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Denote by % the space of all functions from phase space & to R. Given any function
[ € #, we can define an operator ®; that generates infinitesimal transformations on .#
using the Poisson bracket.

Definition 6.2.8. The Hamiltonian flow defined by f: & — R is the infinitesimal trans-
formation on % defined by

Cbgf): F = F
(g) = g+ elg. f} +O(H).

Remark 6.2.9. 1T am taking a small liberty with the language here to avoid having to intro-
duce some additional formalism: what I have just introduced is the infinitesimal version
of what is commonly known as “Hamiltonian flow” in the literature, which is typically
defined for finite (that is, non-infinitesimal) transformations. The finite version of the
transformation is obtained by exponentiation:
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Remark 6.2.10. By studying the action of (IDSf) on the coordinates q, p of phase space, we

can also understand <I>§f) as the generator of a map from phase space to itself. We have

<I>§f)(q2-) =q+ela, fY+0(E) = q + egg + O(€%)
q)gf)(pi) =pi+elpi, f} + O() = pi — egép + O(e%).

The two definitions are compatible:

(bgf)(g) = g(Ql + €{q17f}7 -5 Qn + 6{(]n>f}>]91 + €{P1>f}> <oy Pn + E{me})
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where in the second line we have done a Taylor expansion, and we have omitted higher
order terms in € throughout for notational simplicity.

Example 6.2.11. As a simple example, consider a particle moving in one dimension. The
Hamiltonian flow ®, associated to the canonical momentum p acts on phase space functions
as:

) (9(q,p)) = 9(a,p) + eg—g +O(e).

Alternatively, (I>§f) acts on the coordinate q as ¢ — q + €, so the effect of (IDI(f) on phase
space is a uniform shift in the q direction:
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We can reproduce the effect on arbitrary functions of q from this viewpoint by doing a
Taylor expansion:
dg
gla+ep)=9(q.p) +eg + O(*)..
(You might also find it interesting to reproduce the full form of the Taylor expansion of
f(z + a) around x using the exponentiated version in remark 6.2.9.)

Example 6.2.12. As a second example, consider a particle of unit mass moving in two
dimensions, expressed in Cartesian coordinates, which we call ¢u and qz. We choose the
Lagrangian to be of the form

1

L= 5(61% +d3) = Vig, ).

For the function generating the flow we will choose J = q1Ga — q2G1. (Recall from exam-
ple 3.1.16 that this function is angular momentum, which Noether’s theorem associated
with rotations around the origin.) From the Lagrangian we have py = ¢1 and py = §a, S0
in terms of standard (q,p) coordinates of phase space we have J(q,p) = q¢1p2 — @2p1- The

(¢)

Hamiltonian flow @’ then acts on phase space as

P oJ
‘I)f])(fh) =q+e{a,J}=qa+e—=q —€q,

Op;

p oJ
‘I)fz)((h) =@t+e{p,J=@pte—=qp+eq,

Ops

p oJ
@S)(Pl) =p1+e{p, I} =p1 — 6@ =p1 — €p2,

1

P oJ
¢S)(p2) =p2 + e{pz, J} =Dp2— 6@ =p2t+€pr.

D)

omitting higher orders in €. So the effect of J on the coordinates can be written as an
infinitesimal rotation on the q and the p (independently)

o ()= ) ()
o (1) = (0 ) ()

@)
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For instance, the action of q)ff) on the (q1,q2) slice of phase space (which in this case has
four dimensions) is as in the following picture:

A

q2

§6.2.1 Flows for conserved charges

We have just seen that linear momentum p generates spatial translations, and angular mo-
mentum generates rotations. This is in fact general: assume that we have a transformation
acting as ¢; — ¢;+e€a;(q)+O(€?) on the generalised coordinates. Noether’s theorem assigns
a charge to this transformation given, in the Lagrangian framework, by

Q(q, 4t (Z a;(q q’ a, )> — F(q,t).

This charge can be written in the Hamiltonian framework in terms of generalised coordi-
nates and generalised momenta as

Qa,p,t) = (Z ai(q)pi) — Fl(q,1).

i=1

If we now compute the Hamiltonian flow associated to this charge on the generalised
coordinates we find

‘I)(c;)(%‘) = ¢ +e{q, QY + O(?) = ¢; + ea; + O(e?).

Note 6.2.13

This is a very important result: Noether’s theorem told us that symmetries imply the
existence of conserved quantities. We have just seen that we can go in the other direc-
tion too: conserved quantities generate the corresponding symmetry transformations,
via the associated Hamiltonian flow.



