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Denote by F the space of all functions from phase space P to R. Given any function
f ∈ F , we can define an operator Φf that generates infinitesimal transformations on F
using the Poisson bracket.

Definition 6.2.8. The Hamiltonian flow defined by f : P → R is the infinitesimal trans-
formation on F defined by

Φ
(ϵ)
f : F → F

Φ
(ϵ)
f (g) = g + ϵ{g, f}+O(ϵ2) .

Remark 6.2.9. I am taking a small liberty with the language here to avoid having to intro-
duce some additional formalism: what I have just introduced is the infinitesimal version
of what is commonly known as “Hamiltonian flow” in the literature, which is typically
defined for finite (that is, non-infinitesimal) transformations. The finite version of the
transformation is obtained by exponentiation:

Φ
(a)
f (g) = ea{·,f}g := g + a{g, f}+ a2

2!
{{g, f}, f}+ a3

3!
{{{g, f}, f}, f}+ . . .

Remark 6.2.10. By studying the action of Φ(ϵ)
f on the coordinates q, p of phase space, we

can also understand Φ
(ϵ)
f as the generator of a map from phase space to itself. We have

Φ
(ϵ)
f (qi) = qi + ϵ{qi, f}+O(ϵ2) = qi + ϵ

∂f

∂pi
+O(ϵ2)

Φ
(ϵ)
f (pi) = pi + ϵ{pi, f}+O(ϵ2) = pi − ϵ

∂f

∂qi
+O(ϵ2) .

The two definitions are compatible:

Φ
(ϵ)
f (g) = g(q1 + ϵ{q1, f}, . . . , qn + ϵ{qn, f}, p1 + ϵ{p1, f}, . . . , pn + ϵ{pn, f})

= g(q1, . . . , qn, p1, . . . , pn) + ϵ
n∑

i=1

(
∂g

∂qi
{qi, f}+

∂g

∂pi
{pi, f}

)
= g(q1, . . . , qn, p1, . . . , pn) + ϵ

n∑
i=1

(
∂g

∂qi

∂f

∂pi
− ∂g

∂pi

∂f

∂qi

)
= g + ϵ{g, f}

where in the second line we have done a Taylor expansion, and we have omitted higher
order terms in ϵ throughout for notational simplicity.

Example 6.2.11. As a simple example, consider a particle moving in one dimension. The
Hamiltonian flow Φp associated to the canonical momentum p acts on phase space functions
as:

Φ(ϵ)
p (g(q, p)) = g(q, p) + ϵ

∂g

∂q
+O(ϵ2) .

Alternatively, Φ
(ϵ)
p acts on the coordinate q as q → q + ϵ, so the effect of Φ

(ϵ)
p on phase

space is a uniform shift in the q direction:
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q

p

We can reproduce the effect on arbitrary functions of q from this viewpoint by doing a
Taylor expansion:

g(q + ϵ, p) = g(q, p) + ϵ
∂g

∂q
+O(ϵ2) .

(You might also find it interesting to reproduce the full form of the Taylor expansion of
f(x+ a) around x using the exponentiated version in remark 6.2.9.)

Example 6.2.12. As a second example, consider a particle of unit mass moving in two
dimensions, expressed in Cartesian coordinates, which we call q1 and q2. We choose the
Lagrangian to be of the form

L =
1

2
(q̇21 + q̇22)− V (q1, q2) .

For the function generating the flow we will choose J = q1q̇2 − q2q̇1. (Recall from exam-
ple 3.1.16 that this function is angular momentum, which Noether’s theorem associated
with rotations around the origin.) From the Lagrangian we have p1 = q̇1 and p2 = q̇2, so
in terms of standard (q,p) coordinates of phase space we have J(q,p) = q1p2 − q2p1. The
Hamiltonian flow Φ

(ϵ)
J then acts on phase space as

Φ
(ϵ)
J (q1) = q1 + ϵ{q1, J} = q1 + ϵ

∂J

∂p1
= q1 − ϵq2 ,

Φ
(ϵ)
J (q2) = q2 + ϵ{q2, J} = q2 + ϵ

∂J

∂p2
= q2 + ϵq1 ,

Φ
(ϵ)
J (p1) = p1 + ϵ{p1, J} = p1 − ϵ

∂J

∂q1
= p1 − ϵp2 ,

Φ
(ϵ)
J (p2) = p2 + ϵ{p2, J} = p2 − ϵ

∂J

∂q2
= p2 + ϵp1 .

omitting higher orders in ϵ. So the effect of J on the coordinates can be written as an
infinitesimal rotation on the q and the p (independently)

Φ
(ϵ)
J

(
q1
q2

)
=

(
1 −ϵ
ϵ 1

)(
q1
q2

)
,

Φ
(ϵ)
J

(
p1
p2

)
=

(
1 −ϵ
ϵ 1

)(
p1
p2

)
.



6.2 THE POISSON BRACKET AND HAMILTONIAN FLOWS 73

For instance, the action of Φ(ϵ)
J on the (q1, q2) slice of phase space (which in this case has

four dimensions) is as in the following picture:

§6.2.1 Flows for conserved charges

We have just seen that linear momentum p generates spatial translations, and angular mo-
mentum generates rotations. This is in fact general: assume that we have a transformation
acting as qi → qi+ϵai(q)+O(ϵ

2) on the generalised coordinates. Noether’s theorem assigns
a charge to this transformation given, in the Lagrangian framework, by

Q(q, q̇, t) =

(
n∑

i=1

ai(q)
∂L(q, q̇, t)

∂q̇i

)
− F (q, t) .

This charge can be written in the Hamiltonian framework in terms of generalised coordi-
nates and generalised momenta as

Q(q,p, t) =

(
n∑

i=1

ai(q)pi

)
− F (q, t) .

If we now compute the Hamiltonian flow associated to this charge on the generalised
coordinates we find

Φ
(ϵ)
Q (qi) = qi + ϵ{qi, Q}+O(ϵ2) = qi + ϵai +O(ϵ2) .

Note 6.2.13

This is a very important result: Noether’s theorem told us that symmetries imply the
existence of conserved quantities. We have just seen that we can go in the other direc-
tion too: conserved quantities generate the corresponding symmetry transformations,
via the associated Hamiltonian flow.


