
M
A

T
H

20
71

M
at

he
m

at
ic

al
P

hy
si

cs
II

So
lu

ti
on

s
W

ee
k

6 Lagrangian Mechanics
Normal modes

1. The equations of motion for the given Lagrangian are

ẍ+
2x

1− x2
+ sin(x+ y) = 0

ÿ + sin(x+ y) = 0

which are solved by x = y = 0. Recalling that ln(1+ ϵ) = ϵ+O(ϵ2) we can write the
Lagrangian as

L =
1

2

(
ẋ2 + ẏ2

)
− x2 +

(
1− (x+ y)2

2

)
+O(|(x, y)|3).

so that
L =

1

2

(
ẋ2 + ẏ2

)
− 3

2
x2 − xy − 1

2
y2

where we have also ditched an irrelevant constant. The equation following from this
approximate Lagrangian are

ẍ+ 3x+ y = 0

ÿ + x+ y = 0.

The equations of motion are in the form q̈i + Aijqj where the matrix A is given by

A =

(
3 1
1 1

)
.

The normal modes are of the form
(
x
y

)
= veiωt where v is an eigenvector of A

and ω2 is the corresponding eigenvalue. In this case the characteristic equation is
λ2−4λ+2 = 0 which has solutions λ = 2±

√
2 and corresponding to these eigenvalues

we have eigenvectors (1,±
√
2− 1). So the normal modes are(

x
y

)
=

(
1√
2− 1

)
e±it

√√
2+2 ,

(
x
y

)
=

(
1

−
√
2− 1

)
e±it

√
−
√
2+2

The (real) general solution can be written(
x
y

)
=

(
1√
2− 1

)(
a1 cos(t

√√
2 + 2) + b1 sin(t

√√
2 + 2)

)
+

(
1

−
√
2− 1

)(
a2 cos(t

√
−
√
2 + 2) + b2 sin(t

√
−
√
2 + 2)

)
.
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6 The vanishing of x and y at t = 0 tells us that a1 = a2 = 0, whilst the conditions on
the velocity at t = 0 give that(

0.1
0

)
=

(
1√
2− 1

)
b1

√√
2 + 2 +

(
1

−
√
2− 1

)
b2

√
−
√
2 + 2

which we can solve to find (I give a numerical approximation to the solution, since
the analytic form is not particularly nice)

b1 ≈ 0.046194

b2 ≈ 0.019134.

2. (a) The stationary points of the potential are located at the points where

∇⃗V =

(
∂V

∂x
,
∂V

∂y

)
= 0 .

In our case we have
∇⃗V = (2x, 4(y + 1)(y − 1)y)

which has solutions at x = 0, y ∈ {−1, 0, 1}.
(b) We have

A11 =
∂2V

∂x∂x
= 2

A12 = A21 =
∂2V

∂x∂y
= 0

A22 =
∂2V

∂y∂y
= 4(3y2 − 1)

or in matrix form
A =

(
2 0
0 4(3y2 − 1)

)
(c) The stationary points at (0,±1) have all positive eigenvalues, so they are min-

ima, while the one at (0, 0) has one positive and one negative eigenvalue, so it
is a saddle point.

3. (a) The Lagrangian is

L =
1

2
mẏ2︸ ︷︷ ︸
T

−
(
1

2
κ(y + a)2 +mgy

)
︸ ︷︷ ︸

V

so the Euler-Lagrange equation is

mÿ + κy + aκ+mg = 0 .
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6 (b) The solution that does not depend on time is y = −a − mg/κ. This is a bit
lower than the natural length of the spring, which is reasonable since gravity is
pulling toward negative values of y.

(c) This is true, since in the previous point the contribution from the kinetic term
cancelled (since we are looking to equilibrium position). So the non-trivial
contribution to the Euler-Lagrange equation for the equilibrium solution was
precisely

−∂L

∂y
=

∂V

∂y
.

(d) We can introduce q = y + a+mg/κ. Then

L =
1

2
q̇2 − 1

2
κq2 +

(
amg +

mg2

2κ

)
.

(e) The Euler-Lagrange equation is

mq̈ + κq = 0 .

(f) We can convert this into canonical form dividing by m. Then

q̈ +
κ

m
q = 0

with solution
q = α cos(ωt) + β sin(ωt)

with ω2 = κ
m

.

4. The Euler-Lagrange equations are

mq̈1 + κq1 − κq2 = 0 ,

Mq̈2 − κq1 + κq2 = 0 .

Dividing the first equation by m and the second by M we equivalently have

q̈1 + ζq1 − ζq2 = 0 ,

q̈2 − ηq1 + ηq2 = 0

with ζ := κ/m and η := κ/M . In matrix form, this is

¨⃗q + Aq⃗ = 0

with
A :=

(
ζ −ζ
−η η

)
.
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6 This matrix was eigenvalues λ(1) = 0 and λ(2) = ζ+η, with corresponding eigenvectors

v⃗(1) =

(
1
1

)
; v⃗(2) =

(
ζ
−η

)
and the general solution is

q⃗(t) =

(
1
1

)
(Ct+D) +

(
ζ
−η

)(
α cos(

√
ζ + ηt) + β sin(

√
ζ + ηt)

)
.

