son’s Brackets

Hamiltonian Mechanics I - Hamilton’s Equations and Pois-

1. (a) From the definition

{B, A}

(b) Again we have

{A,BC} =
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{aA+0C, B} =

0B 0A _ 0B 0A
0q; Op; Op; 0g;
0A0B 0AO0B
— — =—{A B}.
(a%‘ Opi Op; 8%) { 7 }

9(aA+bC) OB  d(aA+bC) OB

0g; Op; B Op; 0q;
a@A@C oC 0B _aaAaB _ 0C 0A
0q; Op; 0q; Op; Op; 0g; Op; 0g;

" (‘M(‘?B_@A@B b 8083_808B
0q; Op; Op; 0g; dq; Op; Op; 0g;
a{A, B} +b{C,B}.

(c¢) From the product rule for differentiation we have

0A8(BC)  9AH(BC)

dq; Op; Op;  0q;

0A (0B oC 0A (0B oC

0q; (3]%‘0 * ngz‘) a Opi <3qz'c * B@C]z)
0A 0B B 0A 0B 0A0C B 0A 0C
dq; Op; Op; 0g; dq; Op; Op; 0g;

{A,B}C + B{A,C}.

2. The relations follow immediately from the definition of the Poisson bracket:

dq; 0q;  0q; 0q;
{ql"qJ}:Z( % 9495 qﬁ)
k

gy Opr,  Opi Oqi,

:Z(5ik'0—0'5jk)
!

=0



MATH2071 Mathematical Physics II Solutions Week 10

and similarly for {p;, p,}:

Op; Op;  Op; Op;
{pi,pj}=Z( = - —”)
k

Oqr, Opy, Opy Oqy,
= (085 — i+ 0)
k

=0

For the Poisson bracket between coordinates and momenta we have instead:

dq; Op;  0q; Op;
k

Oqx Opx Opy Ogi;
= (0uwbjx—0-0)
k
- 51']‘ .
3. By the chain rule
dH  OH . Lo 0H OH
T LA A
and the result then follows from using Hamilton’s equations of motion

OH . 0H

oy dq

4. That the Poisson bracket is conserved follows immediately from the Jacobi identity
{{A1, Ao}, Hy = —{{H, A1}, Ao} — {{As, H}, A1} = 0

since A; and A, are conserved.

For the rest, we start by proving the Lemma:
0 0A0B 0AOB
{A By = Z (3% dp;  Op; 8%‘)
B Z 9 0A OB B 2 0A 0B
a 8t 8qi Qpi 82& Qpi 8qi
B Z 0B N 0A 2 0B B 2
an Op;  Ogq; Ot \ Op; ot \ Ip; - 8101 ot
Z 0B 8A 0 8_B 0_ 0B 0 _B
B 3% op  oq |op \ ot 3pz ot )| dg; 319@ dg; \ Ot
0A 0B
- {E’B} ’ {A’E}




With this in hand it is easy to prove what we want. Since A; and As are conserved
we have

oA
ot ’

0A
{Ay, HYy = ——=2.

A HY = —
(A HY ot

So using Jacobi’s identity

{{A17A2}7H} = _{{H7 A1}7A2} - {{A27 H}aAl}
= {{Ala H}’AQ} - {{AQa H}’Al}

_ foA 94,

{5

B 0A, 0A;

- ({Faf+{aT))
0

= _E{ADAZ}

using the Lemma proven above. So indeed

d{A;, Ay}
dt

0{A1, As} _

= {{A17A2}7H}+ ot

0.

