Hamiltonian Mechanics I - Hamilton's Equations and Poisson's Brackets

1. (a) From the definition

$$
\begin{aligned}
\{B, A\} & =\frac{\partial B}{\partial q_{i}} \frac{\partial A}{\partial p_{i}}-\frac{\partial B}{\partial p_{i}} \frac{\partial A}{\partial q_{i}} \\
& =-\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right)=-\{A, B\} .
\end{aligned}
$$

(b) Again we have

$$
\begin{aligned}
\{a A+b C, B\} & =\frac{\partial(a A+b C)}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial(a A+b C)}{\partial p_{i}} \frac{\partial B}{\partial q_{i}} \\
& =a \frac{\partial A}{\partial q_{i}} \frac{\partial C}{\partial p_{i}}+b \frac{\partial C}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-a \frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}-b \frac{\partial C}{\partial p_{i}} \frac{\partial A}{\partial q_{i}} \\
& =a\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right)+b\left(\frac{\partial C}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial C}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right) \\
& =a\{A, B\}+b\{C, B\} .
\end{aligned}
$$

(c) From the product rule for differentiation we have

$$
\begin{aligned}
\{A, B C\} & =\frac{\partial A}{\partial q_{i}} \frac{\partial(B C)}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial(B C)}{\partial q_{i}} \\
& =\frac{\partial A}{\partial q_{i}}\left(\frac{\partial B}{\partial p_{i}} C+B \frac{\partial C}{\partial p_{i}}\right)-\frac{\partial A}{\partial p_{i}}\left(\frac{\partial B}{\partial q_{i}} C+B \frac{\partial C}{\partial q_{i}}\right) \\
& =\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right) C+B\left(\frac{\partial A}{\partial q_{i}} \frac{\partial C}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial C}{\partial q_{i}}\right) \\
& =\{A, B\} C+B\{A, C\} .
\end{aligned}
$$

2. The relations follow immediately from the definition of the Poisson bracket:

$$
\begin{aligned}
\left\{q_{i}, q_{j}\right\} & =\sum_{k}\left(\frac{\partial q_{i}}{\partial q_{k}} \frac{\partial q_{j}}{\partial p_{k}}-\frac{\partial q_{i}}{\partial p_{k}} \frac{\partial q_{j}}{\partial q_{k}}\right) \\
& =\sum_{k}\left(\delta_{i k} \cdot 0-0 \cdot \delta_{j k}\right) \\
& =0
\end{aligned}
$$

and similarly for $\left\{p_{i}, p_{j}\right\}$:

$$
\begin{aligned}
\left\{p_{i}, p_{j}\right\} & =\sum_{k}\left(\frac{\partial p_{i}}{\partial q_{k}} \frac{\partial p_{j}}{\partial p_{k}}-\frac{\partial p_{i}}{\partial p_{k}} \frac{\partial p_{j}}{\partial q_{k}}\right) \\
& =\sum_{k}\left(0 \cdot \delta_{j k}-\delta_{i k} \cdot 0\right) \\
& =0
\end{aligned}
$$

For the Poisson bracket between coordinates and momenta we have instead:

$$
\begin{aligned}
\left\{q_{i}, p_{j}\right\} & =\sum_{k}\left(\frac{\partial q_{i}}{\partial q_{k}} \frac{\partial p_{j}}{\partial p_{k}}-\frac{\partial q_{i}}{\partial p_{k}} \frac{\partial p_{j}}{\partial q_{k}}\right) \\
& =\sum_{k}\left(\delta_{i k} \delta_{j k}-0 \cdot 0\right) \\
& =\delta_{i j} .
\end{aligned}
$$

3. By the chain rule

$$
\frac{d H}{d t}=\frac{\partial H}{\partial p} \dot{p}+\frac{\partial H}{\partial q} \dot{q}+\frac{\partial H}{\partial t}
$$

and the result then follows from using Hamilton's equations of motion

$$
\dot{q}=\frac{\partial H}{\partial p} \quad ; \quad \dot{p}=-\frac{\partial H}{\partial q}
$$

4. That the Poisson bracket is conserved follows immediately from the Jacobi identity

$$
\left\{\left\{A_{1}, A_{2}\right\}, H\right\}=-\left\{\left\{H, A_{1}\right\}, A_{2}\right\}-\left\{\left\{A_{2}, H\right\}, A_{1}\right\}=0
$$

since A_{1} and A_{2} are conserved.
For the rest, we start by proving the Lemma:

$$
\begin{aligned}
\frac{\partial}{\partial t}\{A, B\} & =\frac{\partial}{\partial t} \sum_{i}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right) \\
& =\sum_{i}\left(\frac{\partial}{\partial t}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}\right)-\frac{\partial}{\partial t}\left(\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right)\right) \\
& =\sum_{i}\left(\left[\frac{\partial}{\partial t}\left(\frac{\partial A}{\partial q_{i}}\right)\right] \frac{\partial B}{\partial p_{i}}+\frac{\partial A}{\partial q_{i}}\left[\frac{\partial}{\partial t}\left(\frac{\partial B}{\partial p_{i}}\right)\right]-\left[\frac{\partial}{\partial t}\left(\frac{\partial A}{\partial p_{i}}\right)\right] \frac{\partial B}{\partial q_{i}}-\frac{\partial A}{\partial p_{i}}\left[\frac{\partial}{\partial t}\left(\frac{\partial B}{\partial q_{i}}\right)\right]\right) \\
& =\sum_{i}\left(\left[\frac{\partial}{\partial q_{i}}\left(\frac{\partial A}{\partial t}\right)\right] \frac{\partial B}{\partial p_{i}}+\frac{\partial A}{\partial q_{i}}\left[\frac{\partial}{\partial p_{i}}\left(\frac{\partial B}{\partial t}\right)\right]-\left[\frac{\partial}{\partial p_{i}}\left(\frac{\partial A}{\partial t}\right)\right] \frac{\partial B}{\partial q_{i}}-\frac{\partial A}{\partial p_{i}}\left[\frac{\partial}{\partial q_{i}}\left(\frac{\partial B}{\partial t}\right)\right]\right. \\
& =\left\{\frac{\partial A}{\partial t}, B\right\}+\left\{A, \frac{\partial B}{\partial t}\right\}
\end{aligned}
$$

With this in hand it is easy to prove what we want. Since A_{1} and A_{2} are conserved we have

$$
\left\{A_{1}, H\right\}=-\frac{\partial A_{1}}{\partial t} \quad ; \quad\left\{A_{2}, H\right\}=-\frac{\partial A_{2}}{\partial t}
$$

So using Jacobi's identity

$$
\begin{aligned}
\left\{\left\{A_{1}, A_{2}\right\}, H\right\} & =-\left\{\left\{H, A_{1}\right\}, A_{2}\right\}-\left\{\left\{A_{2}, H\right\}, A_{1}\right\} \\
& =\left\{\left\{A_{1}, H\right\}, A_{2}\right\}-\left\{\left\{A_{2}, H\right\}, A_{1}\right\} \\
& =-\left\{\frac{\partial A_{1}}{\partial t}, A_{2}\right\}+\left\{\frac{\partial A_{2}}{\partial t}, A_{1}\right\} \\
& =-\left(\left\{\frac{\partial A_{1}}{\partial t}, A_{2}\right\}+\left\{A_{1}, \frac{\partial A_{2}}{\partial t}\right\}\right) \\
& =-\frac{\partial}{\partial t}\left\{A_{1}, A_{2}\right\}
\end{aligned}
$$

using the Lemma proven above. So indeed

$$
\frac{d\left\{A_{1}, A_{2}\right\}}{d t}=\left\{\left\{A_{1}, A_{2}\right\}, H\right\}+\frac{\partial\left\{A_{1}, A_{2}\right\}}{\partial t}=0
$$

