Example 6.3.8. A system whose Lagrangian is given by

$$
L=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{r^{2}}{2} .
$$

We define the momenta to be

$$
\begin{aligned}
& p_{r}=\frac{\partial L}{\partial \dot{r}}=\dot{r} \\
& p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=r^{2} \dot{\theta}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \dot{r}=p_{r} \\
& \dot{\theta}=\frac{p_{\theta}}{r^{2}}
\end{aligned}
$$

The Hamiltonian is given by

$$
\begin{aligned}
H & =p_{r} \dot{r}+p_{\theta} \dot{\theta}-\left(\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{r^{2}}{2}\right) \\
& =p_{r}^{2}+p_{\theta}\left(\frac{p_{\theta}}{r^{2}}\right)-\frac{1}{2}\left(p_{r}^{2}+r^{2}\left(\frac{p_{\theta}}{r^{2}}\right)^{2}-\frac{r^{2}}{2}\right) \\
& =\frac{1}{2}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}\right)+\frac{r^{2}}{2}
\end{aligned}
$$

Hamilton's Equations of Motion tell us that

$$
\begin{aligned}
\dot{r} & =\frac{\partial H}{\partial p_{r}}=p_{r} \\
\dot{\theta} & =\frac{\partial H}{\partial p_{\theta}}=\frac{p_{\theta}}{r^{2}} \\
\dot{p}_{r} & =-\frac{\partial H}{\partial r}=\frac{p_{\theta}^{2}}{r^{3}}-r \\
\dot{p}_{\theta} & =-\frac{\partial H}{\partial \theta}=0 .
\end{aligned}
$$

Note that the first two equations here simply reproduce the results of expressing the \mathbf{q} in terms of the \mathbf{p} 's. This is always the case when we derive the Hamiltonian system from a Lagrangian system like above. The last equation shows that p_{θ} is conserved as a result of the Hamiltonian being independent of θ. The concept of an ignorable coordinate goes over completely from the Lagrangian picture to the Hamiltonian picture. The real 'meat' of the dynamics is in the remaining equation for \dot{p}_{r}. Given that p_{θ} is a constant and that $p_{r}=\dot{r}$ it can be read as

$$
\ddot{r}=\frac{p_{\theta}^{2}}{r^{3}}-r .
$$

Example 6.3.9. Suppose we start instead with a Hamiltonian:

$$
H=\frac{p^{2}}{2}+x p
$$

Hamilton's equations are

$$
\begin{aligned}
\dot{x} & =\frac{\partial H}{\partial p}=p+x \\
\dot{p} & =-\frac{\partial H}{\partial x}=-p .
\end{aligned}
$$

Solving the second equation, we have that $p=A e^{-t}$. Substituting this into the first equation we find

$$
\dot{x}-x=A e^{-t}
$$

which is a linear first order differential equation. Multiplying through by the integrating factor we find

$$
\frac{d}{d t}\left(x e^{-t}\right)=A e^{-2 t}
$$

which can be integrated to give $x=C e^{t}-A e^{-t} / 2$.
Example 6.3.10. The following is a Hamiltonian for the damped harmonic oscillator:

$$
H=\frac{e^{-b t} p^{2}}{2}+\frac{e^{b t} w^{2} x^{2}}{2} .
$$

Notice that H explicitly depends on time; this implies that it is not conserved, as we would expect for the damped harmonic oscillator, whose motion dies away to nothing. Hamilton's equation of motion are

$$
\begin{aligned}
\dot{x} & =\frac{\partial H}{\partial p}=e^{-b t} p \\
\dot{p} & =-\frac{\partial H}{\partial x}=-w^{2} e^{b t} x .
\end{aligned}
$$

Differentiating the first equation with respect to t, we see that

$$
\begin{aligned}
\ddot{x} & =-b e^{-b t} p+e^{-b t} \dot{p} \\
& =-b \dot{x}-w^{2} x
\end{aligned}
$$

