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10 Hamiltonian Mechanics I - Hamilton’s Equations and Pois-
son’s Brackets

1. (a) From the definition

{B,A} =
∂B

∂qi

∂A

∂pi
− ∂B

∂pi

∂A

∂qi

= −
(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
= −{A,B} .

(b) Again we have

{aA+ bC,B} =
∂(aA+ bC)

∂qi

∂B

∂pi
− ∂(aA+ bC)

∂pi

∂B

∂qi

= a
∂A

∂qi

∂C

∂pi
+ b

∂C

∂qi

∂B

∂pi
− a

∂A

∂pi

∂B

∂qi
− b

∂C

∂pi

∂A

∂qi

= a

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
+ b

(
∂C

∂qi

∂B

∂pi
− ∂C

∂pi

∂B

∂qi

)
= a {A,B}+ b {C,B} .

(c) From the product rule for differentiation we have

{A,BC} =
∂A

∂qi

∂(BC)

∂pi
− ∂A

∂pi

∂(BC)

∂qi

=
∂A

∂qi

(
∂B

∂pi
C +B

∂C

∂pi

)
− ∂A

∂pi

(
∂B

∂qi
C +B

∂C

∂qi

)
=

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
C +B

(
∂A

∂qi

∂C

∂pi
− ∂A

∂pi

∂C

∂qi

)
= {A,B}C +B {A,C} .

2. The relations follow immediately from the definition of the Poisson bracket:

{qi, qj} =
∑
k

(
∂qi
∂qk

∂qj
∂pk

− ∂qi
∂pk

∂qj
∂qk

)
=
∑
k

(δik · 0− 0 · δjk)

= 0

1
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10 and similarly for {pi, pj}:

{pi, pj} =
∑
k

(
∂pi
∂qk

∂pj
∂pk

− ∂pi
∂pk

∂pj
∂qk

)
=
∑
k

(0 · δjk − δik · 0)

= 0

For the Poisson bracket between coordinates and momenta we have instead:

{qi, pj} =
∑
k

(
∂qi
∂qk

∂pj
∂pk

− ∂qi
∂pk

∂pj
∂qk

)
=
∑
k

(δikδjk − 0 · 0)

= δij .

3. By the chain rule
dH

dt
=

∂H

∂p
ṗ+

∂H

∂q
q̇ +

∂H

∂t

and the result then follows from using Hamilton’s equations of motion

q̇ =
∂H

∂p
; ṗ = −∂H

∂q

4. That the Poisson bracket is conserved follows immediately from the Jacobi identity

{{A1, A2}, H} = −{{H,A1}, A2} − {{A2, H}, A1} = 0

since A1 and A2 are conserved.

For the rest, we start by proving the Lemma:

∂

∂t
{A,B} =

∂

∂t

∑
i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
=
∑
i

(
∂

∂t

(
∂A

∂qi

∂B

∂pi

)
− ∂

∂t

(
∂A

∂pi

∂B

∂qi

))
=
∑
i

([
∂

∂t

(
∂A

∂qi

)]
∂B

∂pi
+

∂A

∂qi

[
∂

∂t

(
∂B

∂pi

)]
−
[
∂

∂t

(
∂A

∂pi

)]
∂B

∂qi
− ∂A

∂pi

[
∂

∂t

(
∂B

∂qi

)])
=
∑
i

([
∂

∂qi

(
∂A

∂t

)]
∂B

∂pi
+

∂A

∂qi

[
∂

∂pi

(
∂B

∂t

)]
−
[

∂

∂pi

(
∂A

∂t

)]
∂B

∂qi
− ∂A

∂pi

[
∂

∂qi

(
∂B

∂t

)])
=

{
∂A

∂t
, B

}
+

{
A,

∂B

∂t

}
2
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10 With this in hand it is easy to prove what we want. Since A1 and A2 are conserved
we have

{A1, H} = −∂A1

∂t
; {A2, H} = −∂A2

∂t
.

So using Jacobi’s identity

{{A1, A2}, H} = −{{H,A1}, A2} − {{A2, H}, A1}
= {{A1, H}, A2} − {{A2, H}, A1}

= −
{
∂A1

∂t
, A2

}
+

{
∂A2

∂t
, A1

}
= −

({
∂A1

∂t
, A2

}
+

{
A1,

∂A2

∂t

})
= − ∂

∂t
{A1, A2}

using the Lemma proven above. So indeed

d{A1, A2}
dt

= {{A1, A2}, H}+ ∂{A1, A2}
∂t

= 0 .

