Lagrangian Mechanics
 Symmetries and conservation laws I

1. (a) The Lagrangian doesn't depend on θ so conserved quantity is

$$
\frac{\partial L}{\partial \dot{\theta}}=\frac{2 z^{2} \dot{\theta}}{w^{2}}
$$

(b) The Lagrangian doesn't depend on ϕ so conserved quantity is

$$
\frac{\partial L}{\partial \dot{\phi}}=r^{2} \sin ^{2}(\theta) \dot{\phi}
$$

(c) The Lagrangian doesn't depend on x, y or z, so the conserved quantities are

$$
\begin{aligned}
& p_{x}=\frac{\partial L}{\partial \dot{x}}=-\frac{\dot{x}}{2 \sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}} \\
& p_{y}=-\frac{\dot{y}}{2 \sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}} \\
& p_{z}=-\frac{\dot{z}}{2 \sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}} .
\end{aligned}
$$

2. (a) Under the transformation

$$
\begin{aligned}
& q_{2} \rightarrow q_{2}^{\prime}=q_{2}+\epsilon q_{3} \\
& q_{3} \rightarrow q_{3}^{\prime}=q_{3}-\epsilon q_{2}
\end{aligned}
$$

the quantity $q_{2}^{2}+q_{3}^{2}$ transforms as

$$
q_{2}^{2}+q_{3}^{2} \rightarrow\left(q_{2}+\epsilon q_{3}\right)^{2}+\left(q_{3}-\epsilon q_{2}\right)^{2}=q_{2}^{2}+q_{3}^{2}+O\left(\epsilon^{2}\right)
$$

A similar calculation (with dots on) shows that $\dot{q}_{2}^{2}+\dot{q}_{3}^{2}$ only changes by terms of $O\left(\epsilon^{2}\right)$. Thus to this order the Lagrangian is invariant and the transformation is a symmetry with $F=0$. By definition we have $a_{2}=q_{3}$ and $a_{3}=-q_{2}$, (and $a_{1}=0$) so Noether's theorem tells us that

$$
Q=a_{i} \frac{\partial L}{\partial \dot{q}_{i}}-F=q_{3} \frac{\partial L}{\partial \dot{q}_{2}}-q_{2} \frac{\partial L}{\partial \dot{q}_{3}}-0=q_{3} q_{1}^{2} \dot{q}_{2}-q_{2} q_{1}^{2} \dot{q}_{3}
$$

is conserved.
(b) Expanding the derivative, we have

$$
\begin{aligned}
\frac{d Q}{d t} & =q_{3} \frac{d\left(q_{1}^{2} \dot{q}_{2}\right)}{d t}+q_{1}^{2}\left(\dot{q}_{3} \dot{q}_{2}\right)-q_{2} \frac{d\left(q_{1}^{2} \dot{q}_{3}\right)}{d t}-q_{1}^{2}\left(\dot{q}_{2} \dot{q}_{3}\right) \\
& =q_{3} \frac{d\left(q_{1}^{2} \dot{q}_{2}\right)}{d t}-q_{2} \frac{d\left(q_{1}^{2} \dot{q}_{3}\right)}{d t} .
\end{aligned}
$$

Meanwhile, the Euler-Lagrange equations for q_{2} and q_{3} are

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{2}}\right)-\frac{\partial L}{\partial q_{2}}=\frac{d\left(q_{1}^{2} \dot{q}_{2}\right)}{d t}+q_{2}=0 \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{3}}\right)-\frac{\partial L}{\partial q_{3}}=\frac{d\left(q_{1}^{2} \dot{q}_{3}\right)}{d t}+q_{3}=0
\end{aligned}
$$

so $\dot{Q}=0$ now follows by substitution.
3. (a) Under the transformation $x \rightarrow(1+\epsilon) x$ and $\dot{x} \rightarrow(1+\epsilon) \dot{x}$. So $\frac{\dot{x}}{x}$ is invariant, and the only term in the Lagrangian which changes is the term containing $\ln (x)$. Under the transformation

$$
\begin{aligned}
\delta L & =L\left(x^{\prime}, y^{\prime}, \dot{x}^{\prime}, \dot{y}^{\prime}\right)-L(x, y, \dot{x}, \dot{y})=\left(\ln \left(x^{\prime}\right)-\ln (x)\right) \frac{\dot{y}}{y} \\
& =(\ln (x(1+\epsilon))-\ln (x)) \frac{\dot{y}}{y}=\ln (1+\epsilon) \frac{d}{d t}(\ln (y)) \\
& =\epsilon \frac{d}{d t}(\ln (y))+O\left(\epsilon^{2}\right)
\end{aligned}
$$

so we can take $F=\ln (y)$. By Noether's theorem we have that

$$
Q_{x}=x \frac{\partial L}{\partial \dot{x}}-F=\left(\frac{2 \dot{x}}{x}-\ln (y)\right)-\ln (y)=\frac{2 \dot{x}}{x}-2 \ln (y)
$$

