Denote by $\mathscr{F}$ the space of all functions from phase space $\mathscr{P}$ to $\mathbb{R}$. Given any function $f \in \mathscr{F}$, we can define an operator $\Phi_{f}$ that generates infinitesimal transformations on $\mathscr{F}$ using the Poisson bracket.
Definition 6.2.8. The Hamiltonian flow defined by $f: \mathscr{P} \rightarrow \mathbb{R}$ is the infinitesimal transformation on $\mathscr{F}$ defined by

$$
\begin{gathered}
\Phi_{f}^{(\epsilon)}: \mathscr{F} \rightarrow \mathscr{F} \\
\Phi_{f}^{(\epsilon)}(g)=g+\epsilon\{g, f\}+\mathcal{O}\left(\epsilon^{2}\right) .
\end{gathered}
$$

Remark 6.2.9. I am taking a small liberty with the language here to avoid having to introduce some additional formalism: what I have just introduced is the infinitesimal version of what is commonly known as "Hamiltonian flow" in the literature, which is typically defined for finite (that is, non-infinitesimal) transformations. The finite version of the transformation is obtained by exponentiation:

$$
\Phi_{f}^{(a)}(g)=e^{a\{, f\}} g:=g+a\{g, f\}+\frac{a^{2}}{2!}\{\{g, f\}, f\}+\frac{a^{3}}{3!}\{\{\{g, f\}, f\}, f\}+\ldots
$$

Remark 6.2.10. By studying the action of $\Phi_{f}^{(\epsilon)}$ on the coordinates $\mathbf{q}, \mathbf{p}$ of phase space, we can also understand $\Phi_{f}^{(\epsilon)}$ as the generator of a map from phase space to itself. We have

$$
\begin{aligned}
& \Phi_{f}^{(\epsilon)}\left(q_{i}\right)=q_{i}+\epsilon\left\{q_{i}, f\right\}+O\left(\epsilon^{2}\right)=q_{i}+\epsilon \frac{\partial f}{\partial p_{i}}+O\left(\epsilon^{2}\right) \\
& \Phi_{f}^{(\epsilon)}\left(p_{i}\right)=p_{i}+\epsilon\left\{p_{i}, f\right\}+O\left(\epsilon^{2}\right)=p_{i}-\epsilon \frac{\partial f}{\partial q_{i}}+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

The two definitions are compatible:

$$
\begin{aligned}
\Phi_{f}^{(\epsilon)}(g) & =g\left(q_{1}+\epsilon\left\{q_{1}, f\right\}, \ldots, q_{n}+\epsilon\left\{q_{n}, f\right\}, p_{1}+\epsilon\left\{p_{1}, f\right\}, \ldots, p_{n}+\epsilon\left\{p_{n}, f\right\}\right) \\
& =g\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)+\epsilon \sum_{i=1}^{n}\left(\frac{\partial g}{\partial q_{i}}\left\{q_{i}, f\right\}+\frac{\partial g}{\partial p_{i}}\left\{p_{i}, f\right\}\right) \\
& =g\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)+\epsilon \sum_{i=1}^{n}\left(\frac{\partial g}{\partial q_{i}} \frac{\partial f}{\partial p_{i}}-\frac{\partial g}{\partial p_{i}} \frac{\partial f}{\partial q_{i}}\right) \\
& =g+\epsilon\{g, f\}
\end{aligned}
$$

where in the second line we have done a Taylor expansion, and we have omitted higher order terms in $\epsilon$ throughout for notational simplicity.
Example 6.2.11. As a simple example, consider a particle moving in one dimension. The Hamiltonian flow $\Phi_{p}$ associated to the canonical momentum $p$ acts on phase space functions as:

$$
\Phi_{p}^{(\epsilon)}(g(q, p))=g(q, p)+\epsilon \frac{\partial g}{\partial q}+\mathcal{O}\left(\epsilon^{2}\right)
$$

Alternatively, $\Phi_{p}^{(\epsilon)}$ acts on the coordinate $q$ as $q \rightarrow q+\epsilon$, so the effect of $\Phi_{p}^{(\epsilon)}$ on phase space is a uniform shift in the $q$ direction:


We can reproduce the effect on arbitrary functions of $q$ from this viewpoint by doing a Taylor expansion:

$$
g(q+\epsilon, p)=g(q, p)+\epsilon \frac{\partial g}{\partial q}+\mathcal{O}\left(\epsilon^{2}\right)
$$

(You might also find it interesting to reproduce the full form of the Taylor expansion of $f(x+a)$ around $x$ using the exponentiated version in remark 6.2.9.)
Example 6.2.12. As a second example, consider a particle of unit mass moving in two dimensions, expressed in Cartesian coordinates, which we call $q_{1}$ and $q_{2}$. We choose the Lagrangian to be of the form

$$
L=\frac{1}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right)-V\left(q_{1}, q_{2}\right) .
$$