5. The Lagrangian for a relativistic particle is

$$
L=-m c \sqrt{c^{2}-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}
$$

so the generalised momenta are given by

$$
\begin{aligned}
& p_{x}=\frac{m c \dot{x}}{\sqrt{c^{2}-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}} \\
& p_{y}=\frac{m c \dot{y}}{\sqrt{c^{2}-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}} \\
& p_{z}=\frac{m c \dot{z}}{\sqrt{c^{2}-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}} .
\end{aligned}
$$

We need to invert these relations to find \dot{x}, \dot{y}, and \dot{z} in terms of p_{x}, p_{y} and p_{z}. Squaring the three above equations and adding them together gives

$$
p_{x}^{2}+p_{y}^{2}+p_{z}^{2}=\frac{m^{2} c^{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)}{c^{2}-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}
$$

which can be rearranged to give

$$
\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}=\frac{c^{2}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)}{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}
$$

which now enables us to use the expression for the generalised momentum p_{x} to write

$$
\begin{aligned}
\dot{x} & =\frac{p_{x}}{m c} \sqrt{c^{2}-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}} \\
& =\frac{p_{x}}{m c} \sqrt{c^{2}-\frac{c^{2}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)}{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}} \\
& =\frac{p_{x}}{m c} \sqrt{\frac{m^{2} c^{4}}{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}} \\
& =\frac{p_{x}}{\sqrt{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}}
\end{aligned}
$$

and similarly we can write \dot{y} and \dot{z} by replacing p_{x} by p_{y} and p_{z} respectively in the numerator of the above expression. The Hamiltonian is defined to be

$$
\begin{aligned}
H & =p_{x} \dot{x}+p_{y} \dot{y}+p_{z} \dot{z}-L \\
& =\frac{c\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)}{\sqrt{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}}+m c \sqrt{c^{2}-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}} \\
& =\frac{c\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)}{\sqrt{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}}+m c \sqrt{c^{2}-\frac{c^{2}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)}{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}} \\
& =\frac{c\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)}{\sqrt{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}}+m c \sqrt{\frac{m^{2} c^{4}}{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}} \\
& =\frac{c\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+m^{2} c^{3}}{\sqrt{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}} \\
& =c \sqrt{m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}} .
\end{aligned}
$$

If the 4 -vector $p^{\mu}=\left(H / c, p_{x}, p_{y}, p_{z}\right)$ then

$$
p^{\mu} p_{\mu}=\frac{H^{2}}{c^{2}}-p_{x}^{2}-p_{y}^{2}-p_{z}^{2}=\left(m^{2} c^{2}+p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)-p_{x}^{2}-p_{y}^{2}-p_{z}^{2}=m^{2} c^{2} .
$$

6. When the pulley is turned counterclockwise through an angle ϕ, the mass m_{1} moves up ϕr whilst the mass m_{2} moves down the same distance. So the kinetic energy is $\left(m_{1}+m_{2}\right) r^{2} \dot{\phi}^{2} / 2$, and the potential energy is $m_{1} g r \phi-m_{2} g r \phi$. Thus the Lagrangian is given by

$$
L=\frac{\left(m_{1}+m_{2}\right)}{2} r^{2} \dot{\phi}^{2}-\left(m_{1}-m_{2}\right) g r \phi
$$

The momentum is

$$
p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}=\left(m_{1}+m_{2}\right) r^{2} \dot{\phi}
$$

and so

$$
\dot{\phi}=\frac{p_{\phi}}{\left(m_{1}+m_{2}\right) r^{2}}
$$

so the Hamiltonian is

$$
\begin{aligned}
H & =p_{\phi} \dot{\phi}-L \\
& =\frac{p_{\phi}^{2}}{\left(m_{1}+m_{2}\right) r^{2}}-\frac{p_{\phi}^{2}}{2\left(m_{1}+m_{2}\right) r^{2}}+\left(m_{1}-m_{2}\right) g r \phi \\
& =\frac{p_{\phi}^{2}}{2\left(m_{1}+m_{2}\right) r^{2}}+\left(m_{1}-m_{2}\right) g r \phi .
\end{aligned}
$$

Hamilton's equations of motions are

$$
\begin{aligned}
\dot{\phi} & =\frac{\partial H}{\partial p_{\phi}}=\frac{p_{\phi}}{\left(m_{1}+m_{2}\right) r^{2}} \\
\dot{p}_{\phi} & =-\frac{\partial H}{\partial \phi}=\left(m_{2}-m_{1}\right) g r .
\end{aligned}
$$

The acceleration is

$$
\begin{aligned}
r \ddot{\phi} & =\frac{r \dot{p}_{\phi}}{\left(m_{1}+m_{2}\right) r^{2}} \\
& =\frac{\left(m_{2}-m_{1}\right) g}{\left(m_{1}+m_{2}\right)} .
\end{aligned}
$$

7. Somewhat monstrously

$$
\begin{aligned}
\{\{A, B\}, C\}= & \left\{\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right), C\right\} \\
= & \frac{\partial}{\partial q_{k}}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right) \frac{\partial C}{\partial p_{k}}-\frac{\partial}{\partial p_{k}}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right) \frac{\partial C}{\partial q_{k}} \\
= & \frac{\partial^{2} A}{\partial q_{k} \partial q_{i}} \frac{\partial B}{\partial p_{i}} \frac{\partial C}{\partial p_{k}}+\frac{\partial A}{\partial q_{i}} \frac{\partial^{2} B}{\partial q_{k} \partial p_{i}} \frac{\partial C}{\partial p_{k}}-\frac{\partial^{2} A}{\partial q_{k} \partial p_{i}} \frac{\partial B}{\partial q_{i}} \frac{\partial C}{\partial p_{k}}+\frac{\partial A}{\partial p_{i}} \frac{\partial^{2} B}{\partial q_{k} \partial q_{i}} \frac{\partial C}{\partial p_{k}} \\
& -\frac{\partial^{2} A}{\partial p_{k} \partial q_{i}} \frac{\partial B}{\partial p_{i}} \frac{\partial C}{\partial q_{k}}-\frac{\partial A}{\partial q_{i}} \frac{\partial^{2} B}{\partial p_{k} \partial p_{i}} \frac{\partial C}{\partial q_{k}}+\frac{\partial^{2} A}{\partial p_{k} \partial p_{i}} \frac{\partial B}{\partial q_{i}} \frac{\partial C}{\partial q_{k}}+\frac{\partial A}{\partial p_{i}} \frac{\partial^{2} B}{\partial p_{k} \partial q_{i}} \frac{\partial C}{\partial q_{k}} .
\end{aligned}
$$

