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§6 The Hamiltonian formalism

§6.1 Phase space

So far we have discussed the Lagrangian formalism, in which the evolution of the system
is determined by the Euler-Lagrange equations. Given a set of initial conditions, these
equations determine the time evolution of the system in configuration space. Recall from
§2.2 that this is the space described by the generalized coordinates q, without including
the information about the velocities q̇.

The Hamiltonian formalism is closely related to the Lagrangian formalism that we
have been studying so far, but it starts from a slightly different perspective: instead of
considering configuration space, we now want to consider the space of all states of our
physical systems. This space is known as phase space. I now define these notions.

Definition 6.1.1. The state of a classical system at a given instant in time is a complete
set of data that fully fixes the future evolution of the system.

Example 6.1.2. The Euler-Lagrange equations are second order linear differential equa-
tions on q(t) (assuming that the Lagrangian depends on q(t) and q̇(t) only, and not higher
derivatives of q(t)). We can fix the integration constants that appear in solving these equa-
tions by giving the positions q(t0) and velocities q̇(t0) at any chosen time t0, for some
convenient choice of generalised coordinates and velocities. Once we have fixed these con-
stants we know the behaviour of the system for all future times, so in this case we can
parametrize the state at a given time t by giving q(t) and q̇(t).

Remark 6.1.3. The parametrization of the physical state in terms of q(t) and q̇(t) is not
the only possible one: any parametrisation that allows us to fully fix future evolution is
valid. We will see an example of a different parametrisation momentarily.

Definition 6.1.4. The phase (or state) space P of a classical system is the space of all
possible states that the system can be in at a given instant in time.

Remark 6.1.5. This definition for phase space sounds rather similar to the definition of
configuration space (this was definition 2.2.1). But note that that phase space has twice
the dimension of configuration space: while configuration space encodes the (generalised)
position of the system at a time t, phase space encodes the generalised positions and the
velocities.

Example 6.1.6. Consider a particle moving in one dimension. Phase space in this case
is the two dimensional plane R2: one coordinate for x and one coordinate for ẋ. Every
possible point in this plane is a possible state for the particle. For instance, the point
(x, ẋ) = (0, 10) parametrizes a particle at the origin, moving toward positive values of x.
Similarly the particle moving in d dimensions has a phase space R2d. Note that the precise
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form of the Lagrangian does not enter in our definition of phase space: given a point in
phase space the Lagrangian will determine future evolution, but any point in phase space
is acceptable as an initial condition (by definition).

Definition 6.1.7. The Hamiltonian formalism studies dynamics on phase space, parametrized
by generalised coordinates q(t) and their associated generalised momenta p(t).

The fundamental step in going from the Lagrangian to the Hamiltonian formalism is
to invert the definition equations for the generalised momenta:

pi :=
∂L(q, q̇, t)

∂q̇i
.

The right hand side of these equations are a set of functions of q, q̇ and t. We often17 can
invert these equations to express q̇ in terms of q, p and t. Once we do this, we can express
any function in phase space (the Lagrangian, for instance) in terms of q, p and t only.

Example 6.1.8. Consider a particle of mass m moving in one dimension, expressed in
Cartesian coordinates. Its Lagrangian is

L(x, ẋ) =
1

2
mẋ2 ,

so its associated momentum is
p =

∂L

∂ẋ
= mẋ .

We can trivially solve this equation to find ẋ = p/m. We find that the Lagrangian for this
system is thus

L(x, p) =
p2

2m
in the Hamiltonian formalism.

Example 6.1.9. Let us now take a particle moving in two dimensions, expressed in polar
coordinates. Its Lagrangian is

L(q, q̇) =
1

2
m(ṙ2 + r2θ̇2)

so its generalised momenta are

pr = mṙ ; pθ = mr2θ̇ .

We can easily invert these equations, to find ṙ = pr/m and θ̇ = pθ/(mr
2). In this way we

can express any function of phase space in terms of the q and p. For instance, for the
Lagrangian itself we have

L(q,p) =
1

2m

(
p2r +

1

r2
p2θ

)
.

17This will be true in the examples that we discuss during this course, at any rate. There are interesting
situations in which this inversion cannot be done, but we will not study them during this course. I
encourage those of you who are curious to search for material on “Dirac brackets” if you want to see how
our story below generalises to these more complicated cases. A good reference is the book “Quantization
of Gauge Systems”, by Henneaux and Teitelboim.


