Lagrangian Mechanics - Generalised Coordinates

1. The equations of motion are

$$
\begin{aligned}
& \frac{d}{d t}\left(\dot{q}_{1}\right)-q_{1}=0 \\
& \frac{d}{d t}\left(\dot{q}_{2}\right)-q_{2}=0
\end{aligned}
$$

so we calculate

$$
\frac{d}{d t}\left(\dot{q}_{1} q_{2}-\dot{q}_{2} q_{1}\right)=\ddot{q}_{1} q_{2}+\dot{q}_{1} \dot{q}_{2}-\ddot{q}_{2} q_{1}-\dot{q}_{1} \dot{q}_{2}=q_{1} q_{2}-q_{2} q_{1}=0
$$

using the equations of motion to get rid of the second derivative terms.
2. We have

$$
\begin{aligned}
\dot{x} & =\dot{r} \sin (\theta) \cos (\varphi)+r \cos (\theta) \cos (\varphi) \dot{\theta}-r \sin (\theta) \sin (\varphi) \dot{\varphi} \\
\dot{y} & =\dot{r} \sin (\theta) \sin (\varphi)+r \cos (\theta) \sin (\varphi) \dot{\theta}+r \sin (\theta) \cos (\varphi) \dot{\varphi} \\
\dot{z} & =\dot{r} \cos (\theta)-r \sin (\theta) \dot{\theta}
\end{aligned}
$$

Putting these into

$$
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)
$$

leads to the desired result after a little bit of straightforward algebra.
3. The kinetic energy is as in the previous problem, setting $r=L$ (which is a constant, so $\dot{r}=0$), and the potential energy is $m g z=m g L \cos (\theta)$. This implies that

$$
L=\frac{1}{2} m\left(L^{2} \dot{\theta}^{2}+L^{2} \sin ^{2}(\theta) \dot{\varphi}^{2}\right)-m g L \cos (\theta) .
$$

Accordingly, the equations of motion are

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}=m L^{2} \ddot{\theta}-m L^{2} \sin (\theta) \cos (\theta) \dot{\varphi}^{2}-m g L \sin (\theta)=0 \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\varphi}}\right)-\frac{\partial L}{\partial \varphi}=\frac{d}{d t}\left(m L^{2} \sin ^{2}(\theta) \dot{\varphi}\right)=m L^{2}\left(2 \sin (\theta) \cos (\theta) \dot{\theta} \dot{\varphi}+\sin ^{2}(\theta) \ddot{\varphi}\right)=0 .
\end{aligned}
$$

