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§6.2 The Poisson bracket and Hamiltonian flows

We still need to understand how a given state evolves in time in this new formalism.
That is, if we know which point in phase space describes a system at a given time, which
trajectory in phase space will describe subsequent motion of the system?

In fact, there would be little point in doing this if all we gained was a description of
the dynamics in a different set of variables. After all, the Lagrangian formalism will do
the job of giving the equations of motion for the system perfectly well.18 The advantage of
switching to the Hamiltonian formalism is that we will be able to exhibit a rather deep and
beautiful geometric structure to classical dynamics, in which we will obtain (in a sense) a
reciprocal of Noether’s theorem! Recall that Noether’s theorem states that every symmetry
has an associated conserved charge. We will see below that in the Hamiltonian formalism
the conserved charge generates the symmetry: if we know the form of the conserved charge
for a symmetry we will be able to reconstruct systematically the infinitesimal form of the
symmetry transformation.

The fundamental object that allows us to think of charges as generating transformations
is the Poisson bracket:

Definition 6.2.1. The Poisson bracket between two functions f(q,p, t) and g(q,p, t) on
phase space is the function in phase space defined by

{f, g} :=
n∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(6.2.1)

where n is the dimension of configuration space (so half the dimension of phase space).

Remark 6.2.2. Note that in the definition of the Poisson bracket the position and momenta
are independent coordinates in phase space, and are treated as independent variables when
taking partial derivatives:

∂qi
∂pj

=
∂pi
∂qj

= 0 ;
∂qi
∂qj

=
∂pi
∂pj

= δij .

Example 6.2.3. The simplest functions in phase space that we can construct are those
that give the coordinates of a point in a given basis. From the definition of the Poisson
bracket, we have the fundamental brackets

{qi, qj} = {pi, pj} = 0 ; {qi, pj} = δij .

18Or Newton’s formalism, for that matter! We went through all this trouble during the past weeks not
because we wanted to find more efficient methods of solving the dynamics of classical systems (although
that is sometimes a useful byproduct of switching perspectives), but rather because we wanted to un-
derstand better the structure of classical mechanics — important ideas like the action principle or the
relation between symmetries and conserved charges become much more transparent in the Lagrangian and
Hamiltonian formalisms.
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The Poisson bracket has a number of interesting properties, which I now list. The proof
of these properties is straightforward, and can be found in the problem sheet for week 10:

Proposition 6.2.4. The Poisson bracket is antisymmetric:

{f, g} = −{g, f} .

Proposition 6.2.5. The Poisson bracket is linear:

{αf + βg, h} = α{f, h}+ β{g, h}

for α, β ∈ R. Note that together with antisymmetry this implies

{h, αf + βg} = α{h, f}+ β{h, g}

so the Poisson bracket is in fact bilinear (that is, linear on both terms).

Proposition 6.2.6. The Poisson bracket obeys the Leibniz identity:

{fg, h} = f{g, h}+ g{f, h} .

Proposition 6.2.7. The Poisson bracket obeys the Jacobi identity for the sum of the
cyclic permutations:

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0 .