Now all we need to do is to add the cyclic permutations of A, B, C together to get

$$
\begin{aligned}
R H S= & \frac{\partial^{2} A}{\partial q_{k} \partial q_{i}} \frac{\partial B}{\partial p_{i}} \frac{\partial C}{\partial p_{k}}+\frac{\partial A}{\partial q_{i}} \frac{\partial^{2} B}{\partial q_{k} \partial p_{i}} \frac{\partial C}{\partial p_{k}}-\frac{\partial^{2} A}{\partial q_{k} \partial p_{i}} \frac{\partial B}{\partial q_{i}} \frac{\partial C}{\partial p_{k}}-\frac{\partial A}{\partial p_{i}} \frac{\partial^{2} B}{\partial q_{k} \partial q_{i}} \frac{\partial C}{\partial p_{k}} \\
& -\frac{\partial^{2} A}{\partial p_{k} \partial q_{i}} \frac{\partial B}{\partial p_{i}} \frac{\partial C}{\partial q_{k}}-\frac{\partial A}{\partial q_{i}} \frac{\partial^{2} B}{\partial p_{k} \partial p_{i}} \frac{\partial C}{\partial q_{k}}+\frac{\partial^{2} A}{\partial p_{k} \partial p_{i}} \frac{\partial B}{\partial q_{i}} \frac{\partial C}{\partial q_{k}}+\frac{\partial A}{\partial p_{i}} \frac{\partial^{2} B}{\partial p_{k} \partial q_{i}} \frac{\partial C}{\partial q_{k}} \\
& \frac{\partial^{2} B}{\partial q_{k} \partial q_{i}} \frac{\partial C}{\partial p_{i}} \frac{\partial A}{\partial p_{k}}+\frac{\partial B}{\partial q_{i}} \frac{\partial^{2} C}{\partial q_{k} \partial p_{i}} \frac{\partial A}{\partial p_{k}}-\frac{\partial^{2} B}{\partial q_{k} \partial p_{i}} \frac{\partial C}{\partial q_{i}} \frac{\partial A}{\partial p_{k}}-\frac{\partial B}{\partial p_{i}} \frac{\partial^{2} C}{\partial q_{k} \partial q_{i}} \frac{\partial A}{\partial p_{k}} \\
& -\frac{\partial^{2} B}{\partial p_{k} \partial q_{i}} \frac{\partial C}{\partial p_{i}} \frac{\partial A}{\partial q_{k}}-\frac{\partial B}{\partial q_{i}} \frac{\partial^{2} C}{\partial p_{k} \partial p_{i}} \frac{\partial A}{\partial q_{k}}+\frac{\partial^{2} B}{\partial p_{k} \partial p_{i}} \frac{\partial C}{\partial q_{i}} \frac{\partial A}{\partial q_{k}}+\frac{\partial B}{\partial p_{i}} \frac{\partial^{2} C}{\partial p_{k} \partial q_{i}} \frac{\partial A}{\partial q_{k}} \\
& \frac{\partial^{2} C}{\partial q_{k} \partial q_{i}} \frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial p_{k}}+\frac{\partial C}{\partial q_{i}} \frac{\partial^{2} A}{\partial q_{k} \partial p_{i}} \frac{\partial B}{\partial p_{k}}-\frac{\partial^{2} C}{\partial q_{k} \partial p_{i}} \frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{k}}-\frac{\partial C}{\partial p_{i}} \frac{\partial^{2} A}{\partial q_{k} \partial q_{i}} \frac{\partial B}{\partial p_{k}} \\
& -\frac{\partial^{2} C}{\partial p_{k} \partial q_{i}} \frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{k}}-\frac{\partial C}{\partial q_{i}} \frac{\partial^{2} A}{\partial p_{k} \partial p_{i}} \frac{\partial B}{\partial q_{k}}+\frac{\partial^{2} C}{\partial p_{k} \partial p_{i}} \frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial q_{k}}+\frac{\partial C}{\partial p_{i}} \frac{\partial^{2} A}{\partial p_{k} \partial q_{i}} \frac{\partial B}{\partial q_{k}} \\
& 0
\end{aligned}
$$

if you squint really hard, and remember that you can always swap the i and k indices since they are dummy indices.
8. The generalised momenta are given by $p_{r}=\dot{r}$ and $p_{\theta}=r^{2} \dot{\theta}$ so the Hamiltonian is given by

$$
H=p_{r} \dot{r}+p_{\theta} \dot{\theta}-L=\dot{r}^{2}+r^{2} \dot{\theta}^{2}-L=\frac{1}{2}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}\right)+\mu \frac{\cos (\theta)}{r^{2}} .
$$

Hamilton's equations of motion are

$$
\begin{aligned}
\dot{r} & =\frac{\partial H}{\partial p_{r}}=p_{r} \\
\dot{\theta} & =\frac{\partial H}{\partial p_{\theta}}=\frac{p_{\theta}}{r^{2}} \\
\dot{p}_{r} & =-\frac{\partial H}{\partial r}=\frac{p_{\theta}^{2}}{r^{3}}+2 \mu \frac{\cos (\theta)}{r^{3}} \\
\dot{p}_{\theta} & =-\frac{\partial H}{\partial \theta}=\mu \frac{\sin (\theta)}{r^{2}} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\frac{d}{d t}\left(p_{\theta}^{2}+2 \mu \cos (\theta)\right) & =2 p_{\theta} \dot{p}_{\theta}-2 \mu \sin (\theta) \dot{\theta} \\
& =2 p_{\theta}\left(\mu \frac{\sin (\theta)}{r^{2}}\right)-2 \mu \sin (\theta)\left(\frac{p_{\theta}}{r^{2}}\right)=0 \\
\Rightarrow p_{\theta}^{2}+2 \mu \cos (\theta) & =\alpha
\end{aligned}
$$

where α is constant. As H does not depend on time explicitly we expect it to be a constant E so

$$
E=\frac{1}{2}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}\right)+\mu \frac{\cos (\theta)}{r^{2}}=\frac{\dot{r}^{2}}{2}+\frac{1}{2 r^{2}}(\alpha-2 \mu \cos (\theta))+\mu \frac{\cos (\theta)}{r^{2}}=\frac{\dot{r}^{2}}{2}+\frac{\alpha}{2 r^{2}} .
$$

9. The Hamiltonian H from L is given by $H=p_{i} \dot{q}_{i}-L$ with equations of motion

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}},
$$

where $p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}$. The momenta from L^{\prime} can be defined to be

$$
P_{i}=\frac{\partial L^{\prime}}{\partial \dot{q}_{i}}=\frac{\partial L}{\partial \dot{q}_{i}}+\frac{\partial f}{\partial q_{i}}=p_{i}+\frac{\partial f}{\partial q_{i}} .
$$

Correspondingly there is a new Hamiltonian

$$
H^{\prime}=P_{i} \dot{q}_{i}-L^{\prime}=\left(p_{i}+\frac{\partial f}{\partial q_{i}}\right) \dot{q}_{i}-L-\frac{\partial f}{\partial q_{i}} \dot{q}_{i}-\frac{\partial f}{\partial t}=\left(p_{i} \dot{q}-L\right)-\frac{\partial f}{\partial t}=H-\frac{\partial f}{\partial t} .
$$

The equations of motion for H^{\prime} are

$$
\dot{q}_{i}=\frac{\partial H^{\prime}}{\partial P_{i}}, \dot{P}_{i}=-\frac{\partial H^{\prime}}{\partial q_{i}} .
$$

Note that

$$
H^{\prime}=H(p, q)-\frac{\partial f(q, t)}{\partial t}=H(p(P, q), q)-\frac{\partial f(q, t)}{\partial t}
$$

where we have used that $p_{i}=p_{i}(P, q)=P_{i}-\frac{\partial f(q, t)}{\partial q_{i}}$. So

$$
\dot{q}_{i}=\frac{\partial H^{\prime}}{\partial P_{i}}=\frac{\partial}{\partial P_{i}}\left(H(p(P, q), q)-\frac{\partial f(q, t)}{\partial t}\right)=\frac{\partial H}{\partial p_{k}} \frac{\partial p_{k}}{\partial P_{i}}=\frac{\partial H}{\partial p_{k}} \delta_{k i}=\frac{\partial H}{\partial p_{i}}
$$

which is the same expression we obtained for \dot{q}_{i} from the Hamilton equations of
motion for H. Now turning our attention to the other equation

