at x = 0, and ut(0, t) is well defined.
We have computed above that Ttx = −τuxut, and we have that limϵ→0E(−ϵ, ϵ) =

1
2
κu(0, t)2, so in the current case energy conservation across the junction becomes

κu(0, t)ut(0, t) = τ

[
utux

]ϵ
−ϵ

(5.8.3)

This is our second junction condition. This equation can be simplified since there is a
factor of ut(0, t) on both sides that we can divide, to obtain:

κu(0, t) = τ

[
lim
x→0+

ux(x, t)− lim
x→0−

ux(x, t)

]
.

16To see this, choose for instance t = 0 and t = π/(2pc).
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Plugging in our candidate monochromatic solution, this is

κℜ((1 +R)e−ipct) = τℜ
(
ip(T − (1−R))e−ipct

)
which holds for all t if and only if

κ(1 +R) = iτp(R + T − 1) .

Solving this equation together with the continuity equation 1 +R = T we find that

R =
κ

2ipτ − κ

T =
2ipτ

2ipτ − κ

To get some intuition for these formulas, first assume that we make the spring very
stiff by sending κ → ∞. Then R → −1 and T → 0. This is as we expect; if the spring
becomes very stiff, then the left hand piece of string has its end effectively pinned so it
has a Dirichlet boundary condition, and nothing gets through to the right hand side. On
the other hand if we send κ→ 0, then we are effectively removing the spring, and the two
pieces of string will become as one. In this case we can explicitly see that as κ→ 0, R → 0
and T → 1.

Alternatively, we can think of fixing κ and consider the effect on waves with different
value of p. The energy flux associated with the incoming wave, whose amplitude is fixed
at one, is given by

τcp2|A|2

2
=
τcp2

2
.

If p is very small, that is to say the wavelength is very long, then the energy flux is very
small, and again it is hard for the wave to excite the spring since it does not have enough
energy, so effectively we have Dirichlet boundary conditions. Again in this limit p → 0,
R → −1 and T → 0, the value for Dirichlet boundary conditions. On the other hand, if p
is very large, the energy of the incoming wave is so large that the spring has little effect,
and indeed R → 0, T → 1 in this limit.