5. The Lagrangian for a relativistic particle is

L = −mc
√
c2 − ẋ2 − ẏ2 − ż2,

so the generalised momenta are given by

px =
mcẋ√

c2 − ẋ2 − ẏ2 − ż2

py =
mcẏ√

c2 − ẋ2 − ẏ2 − ż2

pz =
mcż√

c2 − ẋ2 − ẏ2 − ż2
.

We need to invert these relations to find ẋ, ẏ, and ż in terms of px, py and pz.
Squaring the three above equations and adding them together gives

p2x + p2y + p2z =
m2c2 (ẋ2 + ẏ2 + ż2)

c2 − ẋ2 − ẏ2 − ż2

which can be rearranged to give

ẋ2 + ẏ2 + ż2 =
c2
(
p2x + p2y + p2z

)
m2c2 + p2x + p2y + p2z

3
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10 which now enables us to use the expression for the generalised momentum px to write

ẋ =
px
mc

√
c2 − ẋ2 − ẏ2 − ż2

=
px
mc

√
c2 −

c2
(
p2x + p2y + p2z

)
m2c2 + p2x + p2y + p2z

=
px
mc

√
m2c4

m2c2 + p2x + p2y + p2z

=
pxc√

m2c2 + p2x + p2y + p2z

and similarly we can write ẏ and ż by replacing px by py and pz respectively in the
numerator of the above expression. The Hamiltonian is defined to be

H = pxẋ+ pyẏ + pz ż − L

=
c
(
p2x + p2y + p2z

)√
m2c2 + p2x + p2y + p2z

+mc
√

c2 − ẋ2 − ẏ2 − ż2

=
c
(
p2x + p2y + p2z

)√
m2c2 + p2x + p2y + p2z

+mc

√
c2 −

c2
(
p2x + p2y + p2z

)
m2c2 + p2x + p2y + p2z

=
c
(
p2x + p2y + p2z

)√
m2c2 + p2x + p2y + p2z

+mc

√
m2c4

m2c2 + p2x + p2y + p2z

=
c
(
p2x + p2y + p2z

)
+m2c3√

m2c2 + p2x + p2y + p2z

= c
√

m2c2 + p2x + p2y + p2z.

If the 4-vector pµ = (H/c, px, py, pz) then

pµpµ =
H2

c2
− p2x − p2y − p2z =

(
m2c2 + p2x + p2y + p2z

)
− p2x − p2y − p2z = m2c2.

6. When the pulley is turned counterclockwise through an angle ϕ, the mass m1 moves
up ϕr whilst the mass m2 moves down the same distance. So the kinetic energy is
(m1 +m2)r

2ϕ̇2/2, and the potential energy is m1grϕ−m2grϕ. Thus the Lagrangian
is given by

L =
(m1 +m2)

2
r2ϕ̇2 − (m1 −m2)grϕ.

The momentum is
pϕ =

∂L

∂ϕ̇
= (m1 +m2)r

2ϕ̇

4
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10 and so
ϕ̇ =

pϕ
(m1 +m2)r2

so the Hamiltonian is

H = pϕϕ̇− L

=
p2ϕ

(m1 +m2)r2
−

p2ϕ
2(m1 +m2)r2

+ (m1 −m2)grϕ

=
p2ϕ

2(m1 +m2)r2
+ (m1 −m2)grϕ.

Hamilton’s equations of motions are

ϕ̇ =
∂H

∂pϕ
=

pϕ
(m1 +m2)r2

ṗϕ = −∂H

∂ϕ
= (m2 −m1)gr.

The acceleration is

rϕ̈ =
rṗϕ

(m1 +m2)r2

=
(m2 −m1)g

(m1 +m2)
.

7. Somewhat monstrously

{{A,B} , C} =

{(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
, C

}
=

∂

∂qk

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
∂C

∂pk
− ∂

∂pk

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
∂C

∂qk

=
∂2A

∂qk∂qi

∂B

∂pi

∂C

∂pk
+

∂A

∂qi

∂2B

∂qk∂pi

∂C

∂pk
− ∂2A

∂qk∂pi

∂B

∂qi

∂C

∂pk
+

∂A

∂pi

∂2B

∂qk∂qi

∂C

∂pk

− ∂2A

∂pk∂qi

∂B

∂pi

∂C

∂qk
− ∂A

∂qi

∂2B

∂pk∂pi

∂C

∂qk
+

∂2A

∂pk∂pi

∂B

∂qi

∂C

∂qk
+

∂A

∂pi

∂2B

∂pk∂qi

∂C

∂qk
.