5. The Lagrangian for a relativistic particle is

L= —mey/c2 —i? — g2 — 22,

so the generalised momenta are given by

mct

Pa \/02_¢2_92_Z-2
mcy

Py \/62_$2_y2_22
mcz

P =

\/02_3-;2_3)2_22'

We need to invert these relations to find &, y, and 2 in terms of p,, p, and p,.
Squaring the three above equations and adding them together gives

2.2 (52 | 2 52
mec” (% +y° + £7)
ity =

— B2 g2 — 2
which can be rearranged to give

A (2 +p2+p2)

-2 -2 52
Y+ =
! m2c? + pi 4 Py + P

MATH2071 Mathematical Physics II Solutions Week 10
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which now enables us to use the expression for the generalised momentum p, to write

. Dz : : ;
o \/02—x2—y2—z2
mc

pe |, (P2 4pE+1?)
Sy 2 2 2
mc mec* + pg +p, + P

Dz m2ct
—ome\ m2e 4 p2 4 p2 + p?
Pt
VP + pl 4 py + p2

and similarly we can write ¢y and z by replacing p, by p, and p. respectively in the
numerator of the above expression. The Hamiltonian is defined to be

H = pzft+pyy+pz2_L
c 2+ 2+ 2
= v 17y +72) +mey/c2 — i — g2 — 22
Ve +pi +py + 1
cWrrpytr) e AR
= mcy|ce —
VS £+ pl 4 py +p2 m2c? 4 pi 4 py + P
¢ (p2+pi+p?) . m2ct
- mc
VMPE + P+ py £ 1 m2c? 4 pi + py +
¢ (p2+p2+p2) +m*c
VP + i+ py + 02

= c\/m202 + p3 + py + p2.

If the 4-vector p* = (H/c, py, py, p-) then

P'ou=— —pa—pp —p: = (M*E +pl +p, +12) —pi —p) —ps = m*c.

. When the pulley is turned counterclockwise through an angle ¢, the mass m; moves

up ¢r whilst the mass my moves down the same distance. So the kinetic energy is
(my +mso)r?¢?/2, and the potential energy is migré — magreo. Thus the Lagrangian
is given by

LIRS e )
The momentum is
= 8_L =(m;+m )7‘2¢'>
Do 3$ 1 2
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and so

so the Hamiltonian is

H=psp—L
2 2
Py Py
= - + (m1 — mg)gr
(my +mo)r?  2(my + ma)r? (ma 2)97¢
2
Py

Hamilton’s equations of motions are

N 8p¢ - (m1 + m2>7’2
) OH
Py = _6_¢ = (my — mq)gr.
The acceleration is
g = P

(mq + ma)r?
(mg — ml)g'
(m1 + mg)

. Somewhat monstrously

0A0B 0AO0OB
{{A,B},C} = {(6’% Op; N apia_%‘) 70}

9 (aAa_B_ aAaB) a9 (aAaB - 8A63) ac
0q, \0q; Op;  Op; 0q; ) Opr, ~ Opr, \Oq; Op;  Op; Oq; ) Oqy

0?A 9BoC QA 9B OC 9?A 9B oC

0A 9*B oC

- + - — -

0q10q; Op; Opr. ~ 0q; OqOp; Op,  0qiOp; Oq; Opy,

A 9BOC 9A 9B o€ 9*A 9BIC
Opr0q; Op; Oqi;  0q; Op.Op; Oqi.  OprOp; Og; Oqy,

+ R
Op; 0q,0q; Opy,

0A PB oC
Ip; OprOq; Oqy,”




RHS =

given by

Note that

MATH2071 Mathematical Physics II Solutions Week 10

Now all we need to do is to add the cyclic permutations of A, B, C' together to get

0*A 83@+8A 9?°B oC B 0*°A OB OC B 0A 0*B 0C
0q:0q; Op; Opr, ~ 0q; 0qi.0p; Opr,  OqiOp; Ogq; Opr,  Op; 0qi0gq; Opy,
0?A OBOC 0A O0*B 0C 0?A O0BOoC 0A O0°B OC
 Opr0q; Op;i Oqr  Oq; OprOp; Oqr, | Opkdp; 0q; Oqie  Ipi Iprdg; Ve
"B 0COA | OB P°C 0A @B 0C0A 0B 0°C 0A
0q:0q; Op; Opr, ~ 0q; 0qOp; Opr,  0qiOp; Oq; Opr,  Op; 0q0q; Opy,
9’°B 0C 0A OB 0*°C 0A 9*’°B 0C 0A 0B 0°C 0A
 Opr0q; Op;i O Oq; OprOp; Oqi | Opkdp; O Oqe  Op; Oprdg; O
0’C 0A OB 0C 0%*°A OB 0°C 0AOB 0C 0*°A OB

