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10 Hamiltonian Mechanics - Hamilton’s Equations and Pois-
son Brackets

1. The Poisson bracket of two dynamical variables A(qi, pj), B(qi, pj) is defined by

{A,B} = Σi

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
where the sum goes over all degrees of freedom i.

(a) Check that Poisson brackets anticommute: {A,B} = −{B,A}
(b) Check that they are linear: for numbers a, b, {aA+bC,B} = a{A,B}+b{C,B}.
(c) Show that they satisfy the Leibniz rule

{A,BC} = {A,B}C +B{A,C}

2. Show that the coordinates and momenta have the following “canonical” Poisson brack-
ets.

{qi, qj} = 0

{pi, pj} = 0

{qi, pj} = δij

3. Show, by using Hamilton’s equations of motion

q̇i = {qi, H(p,q, t)} =
∂H(p,q, t)

∂pi
; ṗi = {pi, H(p,q, t)} = −∂H(p,q, t)

∂qi

that
dH(p,q, t)

dt
=
∂H(p,q, t)

∂t

4. If A1, A2 are functions of pi, qi that do not depend explicitly on t, and are conserved:

{A1, H} = 0

{A2, H} = 0

show that their Poisson bracket A3(p, q) = {A1, A2} is also conserved:

{A3, H} = 0 .

Show that the same is true even if A1 and A2 depend explicitly on time. That is,
assuming that

{A1, H}+
∂A1

∂t
= 0
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10 and similarly for A2

{A2, H}+
∂A2

∂t
= 0

prove that A3(p, q, t) = {A1, A2} is conserved:

{A3, H}+
∂A3

∂t
= 0 .

Hint 1: You might want to remind yourself of the Jacobi identity for Poisson brack-
ets, shown in problem (7) below.

Hint 2: You might want to start by showing

∂

∂t
{A,B} =

{
∂A

∂t
, B

}
+

{
A,
∂B

∂t

}
for arbitrary functions A(p, q, t), B(p, q, t).

5. A relativistic particle has a Lagrangian

L = −mc
√
c2 − ẋ2 − ẏ2 − ż2.

Find the corresponding Hamiltonian

H =

(
n∑
i=1

piq̇i

)
− L

for the particle, in terms of the momenta px, py and pz. Show that if we define a four
vector pµ = (H/c, px, py, pz), the quantity (H/c)2 − (px)

2 − (py)
2 − (pz)

2 made from
its components is a constant you should determine.

6. A pair of weights of mass m1 and m2 respectively are attached by an inextendable
string which passes over a smooth light pulley of radius r which turns through an
angle φ, as in the diagram below.
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10 Show that the Lagrangian for this system can be written as

L =
1

2
(m1 +m2)r

2φ̇2 − gr(m1 −m2)φ

Find the Hamiltonian for this system and write down Hamilton’s equations of motion.
Show that

rφ̈ =
(m2 −m1)g

(m1 +m2)
.

7. Show that the Poisson bracket satisfies the Jacobi identity

{{A,B}, C}+ {{C,A}, B}+ {{B,C}, A} = 0.

by expanding everything out and looking for cancellations.

8. A charged particle of unit mass moves in two dimensions under the influence of a
dipole. The Lagrangian for this motion is

L =
1

2

(
ṙ2 + r2θ̇2

)
− µcos θ

r2

where r, θ are the plane polar coordinates of the particle, and µ is the constant
strength of the dipole. Derive the generalised momenta pr and pθ conjugate to r and
θ. Write down the Hamiltonian and obtain Hamilton’s equations of motion. Show
that

p2θ + 2µ cos θ = α and ṙ2 +
α

r2
= 2E

where α is a constant and E is the total energy.

9. The dynamics of a system of N degrees of freedom is specified by a Lagrangian
L(q, q̇, t), where q = (q1, q2, ..., qn). We have shown before that for any function
f(q, t)

L′ = L+
df

dt
= L+ q̇k

∂f

∂qk
+
∂f

∂t

produces the same Lagrangian equations of motion.

(a) Find the canonical momenta and Hamiltonian for the new Lagrangian. How do
they relate to those for the old Lagrangian?

(b) Show that the Hamiltonians corresponding to L and L′ produce equivalent equa-
tions of motion.

10. Consider a system depending on a single degree of freedom q with conjugate momen-
tum p, and consider the change of variables

Q = q cos(α) + p sin(α)

P = −q sin(α) + p cos(α)

for some constant but arbitrary α, which mixes coordinates with momenta.

3
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10 (a) Express the Hamiltonian in terms of the new variables P,Q in the particular
case of the harmonic oscillator

H =
1

2m
p2 +

1

2
mω2q2

for the case α = π
2
. Show that, when expressed in these variables, the equations

of motion arising from this new Hamiltonian

Q̇ =
∂H(P,Q)

∂P

Ṗ = −∂H(P,Q)

∂Q

are equivalent to the original ones.

(b) More generally, for any arbitrary Hamiltonian H(p, q), and any α, show that
the equations of motion are still of Hamilton’s form in the new variables.

(c) For the original coordinates we have that

{p, p} = {q, q} = 0 ; {q, p} = 1 .

(These are known as the canonical commutation relations.) Show that the same
relations are satisfied by P and Q:

{P, P} = {Q,Q} = 0 ; {Q,P} = 1 .

