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8 Fields II

1. In the lectures we derived the one-dimensional wave equation utt(x, t) =
τ
ρ
uxx(x, t),

from the Lagrangian density

L =
1

2
ρ(ut)

2 − 1

2
τ(ux)

2

assuming that τ and ρ were constant. How is the one-dimensional classical wave
equation modified when the vibrating string is inhomogeneous, i.e. when its density
ρ and the tension τ are functions of x? Write the equation of motion in this case.
Consider a potential solution of the form u(x, t) = X(x) cos(ωt) and derive the
differential equation satisfied by X(x). Solve this equation for the special case in
which τ and ρ are constant.

2. A string of finite length lies along the x-axis. Its subsequent displacement from the x-
axis is given by u(x, t). The string is fixed at both ends so that u obeys the boundary
conditions u(0, t) = u(π, t) = 0. For simplicity we set c2 = 1.

Because of our choice of boundary conditions, we can alternatively think of an infinite
string, subject to the usual wave equation utt = uxx, in which we restrict the space
of solutions to those of the form:

u(x, t) =
∞∑
n=1

bn(t) sin(nx).

where n is summed over the positive integers. From the equation of motion for u
find the equation satisfied by each bn(t). Solve this equation, and in this way give
the general solution for u(x, t).

3. Consider the Lagrangian density

L =
1

2
u2
t −

1

2
u2
x +m2 cos(u) .

The theory defined by this Lagrangian density is known as the sine-Gordon theory.

(a) Compute the associated energy-momentum tensor.
(b) An interesting peculiarity of this theory is that it admits travelling wave so-

lutions with finite total energy that keep their shape as they travel. This is
as in the example of the one-dimensional string we have considered so far in
the lectures, but it is a quite non-generic phenomenon (such waves that travel
without changing their shape are called solitons, and not every theory admits
such solutions). A travelling wave solution would be of the form

u(x, t) = f(x− ct)
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with c a constant, and f(ζ) some function of one variable. Find the equation
satisfied by f(ζ).

(c) Show that
f(ζ) = 4 arctan

(
eρζ
)

is a solution of this equation of motion as long as

ρ2 =
m2

1− c2
.

This implies that
u(x, t) = 4 arctan

(
eρ(x−ct)

)
is a solution to the equations of motion of the sine-Gordon theory.
Hint: You might use (without having to prove it) that

sin(4 arctan(x)) =
4(x− x3)

(1 + x2)2

and that
d

dx
(arctan(x)) =

1

1 + x2

(d) Sketch how the solution we just found looks like.

4. Assume that we have a Lagrangian density L(u, ux, ut) depending on the field u and
its time and space partial derivatives ut and ux. We define the energy-momentum
tensor associated to L to be

Tij := ui
∂L
∂uj

− δijL .

Show, by directly taking the derivative, that Tij is conserved, in the sense that
1∑

j=0

∂Tij

∂xj

= 0 .

You will need to use the Euler-Lagrange equation for the field u

∂L
∂u

−
1∑

i=0

∂

∂xi

(
∂L
∂ui

)
= 0 ,

where we have defined x0 ≡ t and x1 ≡ x.

5. Consider a Lagrangian density given by the difference of kinetic and potential energies

L = T (u, ut)− V(u, ux)

where
T = (ut)

2f(u)

with f(u) an arbitrary function of u, and V(u, ux) an arbitrary function of u and ux.
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(a) Show that the purely time component of the energy-momentum tensor Ttt is
equal to the energy density E = T + V .

(b) Define the energy contained in an interval (a, b) by

E(a,b)(t) :=

∫ b

a

E(x, t) dx .

Using the conservation equation you derived in the previous problem, find an
expression for the energy flux F(x, t), in terms of ∂V

∂ux
and ut, such that

dE(a,b)

dt
= F(a, t)−F(b, t) .

This expression implies that the energy in the interval changes only due to the flux
entering from the left and leaving from the right.

6. Imagine that we have a string, with Lagrangian density

L =
1

2
ρ(ut)

2 − 1

2
τ(ux)

2

extending from x = −∞ to x = 0, where it ends. There are two classical sets of
boundary conditions, known as “Dirichlet” and “Neumann”, specifying what happens
at x = 0. Let’s treat them separately:

(a) For the Dirichlet boundary condition we set

u(0, t) = 0 .

Show that the energy flux into the boundary at x = 0 vanishes. Consider a
solution of the form

u(x, t) = ℜ
(
(eikx +Re−ikx)e−ikct

)
in which an incident right-moving “monochromatic” wave of unit amplitude gets
reflected at the boundary. Determine which value of R is compatible with the
Dirichlet boundary condition.

(b) Consider now D’Alembert’s general solution to the wave equation without bound-
aries

u(x, t) = f(x− ct) + g(x+ ct) .

for arbitrary functions f and g. Find the most general f and g that satisfy the
Dirichlet boundary condition at x = 0. Sketch the form of the solution.

3
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(c) For the Neumann one we instead set the boundary condition

ux(0, t) = 0 .

Show that the energy flux into the boundary at x = 0 also vanishes in this case.
Assuming the same monochromatic wave ansatz

u(x, t) = ℜ
(
(eikx +Re−ikx)e−ikct

)
determine which value of R is compatible with the Neumann boundary condi-
tion.

(d) Find the most general solution to the wave equations with the Neumann bound-
ary conditions, and sketch the solution.

7. In the case of the point particle we had that adding a total derivative to the La-
grangian

L → L+
dF (u, t)

dt

did not change the equations of motion. In the case of fields, the right statement is
that the change in the Lagrangian density

L → L+
∂F1(u, x, t)

∂x
+

∂F2(u, x, t)

∂t

does not affect the Euler-Lagrange equations for u, for F1(u, x, t) and F2(u, x, t)
arbitrary functions depending on u, x, t only (but not depending on ux or ut). Show
that this is true by proving

∂

∂u

(
dF1

dx

)
− ∂

∂x

(
∂
(
dF1

dx

)
∂ux

)
− ∂

∂t

(
∂
(
dF1

dx

)
∂ut

)
= 0

and similarly for ∂F2

∂t
.

As a hint, you will need to derive the following generalisations of Lemma A in the
notes (in appendix A)

∂
(

∂F (u,x,t)
∂t

)
∂ut

=
∂
(

∂F (u,x,t)
∂x

)
∂ux

=
∂F (u, x, t)

∂u
;

∂
(

∂F (u,x,t)
∂t

)
∂ux

=
∂
(

∂F (u,x,t)
∂x

)
∂ut

= 0

and Lemma B (same appendix)

∂
(

∂F (u,x,t)
∂x

)
∂u

=
∂

∂x

(
∂F

∂u

)
;

∂
(

∂F (u,t)
∂t

)
∂u

=
∂

∂t

(
∂F

∂u

)
.
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