§6.4 There and back again

(i) This section is not examinable. i

Let me finish by closing the circle of ideas that we have been developing. We have seen in $\S 3.1$ that Noether's theorem implies that every symmetry implies the existence of a conserved Noether charge Q, and we have also shown in $\S 6.2 .1$ that the Noether charge associated to a symmetry generates the right transformations on the generalized coordinates. It is natural to ask at this point: does any conserved charge generate a symmetry transformation? This is indeed that case, as we now show for the class of conserved charges that we have been discussing.

Theorem 6.4.1. Assume that we have a function $Q(\mathbf{q}, \mathbf{p}, t)$ of the form

$$
Q(\mathbf{q}, \mathbf{p}, t)=\left(\sum_{i=1}^{n} a_{i}(\mathbf{q}) p_{i}\right)-F(\mathbf{q}, t)
$$

such that

$$
\frac{d Q}{d t}=\{Q, H\}+\frac{\partial Q}{\partial t}=0
$$

Then $\Phi_{Q}^{(\epsilon)}(L)=L+\epsilon \frac{d F}{d t}+O\left(\epsilon^{2}\right)$, so Q generates a symmetry, whose Noether charge is Q. Proof. Let me start by proving some simple auxiliary results. Note first that

$$
\begin{equation*}
\left\{q_{i}, Q\right\}=\frac{\partial Q}{\partial p_{i}}=a_{i}(\mathbf{q}) \tag{6.4.1}
\end{equation*}
$$

which implies, in particular, that

$$
\frac{\partial\left\{q_{i}, Q\right\}}{\partial t}=\frac{\partial a_{i}(\mathbf{q})}{\partial t}=0
$$

Note also that since Q is conserved, and the only explicit time dependence of Q on time is via F, we have

$$
\{Q, H\}=\frac{d Q}{d t}-\frac{\partial Q}{\partial t}=-\frac{\partial Q}{\partial t}=\frac{\partial F}{\partial t},
$$

so

$$
-\left\{\{Q, H\}, q_{i}\right\}=\left\{q_{i},\{Q, H\}\right\}=\frac{\partial\{Q, H\}}{\partial p_{i}}=\frac{\partial}{\partial p_{i}}\left(\frac{\partial F(\mathbf{q}, t)}{\partial t}\right)=0 .
$$

Using these two results we find that

$$
\begin{aligned}
\frac{d\left\{q_{i}, Q\right\}}{d t} & =\frac{\partial\left\{q_{i}, Q\right\}}{\partial t}+\left\{\left\{q_{i}, Q\right\}, H\right\} \\
& =\left\{\left\{q_{i}, Q\right\}, H\right\} \\
& =-\left\{\left\{H, q_{i}\right\}, Q\right\}-\left\{\{Q, H\}, q_{i}\right\} \\
& =\left\{\left\{q_{i}, H\right\}, Q\right\} .
\end{aligned}
$$

where on the third line we have used the Jacobi identity in proposition 6.2.7. Hamilton's equations then imply that

$$
\begin{equation*}
\frac{d\left\{q_{i}, Q\right\}}{d t}=\left\{\dot{q}_{i}, Q\right\} \tag{6.4.2}
\end{equation*}
$$

Using these results it is straightforward to compute the change in the Lagrangian due to Q. The Lagrangian in Hamiltonian coordinates is

$$
L(\mathbf{q}, \mathbf{p}, t)=\left(\sum_{i=1}^{n} \dot{q}_{i}(\mathbf{q}, \mathbf{p}) p_{i}\right)-H(\mathbf{q}, \mathbf{p}, t) .
$$

Since Q is conserved, we have

$$
\begin{aligned}
\{L, Q\} & =\left[\sum_{i=1}^{n}\left(\left\{\dot{q}_{i}, Q\right\} p_{i}+\dot{q}_{i}\left\{p_{i}, Q\right\}\right)\right]+\{Q, H\} \\
& =\left[\sum_{i=1}^{n}\left(\left\{\dot{q}_{i}, Q\right\} p_{i}+\dot{q}_{i}\left\{p_{i}, Q\right\}\right)\right]-\frac{\partial Q}{\partial t}
\end{aligned}
$$

which becomes, using the results above:

$$
\begin{aligned}
\{L, Q\} & =\left[\sum_{i=1}^{n}\left(p_{i} \frac{d}{d t}\left\{q_{i}, Q\right\}+\dot{q}_{i}\left\{p_{i}, Q\right\}\right)\right]-\frac{\partial Q}{\partial t} \\
& =\left[\sum_{i=1}^{n}\left(\frac{d}{d t}\left(\left\{q_{i}, Q\right\} p_{i}\right)-\dot{p}_{i}\left\{q_{i}, Q\right\}+\dot{q}_{i}\left\{p_{i}, Q\right\}\right)\right]-\frac{\partial Q}{\partial t} \\
& =\left[\sum_{i=1}^{n}\left(\frac{d}{d t}\left(\left\{q_{i}, Q\right\} p_{i}\right)-\dot{p}_{i} \frac{\partial Q}{\partial p_{i}}-\dot{q}_{i} \frac{\partial Q}{\partial q_{i}}\right)\right]-\frac{\partial Q}{\partial t} \\
& =\frac{d}{d t}\left(\sum_{i=1}^{n}\left\{q_{i}, Q\right\} p_{i}\right)-\frac{d Q}{d t} .
\end{aligned}
$$

where on the first line we have used (6.4.2), and in going from the third to the fourth the Chain Rule. Finally, using (6.4.1) we find that

$$
\sum_{i=1}^{n}\left\{q_{i}, Q\right\} p_{i}=\sum_{i=1}^{n} a_{i} p_{i}=Q+F
$$

which implies

$$
\{L, Q\}=\frac{d(Q+F-Q)}{d t}=\frac{d F}{d t}
$$

Recalling the definition of the Hamiltonian flow operator, this gives

$$
\Phi_{Q}^{(\epsilon)}(L)=L+\epsilon\{L, Q\}+\mathcal{O}\left(\epsilon^{2}\right)=L+\epsilon \frac{d F}{d t}+c O\left(\epsilon^{2}\right)
$$