5
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10 Now all we need to do is to add the cyclic permutations of A,B,C together to get

RHS =
∂2A

∂qk∂qi

∂B

∂pi

∂C

∂pk
+

∂A

∂qi

∂2B

∂qk∂pi

∂C

∂pk
− ∂2A

∂qk∂pi

∂B

∂qi

∂C

∂pk
− ∂A

∂pi

∂2B

∂qk∂qi

∂C

∂pk

− ∂2A

∂pk∂qi

∂B

∂pi

∂C

∂qk
− ∂A

∂qi

∂2B

∂pk∂pi

∂C

∂qk
+

∂2A

∂pk∂pi

∂B

∂qi

∂C

∂qk
+

∂A

∂pi

∂2B

∂pk∂qi

∂C

∂qk
∂2B

∂qk∂qi

∂C

∂pi

∂A

∂pk
+

∂B

∂qi

∂2C

∂qk∂pi

∂A

∂pk
− ∂2B

∂qk∂pi

∂C

∂qi

∂A

∂pk
− ∂B

∂pi

∂2C

∂qk∂qi

∂A

∂pk

− ∂2B

∂pk∂qi

∂C

∂pi

∂A

∂qk
− ∂B

∂qi

∂2C

∂pk∂pi

∂A

∂qk
+

∂2B

∂pk∂pi

∂C

∂qi

∂A

∂qk
+

∂B

∂pi

∂2C

∂pk∂qi

∂A

∂qk
∂2C

∂qk∂qi

∂A

∂pi

∂B

∂pk
+

∂C

∂qi

∂2A

∂qk∂pi

∂B

∂pk
− ∂2C

∂qk∂pi

∂A

∂qi

∂B

∂pk
− ∂C

∂pi

∂2A

∂qk∂qi

∂B

∂pk

− ∂2C

∂pk∂qi

∂A

∂pi

∂B

∂qk
− ∂C

∂qi

∂2A

∂pk∂pi

∂B

∂qk
+

∂2C

∂pk∂pi

∂A

∂qi

∂B

∂qk
+

∂C

∂pi

∂2A

∂pk∂qi

∂B

∂qk
= 0

if you squint really hard, and remember that you can always swap the i and k indices
since they are dummy indices.

8. The generalised momenta are given by pr = ṙ and pθ = r2θ̇ so the Hamiltonian is
given by

H = prṙ + pθθ̇ − L = ṙ2 + r2θ̇2 − L =
1

2

(
p2r +

p2θ
r2

)
+ µ

cos(θ)

r2
.

Hamilton’s equations of motion are

ṙ =
∂H

∂pr
= pr

θ̇ =
∂H

∂pθ
=

pθ
r2

ṗr = −∂H

∂r
=

p2θ
r3

+ 2µ
cos(θ)

r3

ṗθ = −∂H

∂θ
= µ

sin(θ)

r2
.

Note that

d

dt

(
p2θ + 2µ cos(θ)

)
= 2pθṗθ − 2µ sin(θ)θ̇

= 2pθ

(
µ
sin(θ)

r2

)
− 2µ sin(θ)

(pθ
r2

)
= 0

⇒ p2θ + 2µ cos(θ) = α

6
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10 where α is constant. As H does not depend on time explicitly we expect it to be a
constant E so

E =
1

2

(
p2r +

p2θ
r2

)
+ µ

cos(θ)

r2
=

ṙ2

2
+

1

2r2
(α− 2µ cos(θ)) + µ

cos(θ)

r2
=

ṙ2

2
+

α

2r2
.

9. The Hamiltonian H from L is given by H = piq̇i − L with equations of motion

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
,

where pi =
∂L
∂q̇i

. The momenta from L′ can be defined to be

Pi =
∂L′

∂q̇i
=

∂L

∂q̇i
+

∂f

∂qi
= pi +

∂f

∂qi
.

Correspondingly there is a new Hamiltonian

H ′ = Piq̇i − L′ =

(
pi +

∂f

∂qi

)
q̇i − L− ∂f

∂qi
q̇i −

∂f

∂t
= (piq̇ − L)− ∂f

∂t
= H − ∂f

∂t
.

The equations of motion for H ′ are

q̇i =
∂H ′

∂Pi

, Ṗi = −∂H ′

∂qi
.