5. (a) The kinetic term is

T =
1

2
(ẋ2

1 + ẋ2
2 + ẋ2

3)

=
1

2
(q̇21 + q̇22 + q̇23)

and the potential energy is

V =
1

2
κ(x2 − x1 − a)2 +

1

2
κ(x3 − x2 − a)2

=
1

2
κ(q2 − q1)

2 +
1

2
κ(q3 − q2)

2 .

The Lagrangian is L = T − V and the corresponding Euler-Lagrange equations
are (in vector form)

¨⃗q + Aq⃗ = 0

with

A :=

 κ −κ 0
−κ 2κ −κ
0 −κ κ

 .

(b) The eigenvalues are λ(i) = {0, κ, 3κ} with corresponding eigenvectors:

v⃗(1) =

1
1
1

 ; v⃗(2) =

 1
0
−1

 ; v⃗(3) =

 1
−2
1


The first one is a zero mode, the two others are normal modes with positive
frequency.

(c) The zero mode λ(1) corresponds to translating the whole system, keeping the
relative distances constant. The λ(2) mode corresponds to pulling apart the two
particles at the left and right by the same amount in opposite directions, keeping
the central particle fixed. The λ(3) mode corresponds to the left and right
particles moving in one direction, while the central one moves in the opposite
direction, keeping the centre of mass fixed.
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6 The three eigenvectors are linearly independent, and the given initial conditions
are proportional to v⃗(2) starting from rest. So we will only excite this normal
mode, and the subsequent motion will be described by

q(t) =

 1
0
−1

 δ cos(t
√
κ) =

 δ
0
−δ

 cos(t
√
κ) .

6. The Lagrangian for the particle is

L =
m

2

(
ẋ2 + ẏ2 + ż2

)
−mgz.

Here z = ax2 + by2 + 2hxy, so in terms of x, y the Lagrangian is

L =
m

2

(
ẋ2 + ẏ2

)
+

m

2
(2axẋ+ 2byẏ + 2hxẏ + 2hẋy)2 −mg

(
ax2 + by2 + 2hxy

)
.

Now recall that we are only interested in normal modes, which rely on approximating
L by terms which are up to quadratic in the ‘small displacement’ from equilibrium.
Here we assume that the bottom of the bowl is at x = y = 0, so if we look at terms
which are at most quadratic in small things (x, y, ẋ, ẏ) we see that we can drop the
foul term coming from ż2 and we are left with the approximate Lagrangian

L =
m

2

(
ẋ2 + ẏ2

)
−mg

(
ax2 + by2 + 2hxy

)
.

Its straight forward to show that the equations of motions are

ẍ+ 2gax+ 2ghy = 0

ÿ + 2ghx+ 2gby = 0.

So we know that the angular frequency ω of the normal modes are given by ω2 = λ
where λ is an eigenvalue of the matrix

A = 2g

(
a h
h b

)
.

The eigenvalues of
(

a h
h b

)
are given by the solutions to the characteristic equations

λ2 − (a+ b)λ+ ab− h2 = 0. So using the normal formula the eigenvalues of A are

λ± = g

(
a+ b±

√
(a− b)2 + 4h2

)
.

So we can define angular frequencies of the normal modes to be ω± =
√
λ± and if

you want to be really pedantic, the periods of the normal modes will be 2π/ω±. Now
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6 we imagine that the particle is constrained to move along some vertical plane y = kx,
but sticking on the surface of the bowl (i.e. constrained to move on some vertical
cross-section of the bowl). The questions asks you to show that the maximum and
minimum periods of these motions (as I vary k) coincide with the periods of the
normal modes. Actually this is no big surprise. Our bowl is given by the quadratic
surface z = ax2+ by2+2hxy ∝ Aijxixj, where x1 = x, x2 = y. Surfaces of constant z
are ellipses, and the minor and major axes of this ellipse coincide with the eigenvectors
of the matrix A. So the normal modes, which are in the direction of the eigenvector,
will lie along these directions which are the steepest and shallowest cross-sections of
the bowl (as the major and minor axes are the longest and shortest distances across
the ellipse). Now to show this rather more mathematically. Along the line y = kx
are approximate Lagrangian becomes

L =
m(1 + k2)ẋ2

2
−mg(a+ bk2 + 2hk)x2,

and the corresponding equation of motion is ẍ(1 + k2) + 2g(a+ bk2 + 2hk)x = 0. So
the square of the angular frequency is simply

λk =
2g(a+ bk2 + 2hk)

1 + k2
.

We would like to show that the max/min of λk coincides with λ±. At such values we
must have

dλk

dk
= 0 = −4gk(a+ bk2 + 2hk)

(1 + k2)2
+

2g (2bk + 2h)

(1 + k2)
.

