## Week 7 problems

1. Consider a system described by the Lagrangian

$$
L=\frac{1}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right)+5 \cos \left(q_{1}\right)+2 \sin \left(q_{1} q_{2}\right)+2 \cos \left(q_{2}\right) .
$$

(a) Show that $q_{1}(t)=q_{2}(t)=0$ is a solution of the Euler-Lagrange equations of motion.
(b) Construct an approximate Lagrangian describing small fluctuations around this solution.
(c) Find the general solution for the Euler-Lagrange equations arising from this approximate Lagrangian.
(d) Assume that at $t=0$ the system is at rest (that is, $\left.\dot{q}_{1}(t=0)=\dot{q}_{2}(t=0)=0\right)$ and has position

$$
\binom{q_{1}(t=0)}{q_{2}(t=0)}=\binom{1}{2} .
$$

Find the solution of the approximate Lagrangian compatible with these initial conditions.
2. (a) Consider a field described by a Lagrangian density

$$
\mathcal{L}=\frac{1}{2}\left(u_{t}\right)^{2}-\frac{1}{2}\left(u_{x}\right)^{2}-\frac{1}{2} m^{2} u^{2} .
$$

Find the equations of motion for $u$.
(b) The resulting equation is still linear, and can be solved in terms of the normal modes:

$$
u(x, t)=e^{i(\omega t \pm k x)}
$$

Find the relation between $\omega, k$ and $m$ that needs to be satisfied so that this is a solution.
[Problem 3 is on the next page]
3. Let $f(x)$ be the function which is zero for $|x| \geq b$ and equal to $x^{2}-b^{2}$ for $|x| \leq b$. An infinite string lies close to the $x$-axis and its displacement $u(x, t)$ from it satisfies the wave equation, $c^{2} u_{x x}=u_{t t}$.
(a) Assume the initial condition $u(x, 0)=f(x), u_{t}(x, 0)=0$. Find the subsequent motion and illustrate your results with a sketch of $u(x, t)$ for $t=0$ and $t \gg 0$ :
(b) Assume now the initial condition $u(x, 0)=0 u_{t}(x, 0)=f(x)$. Argue that the resulting motion looks like the following for small and large $t$ :


You don't need to give the explicit solution, but you should explain the following features of the figure

- Why does it becomes constant in the central region for large times?
- What is the value of $u(x, t)$ in the constant central region?
- For $t \gg 0$, how wide are the non-constant intervals on the edges?