Note that
H ′ = H(p, q)− ∂f(q, t)

∂t
= H(p(P, q), q)− ∂f(q, t)

∂t

where we have used that pi = pi(P, q) = Pi − ∂f(q,t)
∂qi

. So

q̇i =
∂H ′

∂Pi

=
∂

∂Pi

(
H(p(P, q), q)− ∂f(q, t)

∂t

)
=

∂H

∂pk

∂pk
∂Pi

=
∂H

∂pk
δki =

∂H

∂pi

which is the same expression we obtained for q̇i from the Hamilton equations of

7
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10 motion for H. Now turning our attention to the other equation

Ṗi = −∂H ′

∂qi

= − ∂

∂qi

(
H(p(P, q), q)− ∂f(q, t)

∂t

)
= −∂H

∂pk

∂pk
∂qi

− ∂H

∂qi
+

∂2f

∂qi∂t

=
∂H

∂pk

∂2f

∂qi∂qk
− ∂H

∂qi
+

∂2f

∂qi∂t

= q̇k
∂2f

∂qi∂qk
− ∂H

∂qi
+

∂2f

∂qi∂t

=
d

dt

(
∂f

∂qk

)
− ∂H

∂qi

⇒ d

dt

(
Pi −

∂f

∂qk

)
= −∂H

∂qi

⇒ ṗi = −∂H

∂qi

which again is equivalent to the equation of motion derived from H. Notice that this
is an example of a canonical transformation. The new momentum Pi is a mixture of
the old coordinates and momenta, but together with a new Hamiltonian H ′ gives an
equivalent physical description of the system.

10. (a) We start by inverting the given relations in order to express p, q in terms of
P,Q. We have:

p = P cos(α) +Q sin(α)

q = −P sin(α) +Q cos(α)

In the particular case of α = π
2

this is

p = Q

q = −P

so we are exchanging momentum with position (up to a sign). In these new
coordinates the Hamiltonian becomes

H(P,Q) =
1

2m
Q2 +

1

2
mω2P 2 .

The resulting equations of motion are

Q̇ =
∂H(P,Q)

∂P
= mω2P (1)

Ṗ = −∂H(P,Q)

∂Q
= − 1

m
Q (2)

8
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10 Undoing the change in coordinates this implies

ṗ = −mω2q = −∂H(p, q)

∂q

q̇ =
1

m
p =

∂H(p, q)

∂p

(b) By the chain rule:

∂H

∂q
=

∂H

∂Q

∂Q

∂q
+

∂H

∂P

∂P

∂q
=

∂H

∂Q
cos(α)− ∂H

∂P
sin(α)

∂H

∂p
=

∂H

∂Q

∂Q

∂p
+

∂H

∂P

∂P

∂p
=

∂H

∂Q
sin(α) +

∂H

∂P
cos(α)

On the other hand, from the expression of q and p in terms of Q and P we found
above

−ṗ = −Ṗ cos(α)− Q̇ sin(α)

q̇ = −Ṗ sin(α) + Q̇ cos(α)

If we now impose Hamilton’s equations for p, q we find

−Ṗ cos(α)− Q̇ sin(α) =
∂H

∂Q
cos(α)− ∂H

∂P
sin(α)

−Ṗ sin(α) + Q̇ cos(α) =
∂H

∂Q
sin(α) +

∂H

∂P
cos(α)

which for any α is equivalent to

−Ṗ =
∂H

∂Q

Q̇ =
∂H

∂P

(c) Clearly {P, P} = {Q,Q} by the antisymmetry of the Poisson bracket. For the
remaining relation we use linearity:

{Q,P} = {q cos(α) + p sin(α),−q sin(α) + p cos(α)}
= {q, p} cos2(α)− {p, q} sin2(α)

= {q, p}(cos2(α) + sin2(α))

= {q, p}
= 1

9
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m

θ

Figure 1: Set up for Question 8

(d) We have

{A,B}P,Q =
∂A

∂Q

∂B

∂P
− ∂A

∂P

∂B

∂Q

Using the chain rule, the first term is

∂A

∂Q

∂B

∂P
=

(
∂A

∂q

∂q

∂Q
+

∂A

∂p

∂p

∂Q

)(
∂B

∂q

∂q

∂P
+

∂B

∂p

∂p

∂P

)
=

(
∂A

∂q
cos(α) +

∂A

∂p
sin(α)

)(
∂B

∂q
(− sin(α)) +

∂B

∂p
cos(α)

)
and similarly

∂A

∂P

∂B

∂Q
=

(
∂A

∂q

∂q

∂P
+

∂A

∂p

∂p

∂P

)(
∂B

∂q

∂q

∂Q
+

∂B

∂p

∂p

∂Q

)
=

(
∂A

∂q
(− sin(α)) +

∂A

∂p
cos(α)

)(
∂B

∂q
cos(α) +

∂B

∂p
sin(α)

)
Combining both terms, and simplifying using cos2(α) + sin2(α) = 1 we obtain
what we want, namely

∂A

∂Q

∂B

∂P
− ∂A

∂P

∂B

∂Q
=

∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q

11. If we measure the angle θ to the downward vertical (see figure) then we see that
the potential energy from gravity is −mgr cos(θ). The spring potential energy is
k(r− r0)

2/2 and since we are simply working in polar coordinates the kinetic energy
is given as usual. Putting this together we get

L =
m

2

(
ṙ2 + r2θ̇2

)
+mgr cos(θ)− k

2
(r − r0)

2 .