$$
\begin{aligned}
\dot{P}_{i} & =-\frac{\partial H^{\prime}}{\partial q_{i}} \\
& =-\frac{\partial}{\partial q_{i}}\left(H(p(P, q), q)-\frac{\partial f(q, t)}{\partial t}\right) \\
& =-\frac{\partial H}{\partial p_{k}} \frac{\partial p_{k}}{\partial q_{i}}-\frac{\partial H}{\partial q_{i}}+\frac{\partial^{2} f}{\partial q_{i} \partial t} \\
& =\frac{\partial H}{\partial p_{k}} \frac{\partial^{2} f}{\partial q_{i} \partial q_{k}}-\frac{\partial H}{\partial q_{i}}+\frac{\partial^{2} f}{\partial q_{i} \partial t} \\
& =\dot{q}_{k} \frac{\partial^{2} f}{\partial q_{i} \partial q_{k}}-\frac{\partial H}{\partial q_{i}}+\frac{\partial^{2} f}{\partial q_{i} \partial t} \\
& =\frac{d}{d t}\left(\frac{\partial f}{\partial q_{k}}\right)-\frac{\partial H}{\partial q_{i}} \\
\Rightarrow \frac{d}{d t}\left(P_{i}-\frac{\partial f}{\partial q_{k}}\right) & =-\frac{\partial H}{\partial q_{i}} \\
\Rightarrow \dot{p}_{i} & =-\frac{\partial H}{\partial q_{i}}
\end{aligned}
$$

which again is equivalent to the equation of motion derived from H. Notice that this is an example of a canonical transformation. The new momentum P_{i} is a mixture of the old coordinates and momenta, but together with a new Hamiltonian H^{\prime} gives an equivalent physical description of the system.
10. (a) We start by inverting the given relations in order to express p, q in terms of P, Q. We have:

$$
\begin{aligned}
& p=P \cos (\alpha)+Q \sin (\alpha) \\
& q=-P \sin (\alpha)+Q \cos (\alpha)
\end{aligned}
$$

In the particular case of $\alpha=\frac{\pi}{2}$ this is

$$
\begin{aligned}
p & =Q \\
q & =-P
\end{aligned}
$$

so we are exchanging momentum with position (up to a sign). In these new coordinates the Hamiltonian becomes

$$
H(P, Q)=\frac{1}{2 m} Q^{2}+\frac{1}{2} m \omega^{2} P^{2} .
$$

The resulting equations of motion are

$$
\begin{align*}
& \dot{Q}=\frac{\partial H(P, Q)}{\partial P}=m \omega^{2} P \tag{1}\\
& \dot{P}=-\frac{\partial H(P, Q)}{\partial Q}=-\frac{1}{m} Q \tag{2}
\end{align*}
$$

Undoing the change in coordinates this implies

$$
\begin{aligned}
& \dot{p}=-m \omega^{2} q=-\frac{\partial H(p, q)}{\partial q} \\
& \dot{q}=\frac{1}{m} p=\frac{\partial H(p, q)}{\partial p}
\end{aligned}
$$

(b) By the chain rule:

$$
\begin{aligned}
& \frac{\partial H}{\partial q}=\frac{\partial H}{\partial Q} \frac{\partial Q}{\partial q}+\frac{\partial H}{\partial P} \frac{\partial P}{\partial q}=\frac{\partial H}{\partial Q} \cos (\alpha)-\frac{\partial H}{\partial P} \sin (\alpha) \\
& \frac{\partial H}{\partial p}=\frac{\partial H}{\partial Q} \frac{\partial Q}{\partial p}+\frac{\partial H}{\partial P} \frac{\partial P}{\partial p}=\frac{\partial H}{\partial Q} \sin (\alpha)+\frac{\partial H}{\partial P} \cos (\alpha)
\end{aligned}
$$

On the other hand, from the expression of q and p in terms of Q and P we found above

$$
\begin{aligned}
-\dot{p} & =-\dot{P} \cos (\alpha)-\dot{Q} \sin (\alpha) \\
\dot{q} & =-\dot{P} \sin (\alpha)+\dot{Q} \cos (\alpha)
\end{aligned}
$$

If we now impose Hamilton's equations for p, q we find

$$
\begin{aligned}
-\dot{P} \cos (\alpha)-\dot{Q} \sin (\alpha) & =\frac{\partial H}{\partial Q} \cos (\alpha)-\frac{\partial H}{\partial P} \sin (\alpha) \\
-\dot{P} \sin (\alpha)+\dot{Q} \cos (\alpha) & =\frac{\partial H}{\partial Q} \sin (\alpha)+\frac{\partial H}{\partial P} \cos (\alpha)
\end{aligned}
$$

which for any α is equivalent to

$$
\begin{aligned}
-\dot{P} & =\frac{\partial H}{\partial Q} \\
\dot{Q} & =\frac{\partial H}{\partial P}
\end{aligned}
$$

(c) Clearly $\{P, P\}=\{Q, Q\}$ by the antisymmetry of the Poisson bracket. For the remaining relation we use linearity:

$$
\begin{aligned}
\{Q, P\} & =\{q \cos (\alpha)+p \sin (\alpha),-q \sin (\alpha)+p \cos (\alpha)\} \\
& =\{q, p\} \cos ^{2}(\alpha)-\{p, q\} \sin ^{2}(\alpha) \\
& =\{q, p\}\left(\cos ^{2}(\alpha)+\sin ^{2}(\alpha)\right) \\
& =\{q, p\} \\
& =1
\end{aligned}
$$

Figure 1: Set up for Question 8

(d) We have

$$
\{A, B\}_{P, Q}=\frac{\partial A}{\partial Q} \frac{\partial B}{\partial P}-\frac{\partial A}{\partial P} \frac{\partial B}{\partial Q}
$$

Using the chain rule, the first term is

$$
\begin{aligned}
\frac{\partial A}{\partial Q} \frac{\partial B}{\partial P} & =\left(\frac{\partial A}{\partial q} \frac{\partial q}{\partial Q}+\frac{\partial A}{\partial p} \frac{\partial p}{\partial Q}\right)\left(\frac{\partial B}{\partial q} \frac{\partial q}{\partial P}+\frac{\partial B}{\partial p} \frac{\partial p}{\partial P}\right) \\
& =\left(\frac{\partial A}{\partial q} \cos (\alpha)+\frac{\partial A}{\partial p} \sin (\alpha)\right)\left(\frac{\partial B}{\partial q}(-\sin (\alpha))+\frac{\partial B}{\partial p} \cos (\alpha)\right)
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\frac{\partial A}{\partial P} \frac{\partial B}{\partial Q} & =\left(\frac{\partial A}{\partial q} \frac{\partial q}{\partial P}+\frac{\partial A}{\partial p} \frac{\partial p}{\partial P}\right)\left(\frac{\partial B}{\partial q} \frac{\partial q}{\partial Q}+\frac{\partial B}{\partial p} \frac{\partial p}{\partial Q}\right) \\
& =\left(\frac{\partial A}{\partial q}(-\sin (\alpha))+\frac{\partial A}{\partial p} \cos (\alpha)\right)\left(\frac{\partial B}{\partial q} \cos (\alpha)+\frac{\partial B}{\partial p} \sin (\alpha)\right)
\end{aligned}
$$

Combining both terms, and simplifying using $\cos ^{2}(\alpha)+\sin ^{2}(\alpha)=1$ we obtain what we want, namely

$$
\frac{\partial A}{\partial Q} \frac{\partial B}{\partial P}-\frac{\partial A}{\partial P} \frac{\partial B}{\partial Q}=\frac{\partial A}{\partial q} \frac{\partial B}{\partial p}-\frac{\partial A}{\partial p} \frac{\partial B}{\partial q}
$$

11. If we measure the angle θ to the downward vertical (see figure) then we see that the potential energy from gravity is $-m g r \cos (\theta)$. The spring potential energy is $k\left(r-r_{0}\right)^{2} / 2$ and since we are simply working in polar coordinates the kinetic energy is given as usual. Putting this together we get

$$
L=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+m g r \cos (\theta)-\frac{k}{2}\left(r-r_{0}\right)^{2} .
$$