—_—
0q1,0q; Op; Opy,

0*C A OB

 Oprdq; Op; Oqy,
0

Dr

Do

d
T (pg + 2ucos())

= pp + 21 cos(6)

3q; 0qx0p; Opre

oC 9*A 0B

Hamilton’s equations of motion are

oH

= =D

Opr

8H_p9
o0~
(9H_p§
Cor 3
oH
— =

_l’_
 9q; OppOp; Oy,

r

dqdp; 0q; Opr

0*C 0A 0B

. . 1
H:prf‘+p90—L:7*2+r202—L—§(p +]7’)0>+M

cos(0)
3

sin(6) '

2

= 2pepy — 2usin(0)0

sin(0
= 2py (M rg)

= «

_'_
OprOp; Og; Oq

dp; 0qx0q; Ipy,

oC 0*°A OB
Op; Oprdq; Oq

if you squint really hard, and remember that you can always swap the ¢ and k indices
since they are dummy indices.

8. The generalised momenta are given by p, = 7 and py = 20 so the Hamiltonian is

cos(0) .

r2

> — 2/8in(0) (%) =0
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where « is constant. As H does not depend on time explicitly we expect it to be a
constant £ so
1 2 cos(f) 7 1 cos(d) 1  «
E:_<pg+@>+u (9) ) _i*, o

: < 5= E+ﬁ(a—2pcos(9))+u

r2 2 o2

. The Hamiltonian H from L is given by H = p;¢; — L with equations of motion

_9H . 0H
_apiapz_ 8qz7

Gi

where p; = g—;. The momenta from L’ can be defined to be

oL’ oL 0 0
P=—=—+ / =p; + f
04 g Og; ol
Correspondingly there is a new Hamiltonian
, af\ . of . oOf . af af
! (p " aQi> ! 9g: " ot (pig = L) ot ot
The equations of motion for H' are
. oH" .  OH'
ql - (9]31 ) (2 aql .
Note that f (. b) of(a.1)
H/ — H _ Q7 — H P _ Q7
(0,q) = =5, =Hp(Pq).q) - =5 —
where we have used that p; = p;(P,q) = P; — %{?_’”. So

. OH' 0 df(q,t) OH Op, OH OH

which is the same expression we obtained for ¢; from the Hamilton equations of
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10.

motion for H. Now turning our attention to the other equation

. oOH'
b= _8%
= —8(; (H(p(P,qM)—W)
_ OHop 0H | f
Opr Oq;  Oq;  0gq;0t
_OH ’f  0H 0
Opr 0qi0qr. ~ O0qi  0q;0t
CO%f  OH 0%
= %9400, 0q * dq;0t
_d (of\ oH
a E (G_qk) - 9q;
d of OH
:>E<Pi_3_%> - _3%'
L o
' dq;

which again is equivalent to the equation of motion derived from H. Notice that this
is an example of a canonical transformation. The new momentum P; is a mixture of
the old coordinates and momenta, but together with a new Hamiltonian H' gives an
equivalent physical description of the system.

(a) We start by inverting the given relations in order to express p,q in terms of

P, ). We have:
p = Pcos(a) + @ sin(a)
q = —Psin(a) + Q cos(«)
In the particular case of a = 7 this is
p=0
q=—P

so we are exchanging momentum with position (up to a sign). In these new
coordinates the Hamiltonian becomes

1 1
H(P,Q) = —Q* + —mw’P?.
(P,Q) 2mQ + 5w
The resulting equations of motion are

. OH(P,Q)

. 0H(P,Q) 1

pP—_ A 2
oQ mQ @)



Undoing the change in coordinates this implies

b= g = W)
Jdq
.1~ 0H(p,q)
g=—p=
m dp
(b) By the chain rule:
dg  0Q dqg  OP dq¢  0Q oP
OH O0HOQ O0HOP O0OH OH
= = —sin(a) + = cos(«)

On the other hand, from the expression of ¢ and p in terms of () and P we found
above