The first step is to determine the conjugate momenta

pr =
∂L

∂ṙ
= mṙ

pθ =
∂L

∂θ̇
= mr2θ̇.

10
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θ
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Figure 2: Set up for question 9

Working out the Hamiltonian we have

H = pθθ̇ + prṙ − L

=
p2θ
mr2

+
p2r
m

−
(
m

2

(pr
m

)2
+

mr2

2

( pθ
mr2

)2
+mgr cos(θ)− k

2
(r − r0)

2

)
=

p2θ
2mr2

+
p2r
2m

−mgr cos(θ) +
k

2
(r − r0)

2.

Hamilton’s Equations give

ṙ =
∂H

∂pr
=

pr
m

θ̇ =
∂H

∂pθ
=

pθ
mr2

ṗr = −∂H

∂r
=

p2θ
mr3

+mg cos(θ)− k(r − r0)

ṗθ = −∂H

∂θ
= −mgr sin(θ).

If g = 0 then pθ is clearly conserved from the last equation.

12. The initial set up, and the position of the pendulum after it has started to slide down
the slope is shown in the figure: Here I have chosen s, the distance down the slope
that the pivot has gone, and θ the angle the pendulum makes with the vertical to
describe the system. In terms of these coordinates the position of the mass is given
by

x = −s cos(α) + l sin(θ)

y = −s sin(α)− l cos(θ)

from which we deduce the velocity is given by

ẋ = −ṡ cos(α) + l cos(θ)θ̇

ẏ = −ṡ sin(α) + l sin(θ)θ̇.

11
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10 A little algebra gives that ẋ2 + ẏ2 = ṡ2 + l2θ̇2 − 2lṡθ̇ cos(θ − α). Combining this
with the potential energy which is mgy = −mg(s sin(α)+ l cos(θ)), we have that the
Lagrangian for the system is

L =
m

2

(
ṡ2 + l2θ̇2 − 2lṡθ̇ cos(θ − α)

)
+mg(s sin(α) + l cos(θ)).

However, only θ is dynamical; s is prescribed by the condition that the pivot is made
to move with constant acceleration f , that is s̈ = f . Given that s = ṡ = 0 at time
t = 0, we have that s = ft2/2 and that ṡ = ft. Substituting these values into the
Lagrangian we find that

L =
m

2

(
f 2t2 + l2θ̇2 − 2lftθ̇ cos(θ − α)

)
+mg(

ft2

2
sin(α) + l cos(θ)).

Since this question finds its way onto a Hamiltonian sheet, we might as well solve
it as a Hamiltonian system. Note that we only have one degree of freedom, θ. The
corresponding momentum is given by

p =
∂L

∂θ̇
= ml2θ̇ −mlft cos(θ − α).

The Hamiltonian is given by pθ̇ − L, and even though it is NOT conserved (as it
depends explicitly on t) we can still use the ‘dots’ rule to tell us that

H =
m

2
l2θ̇2 − m

2
f 2t2 −mg(

ft2

2
sin(α) + l cos(θ))

=
m

2
l2
(
p+mlft cos(θ − α)

ml2

)2

− m

2
f 2t2 −mg(

ft2

2
sin(α) + l cos(θ)).

Hamilton’s equations of motion are given by

θ̇ =
∂H

∂p
=

p+mlft cos(θ − α)

ml2

ṗ = −∂H

∂θ
=

(
p+mlft cos(θ − α)

ml2

)
mlft sin(θ − α)−mgl sin(θ).

Whilst we do not have conservation of energy, we do have that

dH

dt
= {H,H}+ ∂H

∂t
=

∂H

∂t
.