is conserved.
(b) Considering the transformation $x \rightarrow x, y \rightarrow(1+\epsilon) y$ we similarly find that $\delta L=-\epsilon \frac{d}{d t} \ln (x)+O\left(\epsilon^{2}\right)$ so $F=-\ln (x)$. The corresponding conserved quantity is

$$
Q_{y}=\frac{2 \dot{y}}{y}+2 \ln (x)
$$

(c) From the conservation of Q_{x} an Q_{y} we can write that

$$
\begin{aligned}
\frac{Q_{x}}{2} & =\frac{d}{d t}(\ln (x))-\ln (y)=C_{1}=0 \\
\frac{Q_{y}}{2} & =\frac{d}{d t}(\ln (y))+\ln (x)=C_{2}=1+\ln (2)
\end{aligned}
$$

Substituting $\ln (y)$ from the first equation we find

$$
\frac{d^{2}}{d t^{2}}(\ln (x))+\ln (x)=C_{2}=1+\ln (2)
$$

which has the solution $\ln (x)=\alpha \cos (t)+\beta \sin (t)+1+\ln (2)$. Using the initial conditions to find α, β we find that

$$
\begin{aligned}
\ln (x) & =1-\cos (t)+\ln (2) \\
\ln (y) & =\frac{d}{d t}(\ln (x))=\sin (t)
\end{aligned}
$$

4. (a) Using that

$$
\begin{aligned}
\dot{w} & \rightarrow \cosh (\theta) \dot{w}+\sinh (\theta) \dot{x} \\
\dot{x} & \rightarrow \cosh (\theta) \dot{x}+\sinh (\theta) \dot{w}
\end{aligned}
$$

we find that

$$
\dot{w}^{2}-\dot{x}^{2} \rightarrow(\cosh (\theta) \dot{w}+\sinh (\theta) \dot{x})^{2}-(\cosh (\theta) \dot{x}+\sinh (\theta) \dot{w})^{2}=\dot{w}^{2}-\dot{x}^{2}
$$

As \dot{y} and \dot{z} are not altered by the transformation, it is clear that L is invariant.
(b) To order $O(\epsilon)$, we have $\cosh (\epsilon)=1$ and $\sinh (\epsilon)=\epsilon$. Therefore the infinitesimal form of the transformation is just

$$
\begin{aligned}
w & \rightarrow w+\epsilon x \\
x & \rightarrow x+\epsilon w .
\end{aligned}
$$

As L is invariant under this transformation, Noethers theorem tells us that the charge Q is conserved where

$$
Q=x \frac{\partial L}{\partial \dot{w}}+w \frac{\partial L}{\partial \dot{x}}=\frac{m(w \dot{x}-x \dot{w})}{\sqrt{\dot{w}^{2}-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}} .
$$

5. The first bit is standard bookwork; if $L=L\left(q_{i}, \dot{q}_{i}\right)$ then

$$
\begin{aligned}
\frac{d L}{d t} & =\frac{\partial L}{\partial q_{i}} \dot{q}_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) \dot{q}_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \ddot{q}_{i}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}} \dot{q}_{i}\right) \\
\Rightarrow \frac{d}{d t}\left(\dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}-L\right) & =0 .
\end{aligned}
$$

Applying this to the given Lagrangian we find

$$
\begin{aligned}
E & =\dot{u} \frac{\partial L}{\partial \dot{u}}+\dot{v} \frac{\partial L}{\partial \dot{v}}-L \\
& =\dot{u}^{2}+\dot{v} \frac{\dot{v}}{2 u^{2}}-\frac{1}{2} \dot{u}^{2}-\frac{1}{2 u^{2}} \dot{v}^{2}+\frac{1}{2 u^{2}} \\
& =\frac{1}{2} \dot{u}^{2}+\frac{1}{2} \frac{\dot{v}^{2}}{u^{2}}+\frac{1}{2 u^{2}},
\end{aligned}
$$

As v is an ignorable coordinate we have that $\frac{\partial L}{\partial \dot{v}}=\frac{\dot{v}}{u^{2}}$ is also conserved.
6. (a)

$$
E=\frac{1}{w^{2}}\left(\dot{w}^{2}+z^{2} \dot{\theta}^{2}\right)-\frac{1}{2} \dot{z}^{2}-\sqrt{z^{2}+w^{2}} .
$$

(b)

$$
E=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2}(\theta) \dot{\phi}^{2}\right)+m r \cos (\theta) .
$$

(c)

$$
E=\dot{x} \frac{\partial L}{\partial \dot{x}}+\dot{y} \frac{\partial L}{\partial \dot{y}}+\dot{z} \frac{\partial L}{\partial \dot{z}}-L .
$$

We find that

$$
\dot{x} \frac{\partial L}{\partial \dot{x}}=-\frac{x^{2}}{2 \sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}},
$$

so substituting this is in to E, together with the similar expressions for y and z gives

$$
E=-\frac{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}{2 \sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}}-\frac{1}{2} \sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}=-\frac{1}{2 \sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}}} .
$$