(d) More generally, show that the Poisson bracket between any two functionsA(p, q),
B(p, q) is unaffected by the change of variables

{A,B}P,Q = {A,B}p,q

where the notation means that on the left hand side we view A(p, q) and B(p, q)
as functions of P,Q via the dependence of p and q on P,Q, and we define the
P,Q Poisson bracket to be

{A,B}P,Q =
∂A

∂Q

∂B

∂P
− ∂A

∂P

∂B

∂Q

while the p, q Poisson bracket is

{A,B}p,q =
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q

now with A and B viewed as functions of p, q. The previous questions was the
particular case in which A = Q, B = P .

4
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10 11. A pendulum consists of a light straight spring of length r which makes an angle θ to
the vertical, at the end of which is connected a bob of mass m. If the natural length
of the spring is r0, the Lagrangian for this system can be written

L =
1

2
m
(
ṙ2 + r2θ̇2

)
+mgr cos(θ)− k

2
(r − r0)2.

Explain where each of the terms in this Lagrangian comes from. Find the Hamiltonian
for this system and write down the equations of motion in Hamiltonian form. If g = 0
show that pθ is conserved.

12. A pendulum consists of a weightless rod and a heavy bob. Initially it is at rest in
vertical stable equilibrium. The upper end is then made to move down a straight
line of slope α (with the horizontal) with constant acceleration f . Show that in the
subsequent motion, the pendulum just becomes horizontal if g = f(cosα + sinα).

13. A particle moves in the xy-plane subject to the Lagrangian

L =
1

2
(ẋ2 + ẏ2) +

Ω

2
(−ẋy + ẏx),

where Ω is a constant.

(a) Write down the Lagrangian equations of motion.

(b) Show that the z-component of the usual angular momentum expression, Jz =
xẏ − yẋ, about the origin is not (in general) conserved.

(c) Show that the z-component of the generalised angular momentum, Jz = xPy −
yPx is conserved everywhere.

(d) Show that, for any solution of the equations of motion, there is a fixed point (call
it A) such that the z-component of angular momentum Jz about A is conserved.

(e) Find the Hamiltonian for the system and show that it is conserved.

14. A bead of mass m slides, without friction, on a circular hoop of radius a. The hoop
lies in a vertical plane which is constrained to rotate about a vertical diameter with
constant angular speed ω. Choosing θ to be the angle between the bottom end of
the vertical diameter and the diameter through the bead, show that

1

2
ma2

(
θ̇2 − ω2 sin2 θ

)
−mga cos θ

is constant during the motion.

15. In this question the notation is slightly more elaborate than usual: the n generalised
coordinates will be written with superscripts qi and then the Lagrangian is

L(qi, q̇i) =
1

2
gij(q

k)q̇iq̇j,

5
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10 where the n2 functions gij of all the coordinates form a matrix which is symmetric
and nonsingular. The inverse of the matrix with elements gij is a symmetric matrix
whose elements we write with superscripts gij. Define the generalised momenta pi
as usual (using a subscript) and write an expression for the Hamiltonian. Write out
Hamilton’s equations. Verify that they are equivalent to Lagrange’s equations.

16. A particle of mass m slides under gravity on a smooth parabolic wire with the shape
z = a2x2/2, where the x-axis is horizontal and the z-axis points up. The wire is made
to rotate about the z-axis with constant angular velocity Ω. Work in cylindrical
polars (ρ, θ, z). Show that the points on the spinning paraboloid satisfy (ρ, θ, z) =
(ρ,Ωt, a2ρ2/2). By expressing the kinetic energy in terms of cylindrical polars show
that the Lagrangian is

m

2

(
ρ̇2
(
1 + a4ρ2

))
+
mρ2

2

(
Ω2 − ga2

)
.

Show that the Hamiltonian is

H =
p2

2m(1 + a4ρ2)
+
mρ2

2
(ga2 − Ω2).

where ρ is the cylindrical polar co-ordinate.

17. Introduce the totally antisymmetric Levi-Civita symbol εijk defined by

εijk = −εjik = −εikj
and

ε123 = 1

so that εijk is +1 if (ijk) ∈ {(123), (231), (312)}, −1 if (ijk) ∈ {(132), (321), (213)},
and 0 otherwise. Define the angular momentum generators by

Ji =
∑
jk

εijkxjpk .

(a) Show explicitly that the transformation generated by Ji leaves xi fixed, and acts
as an infinitesimal rotation on the plane defined by the other two coordinates:

δxm = ε
∑
j

εijmxj

with ε an infinitesimal parameter. In particular, choosing i = 1, show that this
is the infinitesimal form of a rotation in the (x2, x3) plane.

(b) Assume that we have a Hamiltonian of the form

H =
1

2
(p21 + p22 + p23) + V (x21 + x22 + x23)

with V (s) an arbitrary function. Show that the angular momenta Ji are con-
served for such Hamiltonians.

6
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10 18. Consider the angular momenta Ji defined as in the previous question.

(a) Show that
{Ji, Jj} =

∑
k

εijkJk .

Hint: You might want to use that∑
i

εiabεimn = δamδbn − δanδbm .

(b) Construct the total angular momentum

J2 =
3∑
i=1

J2
i .

Show, using only algebraic properties of the Poisson bracket and the result
{Ji, Jj} =

∑
k εijkJk in the previous question, that if the Ji are conserved quan-

tities, J2 is also conserved. Show also that

{J2, Ji} = 0 .

19. In 2n-dimensional phase space with Hamiltonian

H =
1

2
Σn
i=1(p

2
i + q2i ),

show that Mjk ≡ pjpk + qjqk and Ljk ≡ pjqk − qjpk are constants of the motion by
evaluating the Poisson brackets {Mjk, H}, {Ljk, H}.
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