The first step is to determine the conjugate momenta

$$
\begin{aligned}
& p_{r}=\frac{\partial L}{\partial \dot{r}}=m \dot{r} \\
& p_{\theta}=\frac{\partial L}{\partial \dot{\theta}}=m r^{2} \dot{\theta} .
\end{aligned}
$$

Figure 2: Set up for question 9

Working out the Hamiltonian we have

$$
\begin{aligned}
H & =p_{\theta} \dot{\theta}+p_{r} \dot{r}-L \\
& =\frac{p_{\theta}^{2}}{m r^{2}}+\frac{p_{r}^{2}}{m}-\left(\frac{m}{2}\left(\frac{p_{r}}{m}\right)^{2}+\frac{m r^{2}}{2}\left(\frac{p_{\theta}}{m r^{2}}\right)^{2}+m g r \cos (\theta)-\frac{k}{2}\left(r-r_{0}\right)^{2}\right) \\
& =\frac{p_{\theta}^{2}}{2 m r^{2}}+\frac{p_{r}^{2}}{2 m}-m g r \cos (\theta)+\frac{k}{2}\left(r-r_{0}\right)^{2} .
\end{aligned}
$$

Hamilton's Equations give

$$
\begin{aligned}
\dot{r} & =\frac{\partial H}{\partial p_{r}}=\frac{p_{r}}{m} \\
\dot{\theta} & =\frac{\partial H}{\partial p_{\theta}}=\frac{p_{\theta}}{m r^{2}} \\
\dot{p}_{r} & =-\frac{\partial H}{\partial r}=\frac{p_{\theta}^{2}}{m r^{3}}+m g \cos (\theta)-k\left(r-r_{0}\right) \\
\dot{p}_{\theta} & =-\frac{\partial H}{\partial \theta}=-m g r \sin (\theta) .
\end{aligned}
$$

If $g=0$ then p_{θ} is clearly conserved from the last equation.
12. The initial set up, and the position of the pendulum after it has started to slide down the slope is shown in the figure: Here I have chosen s, the distance down the slope that the pivot has gone, and θ the angle the pendulum makes with the vertical to describe the system. In terms of these coordinates the position of the mass is given by

$$
\begin{aligned}
& x=-s \cos (\alpha)+l \sin (\theta) \\
& y=-s \sin (\alpha)-l \cos (\theta)
\end{aligned}
$$

from which we deduce the velocity is given by

$$
\begin{aligned}
\dot{x} & =-\dot{s} \cos (\alpha)+l \cos (\theta) \dot{\theta} \\
\dot{y} & =-\dot{s} \sin (\alpha)+l \sin (\theta) \dot{\theta} .
\end{aligned}
$$

A little algebra gives that $\dot{x}^{2}+\dot{y}^{2}=\dot{s}^{2}+l^{2} \dot{\theta}^{2}-2 l \dot{s} \dot{\theta} \cos (\theta-\alpha)$. Combining this with the potential energy which is $m g y=-m g(s \sin (\alpha)+l \cos (\theta))$, we have that the Lagrangian for the system is

$$
L=\frac{m}{2}\left(\dot{s}^{2}+l^{2} \dot{\theta}^{2}-2 l \dot{s} \dot{\theta} \cos (\theta-\alpha)\right)+m g(s \sin (\alpha)+l \cos (\theta)) .
$$

However, only θ is dynamical; s is prescribed by the condition that the pivot is made to move with constant acceleration f, that is $\ddot{s}=f$. Given that $s=\dot{s}=0$ at time $t=0$, we have that $s=f t^{2} / 2$ and that $\dot{s}=f t$. Substituting these values into the Lagrangian we find that

$$
L=\frac{m}{2}\left(f^{2} t^{2}+l^{2} \dot{\theta}^{2}-2 l f t \dot{\theta} \cos (\theta-\alpha)\right)+m g\left(\frac{f t^{2}}{2} \sin (\alpha)+l \cos (\theta)\right) .
$$

Since this question finds its way onto a Hamiltonian sheet, we might as well solve it as a Hamiltonian system. Note that we only have one degree of freedom, θ. The corresponding momentum is given by

$$
p=\frac{\partial L}{\partial \dot{\theta}}=m l^{2} \dot{\theta}-m l f t \cos (\theta-\alpha) .
$$

The Hamiltonian is given by $p \dot{\theta}-L$, and even though it is NOT conserved (as it depends explicitly on t) we can still use the 'dots' rule to tell us that

$$
\begin{aligned}
H & =\frac{m}{2} l^{2} \dot{\theta}^{2}-\frac{m}{2} f^{2} t^{2}-m g\left(\frac{f t^{2}}{2} \sin (\alpha)+l \cos (\theta)\right) \\
& =\frac{m}{2} l^{2}\left(\frac{p+m l f t \cos (\theta-\alpha)}{m l^{2}}\right)^{2}-\frac{m}{2} f^{2} t^{2}-m g\left(\frac{f t^{2}}{2} \sin (\alpha)+l \cos (\theta)\right)
\end{aligned}
$$

Hamilton's equations of motion are given by

$$
\begin{aligned}
\dot{\theta} & =\frac{\partial H}{\partial p}=\frac{p+m l f t \cos (\theta-\alpha)}{m l^{2}} \\
\dot{p} & =-\frac{\partial H}{\partial \theta}=\left(\frac{p+m l f t \cos (\theta-\alpha)}{m l^{2}}\right) m l f t \sin (\theta-\alpha)-m g l \sin (\theta)
\end{aligned}
$$

Whilst we do not have conservation of energy, we do have that

$$
\frac{d H}{d t}=\{H, H\}+\frac{\partial H}{\partial t}=\frac{\partial H}{\partial t}
$$

Thus

$$
\begin{aligned}
\frac{d H}{d t} & =\left(\frac{p+m l f t \cos (\theta-\alpha)}{m l^{2}}\right) m l f \cos (\theta-\alpha)-m f^{2} t-m g f t \sin (\alpha) \\
& =\dot{\theta} m l f \cos (\theta-\alpha)-m f^{2} t-m g f t \sin (\alpha) \\
& =\frac{d}{d t}\left(m l f \sin (\theta-\alpha)-\frac{m}{2} f^{2} t^{2}-\frac{m}{2} g f t^{2} \sin (\alpha)\right)
\end{aligned}
$$

from which it follows that

$$
\begin{aligned}
Q & =H-m l f \sin (\theta-\alpha)+\frac{m}{2} f^{2} t^{2}+\frac{m}{2} g f t^{2} \sin (\alpha) \\
& =\frac{m}{2} l^{2}\left(\frac{p+m l f t \cos (\theta-\alpha)}{m l^{2}}\right)^{2}-m l f \sin (\theta-\alpha)-m g l \cos (\theta) \\
& =\frac{m}{2} l^{2} \dot{\theta}^{2}-m l f \sin (\theta-\alpha)-m g l \cos (\theta)
\end{aligned}
$$

is a conserved quantity. At $\mathrm{t}=0$, we have $\theta=0, \dot{\theta}=0$ so we see that $Q=m l f \sin (\alpha)-$ $m l g$. If it just reaches horizontal at a later time, then at that time $\theta=\pi / 2$ and $\dot{\theta}=0$. Putting this into the conservation equation we have

$$
Q=m l f \sin (\alpha)-m l g=0-m l f \cos (\alpha)-0
$$

which can be rearranged to give $g=f(\cos (\alpha)+\sin (\alpha))$.
13. The Euler Lagrange equations are

