Lagrangian Mechanics
 Symmetries and conservation laws II

1. (a) The Euler-Lagrange equation for z is

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{z}}\right)-\frac{\partial L}{\partial z}=m \ddot{z}+m g-f(t)=0 .
$$

Note that this is the only Euler-Lagrange equation: there is no Euler-Lagrange equation for t (which gets treated separately in the Lagrangian formalism, it is not a generalized coordinate).
(b) The energy is

$$
E=\dot{z} \frac{\partial L}{\partial \dot{z}}-L=\frac{1}{2} m \dot{z}^{2}+m g z-z f(t) .
$$

(c) Taking the time derivative we have

$$
\begin{aligned}
\frac{d E}{d t} & =m \dot{z} \ddot{z}+m g \dot{z}-\dot{z} f(t)-z \frac{d f}{d t} \\
& =\dot{z} \underbrace{(\ddot{z}+m g-f(t))}_{=0 \text { due to E-L equations }}-z \frac{d f}{d t} .
\end{aligned}
$$

On the other hand:

$$
\frac{\partial L}{\partial t}=z \frac{d f}{d t}
$$

since z and t are treated as independent variables when taking partial derivatives, and $f(t)$ is a function of t only, so

$$
\frac{\partial f(t)}{\partial t}=\frac{d f(t)}{d t}
$$

by definition of partial derivative.
2. To first order in the rotation parameter ϵ, rotations act as

$$
\begin{aligned}
& x \rightarrow x^{\prime}=x-\epsilon y \\
& y \rightarrow y^{\prime}=y+\epsilon x .
\end{aligned}
$$

Under this transformation, the Lagrangian becomes (again to first order in ϵ)

$$
L \rightarrow L^{\prime}=L\left(x^{\prime}, y^{\prime}\right)=L+\epsilon\left(2 a x y-2 b x y-3 c y^{2} x\right)
$$

For later convenience, let me introduce $K(x, y ; a, b, c):=2(a-b) x y-3 c y^{2} x$, so that

$$
L^{\prime}=L+\epsilon K .
$$

This transformation will be a symmetry if there some $F(x, y, t)$ such that

$$
L^{\prime}=L+\epsilon \frac{d F}{d t}+\mathcal{O}\left(\epsilon^{2}\right)
$$

or in other words if some $F(x, y, t)$ exist such that

$$
K(x, y ; a, b, c)=\frac{d F(x, y, t)}{d t} .
$$

By the chain rule

$$
\frac{d F}{d t}=\frac{\partial F}{\partial x} \dot{x}+\frac{\partial F}{\partial y} \dot{y}+\frac{\partial F}{\partial t} .
$$

Since K includes no factors of \dot{x} or \dot{y}, we have

$$
\frac{\partial F}{\partial x}=\frac{\partial F}{\partial y}=0
$$

or in other words F can only depend on time, $F(t)$.
Now we notice that the only way that we could have $K(x, y ; a, b, c)=\frac{d F(t)}{d t}$ is if both sides are constant, since the two sides of the equation depend on different sets of variables. So the problem reduces to choosing values for a, b, c such that K is a constant. Clearly, the only solution to this is $a=b$ and $c=0$, which implies $K=0$ and F constant.
3. Rotations in polar coordinates r, θ are generated by

$$
r \rightarrow r \quad ; \quad \theta \rightarrow \theta+\epsilon \quad ; \quad \dot{r} \rightarrow \dot{r} \quad ; \quad \dot{\theta} \rightarrow \dot{\theta}
$$

Under this transformation we have

$$
\begin{aligned}
L \rightarrow L^{\prime} & =L(r, \theta+\epsilon, \dot{r}, \dot{\theta}) \\
& =\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-V(r, \theta+\epsilon) .
\end{aligned}
$$

To first order in ϵ, this is

$$
L^{\prime}=L-\epsilon \frac{\partial V}{\partial \theta} .
$$

In order for this to be a symmetry, we need to find an $F(r, \theta, t)$ such that

$$
L^{\prime}=L+\epsilon \frac{d F}{d t}
$$

to first order in ϵ. As in the previous problem, since there are no velocities in $\frac{\partial V}{\partial \theta}$, we conclude that F is a function of t only, and we need to solve:

$$
\frac{\partial V(r, \theta)}{\partial \theta}=-\frac{d F(t)}{d t}
$$

The two sides of this equation depend on different sets of coordinates, so they can only agree if they are both equal to some constant, which I will call k. We need to solve

$$
\begin{aligned}
\frac{\partial V(r, \theta)}{\partial \theta} & =k \\
\frac{d F(t)}{d t} & =-k
\end{aligned}
$$

Integrating these equations, we find

$$
\begin{aligned}
V(r, \theta) & =k \theta+P(r) \\
F & =-k t+d
\end{aligned}
$$

for d an arbitrary constant and $P(r)$ an arbitrary function of r.
If r and θ were arbitrary generalised coordinates this would be the end of the story. For polar coordinates, we might want to impose a further condition coming from the fact that θ is periodic, namely (r, θ) and $(r, \theta+2 \pi)$ denote exactly the same point in configuration space \mathcal{C}. If we impose that the Lagrangian is a well defined function on \mathcal{C}, and not well defined simply up to a constant, then we obtain the further constraint $k=0$, and the only acceptable potential is of the form $P(r)$. Whether we impose this constraint depends on whether we want the Lagrangian to be well defined as a function on \mathcal{C}, or only well defined up to a constant. This is a fairly subtle issue, so for the purposes of this homework both possibilities (setting $k=0$ or leaving it arbitrary) are acceptable. In particular it is acceptable to set $k=0$ from the beginning, and conclude that V is a function of r only.

