Fields II

1. In the lectures we derived the one-dimensional wave equation uy(z,t) = Jus.(z, 1),
from the Lagrangian density

1
L= §P(Ut)2 -

%T(uw)Q

assuming that 7 and p were constant. How is the one-dimensional classical wave
equation modified when the vibrating string is inhomogeneous, i.e. when its density
p and the tension 7 are functions of 7 Write the equation of motion in this case.
Consider a potential solution of the form w(z,t) = X(x)cos(wt) and derive the
differential equation satisfied by X (x). Solve this equation for the special case in

which 7 and p are constant.

2. A string of finite length lies along the z-axis. Its subsequent displacement from the z-
axis is given by u(z,t). The string is fixed at both ends so that u obeys the boundary
conditions u(0,t) = u(m,t) = 0. For simplicity we set ¢ = 1.

Because of our choice of boundary conditions, we can alternatively think of an infinite
string, subject to the usual wave equation u; = wu,,, in which we restrict the space
of solutions to those of the form:

[e.e]

u(z,t) = Z b, () sin(nz).

n=1

where n is summed over the positive integers. From the equation of motion for
find the equation satisfied by each b,(¢). Solve this equation, and in this way give
the general solution for u(z,t).

3. Consider the Lagrangian density

1 1
L= Euf — §ui +m? cos(u) .

The theory defined by this Lagrangian density is known as the sine-Gordon theory.

(a) Compute the associated energy-momentum tensor.

(b) An interesting peculiarity of this theory is that it admits travelling wave so-
lutions with finite total energy that keep their shape as they travel. This is
as in the example of the one-dimensional string we have considered so far in
the lectures, but it is a quite non-generic phenomenon (such waves that travel
without changing their shape are called solitons, and not every theory admits
such solutions). A travelling wave solution would be of the form

u(z,t) = f(x — ct)
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with ¢ a constant, and f(¢) some function of one variable. Find the equation
satisfied by f(().

(c) Show that
f(¢) = 4arctan (e”)

is a solution of this equation of motion as long as

2
2 m

T

P

This implies that
u(zx,t) = 4 arctan (ep(g”_d))

is a solution to the equations of motion of the sine-Gordon theory.
Hint: You might use (without having to prove it) that

Alr — 23
sin(4 arctan(z)) = H
and that d 1
%(arctan(x)) R

(d) Sketch how the solution we just found looks like.

4. Assume that we have a Lagrangian density £(u,u,,u;) depending on the field u and

its time and space partial derivatives u; and u,. We define the energy-momentum
tensor associated to L to be

oL
Ty = uje — 6ii L0 .
; ul@uj 0i; L

Show, by directly taking the derivative, that T;; is conserved, in the sense that

1

T
Zg Y—q.
=0 97i

J

You will need to use the Euler-Lagrange equation for the field u

oL < 0 [OL

where we have defined x¢o =t and 21 = x.

. Consider a Lagrangian density given by the difference of kinetic and potential energies

L="T(uu)—V(u,uy)

where
T = (w)*f(u)

with f(u) an arbitrary function of u, and V(u, u,) an arbitrary function of u and wu,.
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(a) Show that the purely time component of the energy-momentum tensor Ty is
equal to the energy density £ =T + V.

(b) Define the energy contained in an interval (a,b) by

b
Eup(t) = / E(x,t) dz.

Using the conservation equation you derived in the previous problem, find an
expression for the energy flux F(x,t), in terms of 8‘% and u;, such that

dE(aJ))
dt

= F(a,t) — F(b,t).

This expression implies that the energy in the interval changes only due to the flux

entering from the left and leaving from the right.

. Imagine that we have a string, with Lagrangian density

1 1
L= §/J(Ut)2 — 57(%)2

extending from x = —oo to x = 0, where it ends. There are two classical sets of
boundary conditions, known as “Dirichlet” and “Neumann”, specifying what happens
at x = 0. Let’s treat them separately:

(a) For the Dirichlet boundary condition we set
u(0,t) =0.

Show that the energy flux into the boundary at x = 0 vanishes. Consider a
solution of the form

u(:c,t) =R (<€’Lk{l‘ + Refikx>efikct)

in which an incident right-moving “monochromatic” wave of unit amplitude gets
reflected at the boundary. Determine which value of R is compatible with the
Dirichlet boundary condition.

(b) Consider now D’Alembert’s general solution to the wave equation without bound-
aries
u(z,t) = flx —ct) + g(xz +ct).

for arbitrary functions f and ¢. Find the most general f and g that satisfy the
Dirichlet boundary condition at z = 0. Sketch the form of the solution.



(c¢) For the Neumann one we instead set the boundary condition
u;(0,t) = 0.

Show that the energy flux into the boundary at = = 0 also vanishes in this case.
Assuming the same monochromatic wave ansatz

U((L’,t) — §R (<€zkm + Re—ikm>e—ikct>

determine which value of R is compatible with the Neumann boundary condi-
tion.

(d) Find the most general solution to the wave equations with the Neumann bound-
ary conditions, and sketch the solution.

7. In the case of the point particle we had that adding a total derivative to the La-
grangian
dF(u,t)
dt
did not change the equations of motion. In the case of fields, the right statement is
that the change in the Lagrangian density

L— L+

OF(u,z,t) N OFs(u, x,t)

L— L+ o 5

does not affect the Euler-Lagrange equations for u, for Fj(u,z,t) and Fy(u,z,t)
arbitrary functions depending on wu, z,t only (but not depending on u, or u;). Show
that this is true by proving

o (R0 (0(E)) o (a())
ou \ dz ox Oy, ot Ouy N

OF»

and similarly for %:2.

As a hint, you will need to derive the following generalisations of Lemma A in the
notes (in appendix A)

OF (u,x,t) OF (u,x,t) OF (u,x,t) OF (u,x,t)
8( at )_6< oz >_8F(u,x,t) ' 3( ot ) 8( oz )_0

Ouy Oy ou ’ Oy Ouy

and Lemma B (same appendix)

ou ox

a(%) i (a_p> | 8(“5?’”) ) (8F>.

0z \ du ou ot
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