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x} & =0 \\
\frac{d}{d t}\left(\dot{x}-\frac{\Omega}{2} y\right)-\frac{\Omega}{2} \dot{y} & =0 \\
\ddot{x} & =\Omega \dot{y} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{y}}\right)-\frac{\partial L}{\partial y} & =0 \\
\frac{d}{d t}\left(\dot{y}+\frac{\Omega}{2} x\right)+\frac{\Omega}{2} \dot{x} & =0 \\
\ddot{y} & =-\Omega \dot{x} .
\end{aligned}
$$

From this it is straightforward to calculate

$$
\begin{aligned}
\frac{d J_{z}}{d t} & =\frac{d}{d t}(x \dot{y}-y \dot{x})=x \ddot{y}-y \ddot{x}=\Omega(-x \dot{x}-y \dot{y}) \\
& =\Omega\left(-x\left(\Omega y+c_{1}\right)-y\left(-\Omega x+c_{2}\right)\right) \\
& =\Omega\left(-x c_{1}-y c_{2}\right) \neq 0
\end{aligned}
$$

where we have integrated the equations of motion to find $\dot{x}=\Omega y+c_{1}$ and $\dot{y}=$ $-\Omega x+c_{2}$. (Strictly we should solve for x, y. We have $\ddot{x}=-\Omega^{2} x+\Omega c_{2}$, so that $x=$ $\alpha \cos (\Omega t)+\beta \sin (\Omega t)+c_{2} / \Omega$. From this we see that $y=-\alpha \sin (\Omega t)+\beta \cos (\Omega t)-c_{1} / \Omega$. This gives

$$
\frac{d J_{z}}{d t}=\Omega\left(-c_{1} \alpha-c_{2} \beta\right) \cos (\Omega t)+\Omega\left(c_{2} \alpha-c_{1} \beta\right) \sin (\Omega t)
$$

which is certainly not zero. Now

$$
\begin{aligned}
P_{x} & =\frac{\partial L}{\partial \dot{x}}=\dot{x}-\frac{\Omega}{2} y \\
P_{y} & =\frac{\partial L}{\partial \dot{y}}=\dot{y}+\frac{\Omega}{2} x
\end{aligned}
$$

from which we see that

$$
\begin{aligned}
\frac{d \mathcal{J}_{z}}{d t} & =\frac{d}{d t}\left(x P_{y}-y P_{x}\right)=\frac{d}{d t}\left(x\left(\dot{y}+\frac{\Omega}{2} x\right)-y\left(\dot{x}-\frac{\Omega}{2} y\right)\right) \\
& =\frac{d J_{z}}{d t}+\frac{d}{d t}\left(\frac{\Omega}{2}\left(x^{2}+y^{2}\right)\right)=\Omega(-x \dot{x}-y \dot{y})+\frac{d}{d t}\left(\frac{\Omega}{2}\left(x^{2}+y^{2}\right)\right)=0
\end{aligned}
$$

Let us denote the angular momentum about a point (a, b) by $J(a, b)$. Then

$$
\begin{aligned}
\frac{d J(a, b)}{d t} & =\frac{d}{d t}[(x-a) \dot{y}-(y-b) \dot{x}]=\frac{d J_{z}}{d t}-a \ddot{y}+b \ddot{x} \\
& =\Omega\left(-c_{1} \alpha-c_{2} \beta+\beta \Omega a-\alpha \Omega b\right) \cos (\Omega t)+\Omega\left(c_{2} \alpha-c_{1} \beta-\alpha \Omega a-\beta \Omega b\right) \sin (\Omega t) .
\end{aligned}
$$

We can make this vanish for any α, β if we set $a=c_{2} / \Omega$ and $b=-c_{1} / \Omega$. Finally the Hamiltonian is given by (using the expression in the notes)

$$
H=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{1}{2}\left(P_{x}+\frac{\Omega}{2} y\right)^{2}+\frac{1}{2}\left(P_{y}-\frac{\Omega}{2} x\right)^{2} .
$$

As this does not depend explicitly on time, we know it is conserved automatically, but if you are not convinced note that

$$
\frac{d H}{d t}=\dot{x} \ddot{x}+\dot{y} \ddot{y}=\dot{x}(\Omega \dot{y})+\dot{y}(-\Omega \dot{x})=0 .
$$

14. Again we shall solve this as a Hamiltonian question. Working in spherical polars the Lagrangian for the system is

$$
L=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2}(\theta) \dot{\phi}^{2}\right)+m g r \cos (\theta)
$$

where in this case $r=a$ is a constant and $\dot{\phi}=\omega$, so that L reduces to

$$
L=\frac{m}{2}\left(a^{2} \dot{\theta}^{2}+a^{2} \sin ^{2}(\theta) \omega^{2}\right)+m g a \cos (\theta) .
$$

The momentum is given by $p_{\theta}=m a^{2} \dot{\theta}$, so that

$$
H=\frac{p_{\theta}^{2}}{2 m a^{2}}-\frac{m}{2} a^{2} \sin ^{2}(\theta) \omega^{2}-m g a \cos (\theta) .
$$

Conservation of H gives the result. It is worth pointing out that whilst we have a conserved energy H, it is not the sum of the kinetic energy and the potential energy of the particle. The term $\frac{m}{2} a^{2} \sin ^{2}(\theta) \omega^{2}$ would need to come with a plus sign for it to be the kinetic energy. Because we have put $\dot{\phi}=\omega$, this term which originally came from the kinetic energy has 'lost its dots', and therefore behaves like a potential energy, swapping its sign when we work out the energy. Physically we should not be too alarmed by this; the circular hoop needs to be driven (by a motor?) to keep it going at a constant angular velocity. This motor can put energy into the bead. The 'miracle' is that as we still have time translation invariance for the Lagrangian (no explicit t) we still have an energy-like quantity which is conserved.
15. By definition

$$
\begin{aligned}
p_{l} & =\frac{\partial L}{\partial \dot{q}^{l}}=\frac{1}{2} g_{i j} \frac{\partial}{\partial \dot{q}^{l}}\left(\dot{q}^{i} \dot{q}^{j}\right) \\
& =\frac{1}{2} g_{i j}\left(\delta_{l}^{i} \dot{q}^{j}+\delta_{l}^{j} \dot{q}^{i}\right)=\frac{1}{2} g_{l j} \dot{q}^{j}+\frac{1}{2} g_{i l} \dot{q}^{i}=g_{l j} \dot{q}^{j}
\end{aligned}
$$

where we have used the symmetry of $g_{i j}$ and relabelled dummy indices. Multiplying both sides of the equation by the inverse matrix $g^{i l}$ we have

$$
\begin{aligned}
g^{i l} g_{l j} \dot{q}^{j} & =g^{i l} p_{l} \\
\delta_{j}^{i} \dot{q}^{j} & =\dot{q}^{i}=g^{i l} p_{l} .
\end{aligned}
$$

So we have by definition that the Hamiltonian is

$$
\begin{aligned}
H & =p_{i} \dot{q}^{i}-L \\
& =p_{i} g^{i l} p_{l}-\frac{1}{2} g_{i j} g^{i l} p_{l} g^{j m} p_{m} \\
& =g^{i l} p_{i} p_{l}-\frac{1}{2} \delta_{i}^{m} g^{i l} p_{l} p_{m}=\frac{1}{2} g^{i l} p_{i} p_{l} .
\end{aligned}
$$

The Hamilton equation for \dot{q}^{i} recovers the equation $\dot{q}^{i}=g^{i l} p_{l}$, whilst the other equation is

$$
\begin{aligned}
\dot{p}_{k} & =-\frac{\partial H}{\partial q^{k}} \\
& =-\frac{1}{2} \frac{\partial g^{i l}}{\partial q^{k}} p_{i} p_{l} .
\end{aligned}
$$