—p = P cos(a) — Qsin(a)
G = —Psin(a) + Q cos(a)

If we now impose Hamilton’s equations for p, ¢ we find

: - OH OH
—Pcos(a) — @sin(a) = 90 cos(a) — 9P sin(a)
. : 0H . OH
—Psin(a) + Q cos(a) = 90 sin(a) + 9P cos(av)
which for any « is equivalent to
. OH
_p=2=
oQ
. OH
“=op

(c) Clearly {P, P} = {Q, @} by the antisymmetry of the Poisson bracket. For the
remaining relation we use linearity:

{@, P} = {gcos(a) + psin(a), —gsin(a) + peos(a)}
= {q,p} cos’(@) — {p, ¢} sin*(a)
= {q,p}(cos*() + sin*(a))
=1{¢,p}

=1

MATH2071 Mathematical Physics II Solutions Week 10
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m

Figure 1: Set up for Question 8

(d) We have

0AOB OAOB
A Blpp = o - 2272
{4, Blra 0Q 0P 9P 0Q

Using the chain rule, the first term is

0AOB _ (0404 040 (0B 0y 0B op
0Q 0P \ 0q0Q  9pIQ dq OP = Op OP
0A 0A . oB, . 0B
— (G_q cos(a) + W sm(a)) (8_(](_ sin(a)) + o cos(a))

and similarly

0A0B _ (0400 9A0p\ (9B 00 0By
OPOQ \0qOP  OpoP 0q 0QQ  Op 0Q)
0A, . 0A 0B 0B .
= (8_q(_ sin(a)) + W cos(a)) (8_(1 cos(a) + s sm(oz))

Combining both terms, and simplifying using cos?(a) + sin?(a) = 1 we obtain
what we want, namely

DAOB 0AOB OAOB 0AOB

0QOP OPOQ 0q Op  Op Oq

11. If we measure the angle 6 to the downward vertical (see figure) then we see that
the potential energy from gravity is —mgrcos(f). The spring potential energy is
k(r —rp)?/2 and since we are simply working in polar coordinates the kinetic energy
is given as usual. Putting this together we get

_ M2 24 k0
L—2<7’ +7’9)+mgrcos(<9) 2(r )" .

The first step is to determine the conjugate momenta

B 8L_ )
P = af‘—mr
oL 9
= — =mr0.
De 20

10



Figure 2: Set up for question 9

Working out the Hamiltonian we have
H = pb+pr—L

2 2 2 2 2 k

P pr (mopN\? . mr?  op )

= et (5 () + 75 (uz) - mareost) = 50 =) )
2 2 k

- 271';97”2 + 2])7; — mgr cos(0) + 5(7" —10)>.

Hamilton’s Equations give

;o OH _ pr
- Opr m
o _ 9H _ P
 Opy  mur?
. O0H  p
Pro= —m =3 + mgcos(0) — k(r — ro)
. OH .
Po = —p = mgr sin(6).

If g = 0 then py is clearly conserved from the last equation.

12. The initial set up, and the position of the pendulum after it has started to slide down
the slope is shown in the figure: Here I have chosen s, the distance down the slope
that the pivot has gone, and 6 the angle the pendulum makes with the vertical to
describe the system. In terms of these coordinates the position of the mass is given
by

r = —scos(a)+ Isin(6)
y = —ssin(a)—Icos(f)

from which we deduce the velocity is given by

i = —scos(a) + lcos(h)d

= —$sin(a) + Isin(0)6.

MATH2071 Mathematical Physics II Solutions Week 10
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A little algebra gives that 2 + g2 = $% + 20% — 2[30 cos(0 — o). Combining this
with the potential energy which is mgy = —mg(ssin(«) + [ cos(#)), we have that the
Lagrangian for the system is

L= % <52 + 120% — 2150 cos(0 — 04)) + mg(ssin(a) + L cos(0)).
However, only 6 is dynamical; s is prescribed by the condition that the pivot is made
to move with constant acceleration f, that is § = f. Given that s = s = 0 at time
t = 0, we have that s = ft*/2 and that § = ft. Substituting these values into the
Lagrangian we find that

2

L= % <f2t2 +120% — 21 ft0 cos(0 — a)> + mg(% sin(a) + [ cos(f)).