Thus

dH

dt
=

(
p+mlft cos(θ − α)

ml2

)
mlf cos(θ − α)−mf 2t−mgft sin(α)

= θ̇mlf cos(θ − α)−mf 2t−mgft sin(α)

=
d

dt

(
mlf sin(θ − α)− m

2
f 2t2 − m

2
gft2 sin(α)

)
,

12
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10 from which it follows that

Q = H −mlf sin(θ − α) +
m

2
f 2t2 +

m

2
gft2 sin(α)

=
m

2
l2
(
p+mlft cos(θ − α)

ml2

)2

−mlf sin(θ − α)−mgl cos(θ)

=
m

2
l2θ̇2 −mlf sin(θ − α)−mgl cos(θ)

is a conserved quantity. At t=0, we have θ = 0, θ̇ = 0 so we see that Q = mlf sin(α)−
mlg. If it just reaches horizontal at a later time, then at that time θ = π/2 and θ̇ = 0.
Putting this into the conservation equation we have

Q = mlf sin(α)−mlg = 0−mlf cos(α)− 0

which can be rearranged to give g = f(cos(α) + sin(α)).

13. The Euler Lagrange equations are

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0

d

dt

(
ẋ− Ω

2
y

)
− Ω

2
ẏ = 0

ẍ = Ωẏ

d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
= 0

d

dt

(
ẏ +

Ω

2
x

)
+

Ω

2
ẋ = 0

ÿ = −Ωẋ.

From this it is straightforward to calculate

dJz
dt

=
d

dt
(xẏ − yẋ) = xÿ − yẍ = Ω(−xẋ− yẏ)

= Ω(−x(Ωy + c1)− y(−Ωx+ c2))

= Ω(−xc1 − yc2) ̸= 0

where we have integrated the equations of motion to find ẋ = Ωy + c1 and ẏ =
−Ωx + c2. (Strictly we should solve for x, y. We have ẍ = −Ω2x + Ωc2, so that x =
α cos(Ωt)+β sin(Ωt)+c2/Ω. From this we see that y = −α sin(Ωt)+β cos(Ωt)−c1/Ω.
This gives

dJz
dt

= Ω(−c1α− c2β) cos(Ωt) + Ω(c2α− c1β) sin(Ωt)

13
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10 which is certainly not zero. Now

Px =
∂L

∂ẋ
= ẋ− Ω

2
y

Py =
∂L

∂ẏ
= ẏ +

Ω

2
x

from which we see that

dJz

dt
=

d

dt
(xPy − yPx) =

d

dt

(
x(ẏ +

Ω

2
x)− y(ẋ− Ω

2
y)

)
=

dJz
dt

+
d

dt

(
Ω

2

(
x2 + y2

))
= Ω(−xẋ− yẏ) +

d

dt

(
Ω

2

(
x2 + y2

))
= 0.

Let us denote the angular momentum about a point (a, b) by J(a, b). Then

dJ(a, b)

dt
=

d

dt
[(x− a) ẏ − (y − b)ẋ] =

dJz
dt

− aÿ + bẍ

= Ω(−c1α− c2β + βΩa− αΩb) cos(Ωt) + Ω(c2α− c1β − αΩa− βΩb) sin(Ωt).

We can make this vanish for any α, β if we set a = c2/Ω and b = −c1/Ω. Finally the
Hamiltonian is given by (using the expression in the notes)

H =
1

2

(
ẋ2 + ẏ2

)
=

1

2

(
Px +

Ω

2
y

)2

+
1

2

(
Py −

Ω

2
x

)2

.

As this does not depend explicitly on time, we know it is conserved automatically,
but if you are not convinced note that

dH

dt
= ẋẍ+ ẏÿ = ẋ (Ωẏ) + ẏ (−Ωẋ) = 0.

14. Again we shall solve this as a Hamiltonian question. Working in spherical polars the
Lagrangian for the system is

L =
m

2

(
ṙ2 + r2θ̇2 + r2 sin2(θ)ϕ̇2

)
+mgr cos(θ),

where in this case r = a is a constant and ϕ̇ = ω, so that L reduces to

L =
m

2

(
a2θ̇2 + a2 sin2(θ)ω2

)
+mga cos(θ).

The momentum is given by pθ = ma2θ̇, so that

H =
p2θ

2ma2
− m

2
a2 sin2(θ)ω2 −mga cos(θ).

14
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10 Conservation of H gives the result. It is worth pointing out that whilst we have a
conserved energy H, it is not the sum of the kinetic energy and the potential energy
of the particle. The term m

2
a2 sin2(θ)ω2 would need to come with a plus sign for

it to be the kinetic energy. Because we have put ϕ̇ = ω, this term which originally
came from the kinetic energy has ‘lost its dots’, and therefore behaves like a potential
energy, swapping its sign when we work out the energy. Physically we should not be
too alarmed by this; the circular hoop needs to be driven (by a motor?) to keep it
going at a constant angular velocity. This motor can put energy into the bead. The
‘miracle’ is that as we still have time translation invariance for the Lagrangian (no
explicit t) we still have an energy-like quantity which is conserved.