For the function generating the flow we will choose $J=q_{1} \dot{q}_{2}-q_{2} \dot{q}_{1}$. (Recall from example 3.1.16 that this function is angular momentum, which Noether's theorem associated with rotations around the origin.) From the Lagrangian we have $p_{1}=\dot{q}_{1}$ and $p_{2}=\dot{q}_{2}$, so in terms of standard $(\mathbf{q}, \mathbf{p})$ coordinates of phase space we have $J(\mathbf{q}, \mathbf{p})=q_{1} p_{2}-q_{2} p_{1}$. The Hamiltonian flow $\Phi_{J}^{(\epsilon)}$ then acts on phase space as

$$
\begin{aligned}
& \Phi_{J}^{(\epsilon)}\left(q_{1}\right)=q_{1}+\epsilon\left\{q_{1}, J\right\}=q_{1}+\epsilon \frac{\partial J}{\partial p_{1}}=q_{1}-\epsilon q_{2}, \\
& \Phi_{J}^{(\epsilon)}\left(q_{2}\right)=q_{2}+\epsilon\left\{q_{2}, J\right\}=q_{2}+\epsilon \frac{\partial J}{\partial p_{2}}=q_{2}+\epsilon q_{1}, \\
& \Phi_{J}^{(\epsilon)}\left(p_{1}\right)=p_{1}+\epsilon\left\{p_{1}, J\right\}=p_{1}-\epsilon \frac{\partial J}{\partial q_{1}}=p_{1}-\epsilon p_{2}, \\
& \Phi_{J}^{(\epsilon)}\left(p_{2}\right)=p_{2}+\epsilon\left\{p_{2}, J\right\}=p_{2}-\epsilon \frac{\partial J}{\partial q_{2}}=p_{2}+\epsilon p_{1} .
\end{aligned}
$$

omitting higher orders in $\epsilon$. So the effect of $J$ on the coordinates can be written as an infinitesimal rotation on the $\mathbf{q}$ and the $\mathbf{p}$ (independently)

$$
\begin{aligned}
\Phi_{J}^{(\epsilon)}\binom{q_{1}}{q_{2}} & =\left(\begin{array}{cc}
1 & -\epsilon \\
\epsilon & 1
\end{array}\right)\binom{q_{1}}{q_{2}}, \\
\Phi_{J}^{(\epsilon)}\binom{p_{1}}{p_{2}} & =\left(\begin{array}{cc}
1 & -\epsilon \\
\epsilon & 1
\end{array}\right)\binom{p_{1}}{p_{2}} .
\end{aligned}
$$

For instance, the action of $\Phi_{J}^{(\epsilon)}$ on the $\left(q_{1}, q_{2}\right)$ slice of phase space (which in this case has four dimensions) is as in the following picture:


## §6.2.1 Flows for conserved charges

We have just seen that linear momentum $p$ generates spatial translations, and angular momentum generates rotations. This is in fact general: assume that we have a transformation acting as $q_{i} \rightarrow q_{i}+\epsilon a_{i}(\mathbf{q})+O\left(\epsilon^{2}\right)$ on the generalised coordinates. Noether's theorem assigns a charge to this transformation given, in the Lagrangian framework, by

$$
Q(\mathbf{q}, \dot{\mathbf{q}}, t)=\left(\sum_{i=1}^{n} a_{i}(\mathbf{q}) \frac{\partial L(\mathbf{q}, \dot{\mathbf{q}}, t)}{\partial \dot{q}_{i}}\right)-F(\mathbf{q}, t)
$$

This charge can be written in the Hamiltonian framework in terms of generalised coordinates and generalised momenta as

$$
Q(\mathbf{q}, \mathbf{p}, t)=\left(\sum_{i=1}^{n} a_{i}(\mathbf{q}) p_{i}\right)-F(\mathbf{q}, t)
$$

If we now compute the Hamiltonian flow associated to this charge on the generalised coordinates we find

$$
\Phi_{Q}^{(\epsilon)}\left(q_{i}\right)=q_{i}+\epsilon\left\{q_{i}, Q\right\}+O\left(\epsilon^{2}\right)=q_{i}+\epsilon a_{i}+\mathcal{O}\left(\epsilon^{2}\right)
$$

## Note 6.2.13

This is a very important result: Noether's theorem told us that symmetries imply the existence of conserved quantities. We have just seen that we can go in the other direction too: conserved quantities generate the corresponding symmetry transformations, via the associated Hamiltonian flow.