Since this question finds its way onto a Hamiltonian sheet, we might as well solve
it as a Hamiltonian system. Note that we only have one degree of freedom, 6. The
corresponding momentum is given by

oL .
= 2= = ml*0 — miftcos(d — a).
P=; ft cos( )

The Hamiltonian is given by pd — L, and even though it is NOT conserved (as it
depends explicitly on ¢) we can still use the ‘dots’ rule to tell us that

. 2
H = %1292 —~ %f%? — mg(% sin(ar) + L cos(6))

Iftcos(0 —a)\? 2
= %ZQ (p m fmC;S( a)) - %thQ — mg(% sin(a) 4 cos(0)).

Hamilton’s equations of motion are given by

OH _ p+miftcos(d —a)

0 =
dp mi?
, OH p+mlftcos(d — «) . .
b= —35= ( - mlftsin(d — o) — mglsin(6).
Whilst we do not have conservation of energy, we do have that
dH OH O0H
—={H,H}+ — = —.
dt A 1)+ ot ot

Thus

C;—]j (p - mift cos(§ a)> mlf cos(f — o) — mf*t — mgftsin(a)
= Omlfcos(6 — a) —mf* —mgftsin(a)
d

= = (ml fsin(d — o) — %fzﬂ — %gft2 sin(a)) ,

ml?

12
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from which it follows that
Q = H—mifsin(d—a)+ % L %g Fi2sin(a)

m o (p+mlftcos

2 ml?

= %l292 —mlfsin(6 — ) — mgl cos(6)

(6 — a)) —mlfsin(f — ) — mgl cos(0)

is a conserved quantity. At t=0, we have # = 0, § = 0 so we see that Q = mlf sin(av) —
mlg. If it just reaches horizontal at a later time, then at that time § = 7/2 and 6 = 0.
Putting this into the conservation equation we have

Q =mlfsin(a) —mlg =0 —mlf cos(a) — 0
which can be rearranged to give g = f(cos(«) + sin(a)).

. The Euler Lagrange equations are

Loy
dt \ Oz Ox
d Q Q
a(x—§y>—§y =0
= Qy
()
dt \ 0y dy
d Q Q.
E(y+§$)+§x =0
j = —Qi.

From this it is straightforward to calculate

dJ, d, . . . . ) .
pralli E(wy —yit) = xfj — yi = Q(—xd — yy)

= Q=2 +c1) —y(—Qz + c2))
= Q(—zc; —ye) #0

where we have integrated the equations of motion to find 2 = Qy + ¢; and y =
—Qx + cy. (Strictly we should solve for z,y. We have & = —Q%x + Qcy, so that z =
a cos(Qt) + fsin(Q2t) +c2 /. From this we see that y = —asin(Qt) + 3 cos(2t) — ¢q /2.
This gives
dJ,
dt

= Q(—c1a0 — 28) cos(Qt) + Q(cacr — ¢18) sin(Qt)

13
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14.

which is certainly not zero. Now

oL )
P.’E = — =7 — —
or 27
oL )
P = — =9 —
N T A
from which we see that
d7.  d d(,. Q 0
prali E(IPy—ny)—E(x(ergx) y(@ 5”)
dl, d (Q,, . NN AR
- Ry — (i — 2z — 0.
dt+dt<2(x —f—y)) (—xx yy)—l—dt(Q(x +y) 0

Let us denote the angular momentum about a point (a,b) by J(a,b). Then

dJ(a,b)  d , Lod).
7 = dt[(x—a)y—(y—b)x]—dt aij + bi

= Q(—cia — 2 + fQa — afdb) cos(2) + Q(coa — 18 — afda — SOb) sin(§21).

