Lagrangian Mechanics
 Symmetries and conservation laws I

October 25, 2020

1. For each of the following Lagrangians, state explicitly which coordinates are ignorable, and write down the corresponding conserved quantities:
(a) $L=\frac{1}{w^{2}}\left(\dot{w}^{2}+z^{2} \dot{\theta^{2}}\right)-\frac{1}{2} \dot{z}^{2}+\sqrt{z^{2}+w^{2}}$
(b) $L=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2}(\theta) \dot{\phi}^{2}\right)-m r \cos (\theta)$
(c) $L=\frac{1}{2}\left(\sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}\right)$.
2. A system is described by the Lagrangian

$$
L=\frac{1}{2} \dot{q}_{1}^{2}+\frac{1}{2} q_{1}^{2}\left(\dot{q}_{2}^{2}+\dot{q}_{3}^{2}\right)-\frac{1}{2}\left(q_{2}^{2}+q_{3}^{2}\right) .
$$

(a) Show that $q_{1} \rightarrow q_{1}, q_{2} \rightarrow q_{2}+\epsilon q_{3}, q_{3} \rightarrow q_{3}-\epsilon q_{2}$ is a symmetry of this Lagrangian and use Noether's Theorem to find a conserved quantity Q associated with this symmetry.
(b) Verify, by taking the time derivative, that $\frac{d Q}{d t}=0$ for the conserved charge that you found. You will need to use the Euler-Lagrange equations of motion.
3. A system is described by the Lagrangian

$$
L=\left(\frac{\dot{x}}{x}\right)^{2}+\left(\frac{\dot{y}}{y}\right)^{2}+\ln (x) \frac{\dot{y}}{y}-\ln (y) \frac{\dot{x}}{x} .
$$

(a) Show that the transformation

$$
x \rightarrow x+\epsilon x, y \rightarrow y,
$$

is a symmetry, and use Noether's theorem to find the associated conserved quantity Q_{x}.
(b) Find a similar transformation that leads to a second conserved quantity Q_{y}.
(c) Solve the system for $x(t), y(t)$ if initially at $t=0, x=2, y=1, \dot{x}=0$, and $\dot{y}=1$. [Hint: You might want to use the conserved quantities you found above.]
4. The Lagrangian of a system is given by

$$
L=-m \sqrt{\dot{w}^{2}-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}
$$

(a) Show that the transformation

$$
\begin{aligned}
w & \rightarrow \cosh (\theta) w+\sinh (\theta) x \\
x & \rightarrow \cosh (\theta) x+\sinh (\theta) w
\end{aligned}
$$

where θ is a constant, leaves the Lagrangian invariant.
(b) Find the infinitesimal form of this transformation by taking θ to be an infinitesimal parameter ϵ, and only keeping terms to $O(\epsilon)$. Find the conserved charge Q associated with this transformation by using Noether's Theorem.
5. A system is described by a Lagrangian $L=L\left(q_{1}, . ., q_{n}, \dot{q}_{1}, . ., \dot{q}_{n}\right)$ which does not explicitly depend on time. Use the Euler-Lagrange equations to show directly that

$$
E=\left(\sum_{i=1}^{n} \dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}\right)-L
$$

is conserved (that is, $\frac{d E}{d t}=0$). If in a particular case the Lagrangian is

$$
L=\frac{1}{2} \dot{u}^{2}+\frac{1}{2 u^{2}}\left(\dot{v}^{2}-1\right)
$$

find this conserved quantity. Find a second conserved quantity corresponding to the ignorable coordinate v.
6. Find the value for the conserved quantity E for each of the following Lagrangian systems:
(a) $L=\frac{1}{w^{2}}\left(\dot{w}^{2}+z^{2} \dot{\theta^{2}}\right)-\frac{1}{2} \dot{z}^{2}+\sqrt{z^{2}+w^{2}}$
(b) $L=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2}(\theta) \dot{\phi}^{2}\right)-m r \cos (\theta)$
(c) $L=\frac{1}{2}\left(\sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}\right)$.