15. By definition

pl =
∂L

∂q̇l
=

1

2
gij

∂

∂q̇l
(
q̇iq̇j

)
=

1

2
gij
(
δil q̇

j + δjl q̇
i
)
=

1

2
glj q̇

j +
1

2
gilq̇

i = glj q̇
j

where we have used the symmetry of gij and relabelled dummy indices. Multiplying
both sides of the equation by the inverse matrix gil we have

gilglj q̇
j = gilpl

δij q̇
j = q̇i = gilpl.

So we have by definition that the Hamiltonian is

H = piq̇
i − L

= pig
ilpl −

1

2
gijg

ilplg
jmpm

= gilpipl −
1

2
δmi g

ilplpm =
1

2
gilpipl.

The Hamilton equation for q̇i recovers the equation q̇i = gilpl , whilst the other
equation is

ṗk = −∂H

∂qk

= −1

2

∂gil

∂qk
pipl.

To compare this with the second order Lagrangian equation note that

ṗk =
d

dt

(
gkj q̇

j
)
= −1

2

∂gil

∂qk
pipl

= −1

2

∂gil

∂qk
gij q̇

jglmq̇
m.

15
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10 This expression can be simplified by understanding the relationship between the
derivatives of gij and its inverse. By definition gijg

jk = δki and differentiating both
sides with respect to qx and remembering that δki is a constant we find

∂gij
∂qx

gjk + gij
∂gjk

∂qx
= 0

⇒ gij
∂gjk

∂qx
gkm = −∂gij

∂qx
gjkgkm = −∂gij

∂qx
δjm = −∂gim

∂qx
.

Using this we see that our equation of motion becomes

d

dt

(
gkj q̇

j
)

=
1

2

∂gim
∂qk

q̇iq̇m

⇒ gkj q̈
j +

∂gkj
∂ql

q̇lq̇j =
1

2

∂gim
∂qk

q̇iq̇m

⇒ gkj q̈
j +

1

2

∂gkj
∂ql

q̇lq̇j +
1

2

∂gkl
∂qj

q̇lq̇j − 1

2

∂glj
∂qk

q̇lq̇j = 0.

⇒ q̈i + gik
(
1

2

∂gkj
∂ql

q̇lq̇j +
1

2

∂gkl
∂qj

q̇lq̇j − 1

2

∂glj
∂qk

q̇lq̇j
)

= 0

⇒ q̈i + Γi
lj q̇

lq̇j = 0

where
Γi
lj = gik

(
1

2

∂gkj
∂ql

+
1

2

∂gkl
∂qj

− 1

2

∂glj
∂qk

)
.

16. Working in cylindrical polar coordinates (ρ, θ, z) the equation of the spinning para-
baloid will be (ρ,Ωt, a2ρ2/2). The kinetic energy is given by

m

2

(
ρ̇2 + ρ2θ̇2 + ż2

)
=

m

2

(
ρ̇2 + ρ2Ω2 +

(
a2ρ̇ρ

)2)
whilst the potential energy is simply mgz = mga2ρ2/2 , so that the Lagrangian is

L =
m

2

(
ρ̇2 + ρ2Ω2 +

(
a2ρ̇ρ

)2)− 1

2
mga2ρ2

=
m

2

(
ρ̇2
(
1 + a4ρ2

))
+

mρ2

2

(
Ω2 − ga2

)
There is only one dynamical variable ρ whose conjugate momentum is given by

p =
∂L

∂ρ̇
= mρ̇

(
1 + a4ρ2

)
.

The Hamiltonian is given by H = pρ̇− L, which gives

H =
m

2

(
ρ̇2
(
1 + a4ρ2

))
+

mρ2

2

(
ga2 − Ω2

)
=

p2

2m (1 + a4ρ2)
+

mρ2

2

(
ga2 − Ω2

)
.

16
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10 17. (a) The infinitesimal action of Ji on xm is computed via the Poisson bracket, and
it is given by

δxm = ϵ{xm, Ji}

= ϵ
∑
jk

εijk{xm, xjpk}

= ϵ
∑
jk

εijk({xm, xj}pk + xj{xm, pk})

= ϵ
∑
jk

εijkxj{xm, pk}

= ϵ
∑
jk

εijkxjδmk

= ϵ
∑
j

εijmxj .