We can make this vanish for any «, 5 if we set a = ¢3/Q2 and b = —¢; /€. Finally the
Hamiltonian is given by (using the expression in the notes)

1,y 1 QN 1 Q

As this does not depend explicitly on time, we know it is conserved automatically,
but if you are not convinced note that

dH
=5 = i+ = & () +§ (-0a) = 0,

Again we shall solve this as a Hamiltonian question. Working in spherical polars the
Lagrangian for the system is

I — % (732 + 202 4 2 sin2((9)q52> + mgr cos(0),

where in this case r = a is a constant and ¢ = w, so that L reduces to
m [ 252 2 2 2
L= B (a 6° + a”sin*(0)w ) + mga cos(0).
The momentum is given by py = ma2é, so that

2
H = % - %cﬂ sin?(0)w? — mga cos(6).

14
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15.

Conservation of H gives the result. It is worth pointing out that whilst we have a
conserved energy H, it is not the sum of the kinetic energy and the potential energy
m 2

of the particle. The term %a sin?(0)w? would need to come with a plus sign for

it to be the kinetic energy. Because we have put ¢ = w, this term which originally
came from the kinetic energy has ‘lost its dots’, and therefore behaves like a potential
energy, swapping its sign when we work out the energy. Physically we should not be
too alarmed by this; the circular hoop needs to be driven (by a motor?) to keep it
going at a constant angular velocity. This motor can put energy into the bead. The
‘miracle’ is that as we still have time translation invariance for the Lagrangian (no
explicit t) we still have an energy-like quantity which is conserved.

By definition

_ oL _1 ..i(-m’)
pl - 8ql - 2gl]aq-l q q
= 39 (0id” +d]4') = 59ud" + 59ud" = 9154

where we have used the symmetry of g;; and relabelled dummy indices. Multiplying
both sides of the equation by the inverse matrix ¢ we have

9"9;¢ = 9'p
6 = d =g

So we have by definition that the Hamiltonian is

H = pd' - L
il 1 il im
= pPig P — 59@'9 pg Pm
= ¢"'pip — 509 "D = 59 "Dipr.

The Hamilton equation for ¢' recovers the equation ¢° = g'p; , whilst the other
equation is

To compare this with the second order Lagrangian equation note that

T i( ,‘j)__laiﬂ,
Pr = di k4 ) = Qaqkpzpz

1ag" . .,
= _§a_quijq gimq -

15
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16.

This expression can be simplified by understanding the relationship between the
derivatives of g;; and its inverse. By definition g;;¢'* = 6F and differentiating both
sides with respect to ¢° and remembering that 6¥ is a constant we find

0gij ik dg’*

+9i—-— = 0
dg’" 99ij ik 9Gij < 9Gim
= ii———0km — — 24 m = ——]5'7 = — .
Using this we see that our equation of motion becomes
it (gquj) - 35 aq* q
Ok . 1 0gim .;
‘..‘] ] .l .j — - m 1 m
= Gkiq + 6ql qq 92 aq’f q
oo 10gk; . 109w .. 109y .
= gl + =T glgd TR Gles 2 I Gl — ).
i (109,50 109k . 10gy .
) ik J ol g L3 J g _
= —— - - - =0
¢ty (28qlq +28q3qq 28qqu

= +Idd = 0

where

ri = g 109k 199w 109\
J 20¢"  20¢  20q¢F

Working in cylindrical polar coordinates (p, ¢, z) the equation of the spinning para-
baloid will be (p, Qt,a*p?/2). The kinetic energy is given by

% (/52 + %% 4 22) _ % <p2 + 20 4 (azp'p)2)
whilst the potential energy is simply mgz = mga®p?/2 , so that the Lagrangian is
1
Lo e ) - L
2
mo .9 42 mp 2 2
5<p (1+a,0))+—2 (9% — ga?)
There is only one dynamical variable p whose conjugate momentum is given by
oL
p = a_p :mp'(1+a4p2).
The Hamiltonian is given by H = pp — L, which gives
2
m . m
H = 5 (p2 (1 + a4p2)) + Tp (ga2 — QQ)
2 2
_ p +mp (gaQ—QQ).

