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5 Lagrangian Mechanics
Symmetries and conservation laws II

1. (a) The Euler-Lagrange equation for z is

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= mz̈ +mg − f(t) = 0 .

Note that this is the only Euler-Lagrange equation: there is no Euler-Lagrange
equation for t (which gets treated separately in the Lagrangian formalism, it is
not a generalized coordinate).

(b) The energy is

E = ż
∂L

∂ż
− L =

1

2
mż2 +mgz − zf(t) .

(c) Taking the time derivative we have

dE

dt
= mżz̈ +mgż − żf(t)− zdf

dt

= ż (z̈ +mg − f(t))︸ ︷︷ ︸
=0 due to E-L equations

−z df
dt
.

On the other hand:
∂L

∂t
= z

df

dt

since z and t are treated as independent variables when taking partial deriva-
tives, and f(t) is a function of t only, so

∂f(t)

∂t
=
df(t)

dt
,

by definition of partial derivative.

2. To first order in the rotation parameter ε, rotations act as

x→ x′ = x− εy
y → y′ = y + εx .

Under this transformation, the Lagrangian becomes (again to first order in ε)

L→ L′ = L(x′, y′) = L+ ε(2axy − 2bxy − 3cy2x) .

For later convenience, let me introduce K(x, y; a, b, c) := 2(a− b)xy − 3cy2x, so that

L′ = L+ εK .
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5 This transformation will be a symmetry if there some F (x, y, t) such that

L′ = L+ ε
dF

dt
+O(ε2)

or in other words if some F (x, y, t) exist such that

K(x, y; a, b, c) =
dF (x, y, t)

dt
.

By the chain rule
dF

dt
=
∂F

∂x
ẋ+

∂F

∂y
ẏ +

∂F

∂t
.

Since K includes no factors of ẋ or ẏ, we have

∂F

∂x
=
∂F

∂y
= 0

or in other words F can only depend on time, F (t).

Now we notice that the only way that we could have K(x, y; a, b, c) = dF (t)
dt

is if
both sides are constant, since the two sides of the equation depend on different sets
of variables. So the problem reduces to choosing values for a, b, c such that K is a
constant. Clearly, the only solution to this is a = b and c = 0, which implies K = 0
and F constant.

3. Rotations in polar coordinates r, θ are generated by

r → r ; θ → θ + ε ; ṙ → ṙ ; θ̇ → θ̇ .

Under this transformation we have

L→ L′ = L(r, θ + ε, ṙ, θ̇)

=
1

2
m(ṙ2 + r2θ̇2)− V (r, θ + ε) .

To first order in ε, this is

L′ = L− ε∂V
∂θ

.

In order for this to be a symmetry, we need to find an F (r, θ, t) such that

L′ = L+ ε
dF

dt

to first order in ε. As in the previous problem, since there are no velocities in ∂V
∂θ
, we

conclude that F is a function of t only, and we need to solve:

∂V (r, θ)

∂θ
= −dF (t)

dt
.
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5 The two sides of this equation depend on different sets of coordinates, so they can
only agree if they are both equal to some constant, which I will call k. We need to
solve

∂V (r, θ)

∂θ
= k

dF (t)

dt
= −k .

Integrating these equations, we find

V (r, θ) = kθ + P (r)

F = −kt+ d

for d an arbitrary constant and P (r) an arbitrary function of r.

If r and θ were arbitrary generalised coordinates this would be the end of the story.
For polar coordinates, we might want to impose a further condition coming from the
fact that θ is periodic, namely (r, θ) and (r, θ+2π) denote exactly the same point in
configuration space C. If we impose that the Lagrangian is a well defined function on
C, and not well defined simply up to a constant, then we obtain the further constraint
k = 0, and the only acceptable potential is of the form P (r). Whether we impose
this constraint depends on whether we want the Lagrangian to be well defined as a
function on C, or only well defined up to a constant. This is a fairly subtle issue,
so for the purposes of this homework both possibilities (setting k = 0 or leaving
it arbitrary) are acceptable. In particular it is acceptable to set k = 0 from the
beginning, and conclude that V is a function of r only.
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