In particular, when m = i this vanishes, since εijk is totally antisymmetric.
When m ̸= i this is a rotation. Choose for example i = 1. Then we have

δx1 = 0 ; δx2 = −ϵx3 ; δx3 = ϵx2 .

On the other hand, a finite rotation in the plane (x2, x3) is given by(
x2

x3

)
→
(
x′
2

x′
3

)
=

(
cos(α) − sin(α)
sin(α) cos(α)

)(
x2

x3

)
keeping x1 fixed, which reproduces the transformation law above if we set α = ϵ
and expand to first order in ϵ.

(b) We can prove this by direct computation. We have
dJi
dt

= {Ji, H}+ ∂Ji
∂t

= {Ji, H}

=
∑
jk

εijk{xjpk, H}

=
∑
jk

εijk(xj{pk, H}+ {xj, H}pk)

=
∑
jk

εijk(−xj{H, pk} − {H, xj}pk)

=
∑
jk

εijk

(
−xj

∂H

∂xk

+ pk
∂H

∂pj

)

=
∑
jk

εijk

(
−xj(2xk)V

′

(∑
n

x2
n

)
+ pjpk

)
= 0

17
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10 where in the last step we have used
∑

jk εijkujuk = 0 for any vector u (due to
antisymmetry of ε), and the chain rule acting on V . We have also used that for
any function f(p, q, t)

{f(p, q, t), pi} =
∂f

∂qi
; {f(p, q, t), qi} = − ∂f

∂pi

in the particular case f = H.

18. (a) Let us start with the right hand side. We have∑
k

εijkJk =
∑
klm

εijkεklmxlpm

=
∑
klm

εkijεklmxlpm

=
∑
lm

(δilδjm − δimδjm)xlpm

= xipj − xjpi .

For the left hand side:

{Ji, Jj} =
∑
ablm

εiabεjlm{xapb, xlpm}

=
∑
ablm

εiabεjlm({xapb, xl}pm + xl{xapb, pm})

=
∑
ablm

εiabεjlm(xa{pb, xl}pm + xl{xa, pm}pb)

Using that {xi, xj} = {pi, pj} = 0, as we saw in the first problem. Using now
that {xi, pj} = δij, we can continue

{Ji, Jj} =
∑
ablm

εiabεjlm (−xaδblpm + xlδampb)

=

(
−
∑
abm

εiabεjbmxapm

)
+

(∑
abl

εiabεjlaxlpb

)

=

(
−
∑
abm

εbiaεbmjxapm

)
+

(∑
abl

εabiεajlxlpb

)

=

(
−
∑
am

(δimδaj − δamδij)xapm

)
+

(∑
bl

(δbjδil − δblδij)xlpb

)

=

(
−xjpi + δij

∑
m

xmpm

)
+

(
xipj − δij

∑
b

xbpb

)

18
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10 now, clearly
∑

m xmpm =
∑

b xbpb, so we conclude

{Ji, Jj} = xipj − xjpi

which is indeed equal to
∑

k εijkJk, as we showed above.

(b) Using the fact that the Poisson bracket is bilinear, and that it obeys Leibniz
Rule, we have

{J2, H} =
∑
i

2Ji{Ji, H} = 0

since each of the Ji is separately conserved, by assumption. To show that the
Ji have vanishing bracket with J2 we compute

{Ji, J2} =
∑
j

2{Ji, Jj}Jj

=
∑
jk

2εijkJjJk

= 0

where the last relation follows from the antisymmetry of εijk.

19. In index notation we can write H = (pipi + qiqi) /2 so we have that

{Mjk, H} =

{
pjpk + qjqk,

1

2
(pipi + qiqi)

}
=

1

2

[
∂

∂ql
(pjpk + qjqk)

∂

∂pl
(pipi + qiqi)−

∂

∂pl
(pjpk + qjqk)

∂

∂ql
(pipi + qiqi)

]
=

1

2
[(δljqk + δlkqj) 2pl − (δljpk + δlkpj) 2ql]

= qkpj + qjpk − pkqj − pjqk = 0.

Similarly we have that

{Ljk, H} =

{
pjqk − qjpk,

1

2
(pipi + qiqi)

}
=

1

2

[
∂

∂ql
(pjqk − qjpk)

∂

∂pl
(pipi + qiqi)−

∂

∂pl
(pjqk − qjpk)

∂

∂ql
(pipi + qiqi)

]
=

1

2
[(δlkpj − δljpk) 2pl − (δljqk − δlkqj) 2ql]

= pkpj − pjpk − qjqk + qkqj = 0.

19