2m (1 4 a*p?) 2

16



17. (a) The infinitesimal action of .J; on x,, is computed via the Poisson bracket, and
it is given by

0ty = e{xm, Ji}
=c Z €¢jk{$m, fl?j]?k}
ik

=€ Z Eiji({Tm, 2 }pr + j{Tm, pr})
ik

=€ E EijkTi{Tm, P}
jk

= € E 5ijkxj6mk
jk

=€ E EijmTj -
J

In particular, when m = ¢ this vanishes, since ¢;;, is totally antisymmetric.
When m # i this is a rotation. Choose for example ¢ = 1. Then we have

dx1 =0 : 0Ty = —€xs : 0x3 = €xy .
On the other hand, a finite rotation in the plane (z9,z3) is given by
AN zy\  [cos(a) —sin(a)\ (22
T3 x5 ) \sin(a) cos(a) T3
keeping z; fixed, which reproduces the transformation law above if we set o = ¢
and expand to first order in e.
(b) We can prove this by direct computation. We have

dJ; dJ;
= H
dt =i H) ot

- {Jiv H}
= Zﬁjk{%pk, H}
jk

= Z5ijk(xj{pk> HY} + {x;, H}pr)

= Zgijk —ili'j{H pk} - {Ha xj}pk>

25 s H+ oH
— ijk ja pkapj

= jzkaijk < (224 V (Zx ) +pjpk>

=0
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where in the last step we have used ) ik EijkUjUp = 0 for any vector u (due to
antisymmetry of €), and the chain rule acting on V. We have also used that for
any function f(p,q,t)

of of
t i = 5 ; ) 7t iy — —
{f(p.q,t), pi} 94, {f(p.q,t),a:} o,
in the particular case f = H.
18. (a) Let us start with the right hand side. We have
Z €iijk = Z EijkEkIMmTIPm
k klm
= Z Ekij€kmL1Pm
klm
= Z((szléjm - 5zm5jm)xlpm
lm
= TiPj — TjPi-
For the left hand side:
{Ji, J;} = Z €iab€ jim{ TaDb, TiPm }
ablm
= ciacjim{apy, 20} pm + T1{Tapr, pm})
ablm
= ciacjim(@a{py, 20} pm + 11{T0, P Y1)
ablm

Using that {x;,x;} = {pi,p;} = 0, as we saw in the first problem. Using now
that {x;,p;} = d;;, we can continue

{Jia J]} = Z Eiab€jlm (_xa(sblpm + xléampb)

ablm

= |- Z gmbsjbmxapm> + (Z EiabEjzaﬁlpb)

abm abl
=\ — E E;biagbmj'rapm) + <§ gabigajl'rlpb>
abm abl

= |- Z(5im5aj - 5am5z’j)$apm> + (Z(%@z - 5bl5ij)$zpb>

bl
=\ —x;pi + 52']' Z Impvn) + (Iipj - 5ij Zﬂcbpb)
m b

18
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now, clearly > Zppm = >, Tppp, S0 we conclude
{Ji, i} = xipj — ;s

which is indeed equal to ), &;xJk, as we showed above.

(b) Using the fact that the Poisson bracket is bilinear, and that it obeys Leibniz
Rule, we have

{7 H} =) 2J{J;,H} =0

since each of the J; is separately conserved, by assumption. To show that the
J; have vanishing bracket with J? we compute

{7, 7Y =) 2{ . I}

J
= Z 25ijk; J j J, k
jk
=0
where the last relation follows from the antisymmetry of ¢;;y.

19. In index notation we can write H = (p;p; + ¢iq;) /2 so we have that

1
{M;;,H} = {pjpk + 44k, B (pipi + %Ch)}

- 9 8Ql PPk 49k apz Dibi qi4q; apz PiPk q;iqk aql DiPi qi4q;

1
= 3 [(615qk + 0uea;) 2010 — (S150% + OuDj) 2¢]
= qxp; +qipr — Prq; — Pjqr = 0.
Similarly we have that

1

{Ljx, H} = {ijk — 4P, 5 (pipi + QiQi)}

- 9 aql p]Qk Qka (9]91 DiDi qi4; 3]91 ijk quk aql DiDi qiq;

1
= 3 [(Owpj — Ouipk) 200 — (81596 — Owqj) 2]
= DrPj — PjPk — 4k + qxq; = 0.
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