To compare this with the second order Lagrangian equation note that

$$
\begin{aligned}
\dot{p}_{k} & =\frac{d}{d t}\left(g_{k j} \dot{q}^{j}\right)=-\frac{1}{2} \frac{\partial g^{i l}}{\partial q^{k}} p_{i} p_{l} \\
& =-\frac{1}{2} \frac{\partial g^{i l}}{\partial q^{k}} g_{i j} \dot{q}^{j} g_{l m} \dot{q}^{m}
\end{aligned}
$$

This expression can be simplified by understanding the relationship between the derivatives of $g_{i j}$ and its inverse. By definition $g_{i j} g^{j k}=\delta_{i}^{k}$ and differentiating both sides with respect to q^{x} and remembering that δ_{i}^{k} is a constant we find

$$
\begin{aligned}
\frac{\partial g_{i j}}{\partial q^{x}} g^{j k}+g_{i j} \frac{\partial g^{j k}}{\partial q^{x}} & =0 \\
\Rightarrow g_{i j} \frac{\partial j^{j k}}{\partial q^{x}} g_{k m} & =-\frac{\partial g_{i j}}{\partial q^{x}} g^{j k} g_{k m}=-\frac{\partial g_{i j}}{\partial q^{x}} \delta_{m}^{j}=-\frac{\partial g_{i m}}{\partial q^{x}}
\end{aligned}
$$

Using this we see that our equation of motion becomes

$$
\begin{aligned}
\frac{d}{d t}\left(g_{k j} \dot{q}^{j}\right) & =\frac{1}{2} \frac{\partial g_{i m}}{\partial q^{k}} \dot{q}^{i} \dot{q}^{m} \\
\Rightarrow g_{k j} \ddot{q}^{j}+\frac{\partial g_{k j}}{\partial q^{l}} \dot{q}^{l} \dot{q}^{j} & =\frac{1}{2} \frac{\partial g_{i m}}{\partial q^{k}} \dot{q}^{i} \dot{q}^{m} \\
\Rightarrow g_{k j} \ddot{q}^{j}+\frac{1}{2} \frac{\partial g_{k j}}{\partial q^{l}} \dot{q}^{l} \dot{q}^{j}+\frac{1}{2} \frac{\partial g_{k l}}{\partial q^{j}} \dot{q}^{l} \dot{q}^{j}-\frac{1}{2} \frac{\partial g_{l j}}{\partial q^{k}} \dot{q}^{l} \dot{q}^{j} & =0 . \\
\Rightarrow \ddot{q}^{i}+g^{i k}\left(\frac{1}{2} \frac{\partial g_{k j}}{\partial q^{l}} \dot{q}^{l} \dot{q}^{j}+\frac{1}{2} \frac{\partial g_{k l}}{\partial q^{j}} \dot{q}^{l} \dot{q}^{j}-\frac{1}{2} \frac{\partial g_{l j}}{\partial q^{k}} \dot{q}^{l} \dot{q}^{j}\right) & =0 \\
\Rightarrow \ddot{q}^{i}+\Gamma_{l j}^{i} \dot{q}^{l} \dot{q}^{j} & =0
\end{aligned}
$$

where

$$
\Gamma_{l j}^{i}=g^{i k}\left(\frac{1}{2} \frac{\partial g_{k j}}{\partial q^{l}}+\frac{1}{2} \frac{\partial g_{k l}}{\partial q^{j}}-\frac{1}{2} \frac{\partial g_{l j}}{\partial q^{k}}\right) .
$$

16. Working in cylindrical polar coordinates (ρ, θ, z) the equation of the spinning parabaloid will be ($\rho, \Omega t, a^{2} \rho^{2} / 2$). The kinetic energy is given by

$$
\frac{m}{2}\left(\dot{\rho}^{2}+\rho^{2} \dot{\theta}^{2}+\dot{z}^{2}\right)=\frac{m}{2}\left(\dot{\rho}^{2}+\rho^{2} \Omega^{2}+\left(a^{2} \dot{\rho} \rho\right)^{2}\right)
$$

whilst the potential energy is simply $m g z=m g a^{2} \rho^{2} / 2$, so that the Lagrangian is

$$
\begin{aligned}
L & =\frac{m}{2}\left(\dot{\rho}^{2}+\rho^{2} \Omega^{2}+\left(a^{2} \dot{\rho} \rho\right)^{2}\right)-\frac{1}{2} m g a^{2} \rho^{2} \\
& =\frac{m}{2}\left(\dot{\rho}^{2}\left(1+a^{4} \rho^{2}\right)\right)+\frac{m \rho^{2}}{2}\left(\Omega^{2}-g a^{2}\right)
\end{aligned}
$$

There is only one dynamical variable ρ whose conjugate momentum is given by

$$
p=\frac{\partial L}{\partial \dot{\rho}}=m \dot{\rho}\left(1+a^{4} \rho^{2}\right) .
$$

The Hamiltonian is given by $H=p \dot{\rho}-L$, which gives

$$
\begin{aligned}
H & =\frac{m}{2}\left(\dot{\rho}^{2}\left(1+a^{4} \rho^{2}\right)\right)+\frac{m \rho^{2}}{2}\left(g a^{2}-\Omega^{2}\right) \\
& =\frac{p^{2}}{2 m\left(1+a^{4} \rho^{2}\right)}+\frac{m \rho^{2}}{2}\left(g a^{2}-\Omega^{2}\right)
\end{aligned}
$$

17. (a) The infinitesimal action of J_{i} on x_{m} is computed via the Poisson bracket, and it is given by

$$
\begin{aligned}
\delta x_{m} & =\epsilon\left\{x_{m}, J_{i}\right\} \\
& =\epsilon \sum_{j k} \varepsilon_{i j k}\left\{x_{m}, x_{j} p_{k}\right\} \\
& =\epsilon \sum_{j k} \varepsilon_{i j k}\left(\left\{x_{m}, x_{j}\right\} p_{k}+x_{j}\left\{x_{m}, p_{k}\right\}\right) \\
& =\epsilon \sum_{j k} \varepsilon_{i j k} x_{j}\left\{x_{m}, p_{k}\right\} \\
& =\epsilon \sum_{j k}^{j} \varepsilon_{i j k} x_{j} \delta_{m k} \\
& =\epsilon \sum_{j} \varepsilon_{i j m} x_{j} .
\end{aligned}
$$

In particular, when $m=i$ this vanishes, since $\varepsilon_{i j k}$ is totally antisymmetric. When $m \neq i$ this is a rotation. Choose for example $i=1$. Then we have

$$
\delta x_{1}=0 \quad ; \quad \delta x_{2}=-\epsilon x_{3} \quad ; \quad \delta x_{3}=\epsilon x_{2}
$$

On the other hand, a finite rotation in the plane $\left(x_{2}, x_{3}\right)$ is given by

$$
\binom{x_{2}}{x_{3}} \rightarrow\binom{x_{2}^{\prime}}{x_{3}^{\prime}}=\left(\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right)\binom{x_{2}}{x_{3}}
$$

keeping x_{1} fixed, which reproduces the transformation law above if we set $\alpha=\epsilon$ and expand to first order in ϵ.
(b) We can prove this by direct computation. We have

$$
\begin{aligned}
\frac{d J_{i}}{d t} & =\left\{J_{i}, H\right\}+\frac{\partial J_{i}}{\partial t} \\
& =\left\{J_{i}, H\right\} \\
& =\sum_{j k} \varepsilon_{i j k}\left\{x_{j} p_{k}, H\right\} \\
& =\sum_{j k} \varepsilon_{i j k}\left(x_{j}\left\{p_{k}, H\right\}+\left\{x_{j}, H\right\} p_{k}\right) \\
& =\sum_{j k} \varepsilon_{i j k}\left(-x_{j}\left\{H, p_{k}\right\}-\left\{H, x_{j}\right\} p_{k}\right) \\
& =\sum_{j k} \varepsilon_{i j k}\left(-x_{j} \frac{\partial H}{\partial x_{k}}+p_{k} \frac{\partial H}{\partial p_{j}}\right) \\
& =\sum_{j k} \varepsilon_{i j k}\left(-x_{j}\left(2 x_{k}\right) V^{\prime}\left(\sum_{n} x_{n}^{2}\right)+p_{j} p_{k}\right) \\
& =0
\end{aligned}
$$

where in the last step we have used $\sum_{j k} \varepsilon_{i j k} u_{j} u_{k}=0$ for any vector u (due to antisymmetry of ε), and the chain rule acting on V. We have also used that for any function $f(p, q, t)$

$$
\left\{f(p, q, t), p_{i}\right\}=\frac{\partial f}{\partial q_{i}} \quad ; \quad\left\{f(p, q, t), q_{i}\right\}=-\frac{\partial f}{\partial p_{i}}
$$

in the particular case $f=H$.
18. (a) Let us start with the right hand side. We have

$$
\begin{aligned}
\sum_{k} \varepsilon_{i j k} J_{k} & =\sum_{k l m} \varepsilon_{i j k} \varepsilon_{k l m} x_{l} p_{m} \\
& =\sum_{k l m} \varepsilon_{k i j} \varepsilon_{k l m} x_{l} p_{m} \\
& =\sum_{l m}\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j m}\right) x_{l} p_{m} \\
& =x_{i} p_{j}-x_{j} p_{i}
\end{aligned}
$$

For the left hand side:

$$
\begin{aligned}
\left\{J_{i}, J_{j}\right\} & =\sum_{a b l m} \varepsilon_{i a b} \varepsilon_{j l m}\left\{x_{a} p_{b}, x_{l} p_{m}\right\} \\
& =\sum_{a b l m} \varepsilon_{i a b} \varepsilon_{j l m}\left(\left\{x_{a} p_{b}, x_{l}\right\} p_{m}+x_{l}\left\{x_{a} p_{b}, p_{m}\right\}\right) \\
& =\sum_{a b l m} \varepsilon_{i a b} \varepsilon_{j l m}\left(x_{a}\left\{p_{b}, x_{l}\right\} p_{m}+x_{l}\left\{x_{a}, p_{m}\right\} p_{b}\right)
\end{aligned}
$$

Using that $\left\{x_{i}, x_{j}\right\}=\left\{p_{i}, p_{j}\right\}=0$, as we saw in the first problem. Using now that $\left\{x_{i}, p_{j}\right\}=\delta_{i j}$, we can continue

$$
\begin{aligned}
\left\{J_{i}, J_{j}\right\} & =\sum_{a b l m} \varepsilon_{i a b} \varepsilon_{j l m}\left(-x_{a} \delta_{b l} p_{m}+x_{l} \delta_{a m} p_{b}\right) \\
& =\left(-\sum_{a b m} \varepsilon_{i a b} \varepsilon_{j b m} x_{a} p_{m}\right)+\left(\sum_{a b l} \varepsilon_{i a b} \varepsilon_{j l a} x_{l} p_{b}\right) \\
& =\left(-\sum_{a b m} \varepsilon_{b i a} \varepsilon_{b m j} x_{a} p_{m}\right)+\left(\sum_{a b l} \varepsilon_{a b i} \varepsilon_{a j l} x_{l} p_{b}\right) \\
& =\left(-\sum_{a m}\left(\delta_{i m} \delta_{a j}-\delta_{a m} \delta_{i j}\right) x_{a} p_{m}\right)+\left(\sum_{b l}\left(\delta_{b j} \delta_{i l}-\delta_{b l} \delta_{i j}\right) x_{l} p_{b}\right) \\
& =\left(-x_{j} p_{i}+\delta_{i j} \sum_{m} x_{m} p_{m}\right)+\left(x_{i} p_{j}-\delta_{i j} \sum_{b} x_{b} p_{b}\right)
\end{aligned}
$$

now, clearly $\sum_{m} x_{m} p_{m}=\sum_{b} x_{b} p_{b}$, so we conclude

$$
\left\{J_{i}, J_{j}\right\}=x_{i} p_{j}-x_{j} p_{i}
$$

which is indeed equal to $\sum_{k} \varepsilon_{i j k} J_{k}$, as we showed above.
(b) Using the fact that the Poisson bracket is bilinear, and that it obeys Leibniz Rule, we have

$$
\left\{J^{2}, H\right\}=\sum_{i} 2 J_{i}\left\{J_{i}, H\right\}=0
$$

since each of the J_{i} is separately conserved, by assumption. To show that the J_{i} have vanishing bracket with J^{2} we compute

$$
\begin{aligned}
\left\{J_{i}, J^{2}\right\} & =\sum_{j} 2\left\{J_{i}, J_{j}\right\} J_{j} \\
& =\sum_{j k} 2 \varepsilon_{i j k} J_{j} J_{k} \\
& =0
\end{aligned}
$$

where the last relation follows from the antisymmetry of $\varepsilon_{i j k}$.
19. In index notation we can write $H=\left(p_{i} p_{i}+q_{i} q_{i}\right) / 2$ so we have that

$$
\begin{aligned}
\left\{M_{j k}, H\right\} & =\left\{p_{j} p_{k}+q_{j} q_{k}, \frac{1}{2}\left(p_{i} p_{i}+q_{i} q_{i}\right)\right\} \\
& =\frac{1}{2}\left[\frac{\partial}{\partial q_{l}}\left(p_{j} p_{k}+q_{j} q_{k}\right) \frac{\partial}{\partial p_{l}}\left(p_{i} p_{i}+q_{i} q_{i}\right)-\frac{\partial}{\partial p_{l}}\left(p_{j} p_{k}+q_{j} q_{k}\right) \frac{\partial}{\partial q_{l}}\left(p_{i} p_{i}+q_{i} q_{i}\right)\right] \\
& =\frac{1}{2}\left[\left(\delta_{l j} q_{k}+\delta_{l k} q_{j}\right) 2 p_{l}-\left(\delta_{l j} p_{k}+\delta_{l k} p_{j}\right) 2 q_{l}\right] \\
& =q_{k} p_{j}+q_{j} p_{k}-p_{k} q_{j}-p_{j} q_{k}=0 .
\end{aligned}
$$

Similarly we have that

$$
\begin{aligned}
\left\{L_{j k}, H\right\} & =\left\{p_{j} q_{k}-q_{j} p_{k}, \frac{1}{2}\left(p_{i} p_{i}+q_{i} q_{i}\right)\right\} \\
& =\frac{1}{2}\left[\frac{\partial}{\partial q_{l}}\left(p_{j} q_{k}-q_{j} p_{k}\right) \frac{\partial}{\partial p_{l}}\left(p_{i} p_{i}+q_{i} q_{i}\right)-\frac{\partial}{\partial p_{l}}\left(p_{j} q_{k}-q_{j} p_{k}\right) \frac{\partial}{\partial q_{l}}\left(p_{i} p_{i}+q_{i} q_{i}\right)\right] \\
& =\frac{1}{2}\left[\left(\delta_{l k} p_{j}-\delta_{l j} p_{k}\right) 2 p_{l}-\left(\delta_{l j} q_{k}-\delta_{l k} q_{j}\right) 2 q_{l}\right] \\
& =p_{k} p_{j}-p_{j} p_{k}-q_{j} q_{k}+q_{k} q_{j}=0 .
\end{aligned}
$$