Rearranging this gives −hk2 + (b− a)k + h = 0, so

k± =
b− a±

√
(a− b)2 + 4h2

2h
.

We can substitute this back into our expression for λk, and after quite a lot of
gymnastics we will recover λk = λ± as desired. But its quicker to rearrange the
equation for λk to give

k2(2gb− λk) + 4ghk + (2ga− λk) = 0.

If we fix λk this can gives an equation for k. If you think about it for a second, you
will see that at the maximum/minimum of λk the two roots for k must coincide so
the usual ‘b2 − 4ac′ in the quadratic formula must vanish. This tells us that at the
max/min values, λk must satisfy

4 (λk − 2gb) (λk − 2ga)− (4gh)2 = 0,

which is precisely the quadratic equation (characteristic polynomial of the matrix A)
which λ± satisfies.
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6 7. If I label the angles from the (downward) vertical to be θ1 and θ2 for the pendula
with bobs of masses M and m respectively, then the KE of the system is

l2

2

(
Mθ̇21 +mθ̇22

)
,

the gravitation potential energy is −gl (M cos(θ1) +m cos(θ2)) which up to a constant
is appromiately gl (Mθ21 +mθ22) /2 and the potential energy of the spring is approxi-
mately kl2 (θ2 − θ1)

2 /2. Putting this together we get an approximate Lagrangian

L =
l2

2

(
Mθ̇21 +mθ̇22

)
− gl

2

(
Mθ21 +mθ22

)
− kl2

2
(θ2 − θ1)

2 .

The equations of motion which follow from this can be put in the form θ̈i+Aijθj = 0,
where

A =

(
g
l
+ k

M
− k

M

− k
m

g
l
+ k

m

)
.

The eigenvalues are given by the characteristic polynomial

λ2 − (
2g

l
+

k

M
+

k

m
)λ+

g2

l2
+

g

l

(
k

M
+

k

m

)
= 0.

If we call k/M + k/m = 2κ, then we find that

λ± =
g

l
+ 2κ,

g

l
,

with corresponding eigenvalues

a± =

(
m
−M

)
,

(
1
1

)
.

Thus the general form of the solution is(
θ1
θ2

)
=

(
m
−M

)
(α1 sin(ω+t) + β1 cos(ω+t))+

(
1
1

)
(α2 sin(ω−t) + β2 cos(ω−t)) ,

where ω2
+ = λ+, ω

2
− = λ−. As the pendula are initially at rest we immediately deduce

α1 = α2 = 0. At t = 0 we have(
a
l

0

)
=

(
m
−M

)
β1 +

(
1
1

)
β2,

which gives

β1 =
a

l (M +m)
, β2 =

Ma

l (M +m)
.
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6 This gives as the particular form of the solution(
θ1
θ2

)
=

(
m
−M

)(
a

l (M +m)
cos(ω+t)

)
+

(
1
1

)(
Ma

l (M +m)
cos(ω−t)

)
.

From this we can see that

|θ2| =
∣∣∣∣ Ma

l (M +m)
(cos(ω−t)− cos(ω+t))

∣∣∣∣ ≤ 2Ma

l (M +m)

and given that the displacement is approximately lθ2 the result follows.

8. (a) We have x1 = q1 and x2 = q2 + a. The Lagrangian in the x-coordinates is

L =
1

2
(ẋ2

1 + ẋ2
2)−

1

2
κ((x2 − x1)− a)2

and the result follows immediately from substitution.
(b) We use the technology of normal modes. The Euler-Lagrange equations for the

system are

q̈1 + κq1 − κq2 = 0

q̈2 − κq1 + κq2 = 0

or in matrix form ¨⃗q + Aq⃗ = 0 with

A =

(
κ −κ
−κ κ

)
.

This matrix has eigenvalues λ(1) = 0 and λ(2) = 2κ, with associated eigenvectors

v⃗(1) =

(
1
1

)
; v⃗(2) =

(
1
−1

)
respectively. The general solution is then

q⃗(t) =

(
1
1

)
(Ct+D) +

(
1
−1

)
(α cos(ωt) + β sin(ωt))

with ω =
√
2κ and C,D, α, β constants to be determined.

(c) From (q1, q2) = (0, 0) at t = 0 we find(
D + α
D − α

)
=

(
0
0

)
.

So D = α = 0. From (q̇1, q̇2) = (v, v) we then find:(
C + βω
C − βω

)
=

(
v
v

)
8
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6 so β = 0 and C = v. We thus find as our solution

q⃗(t) =

(
vt
vt

)
which encodes constant velocity motion of the whole system, without oscillation.

(d) We now start from rest. Using the fact that ˙⃗q = 0 for t = 0, we find(
C + ωβ
C − ωβ

)
=

(
0
0

)
which implies C = β = 0. From the initial position at t = 0 we find(

D + α
D − α

)
=

(
c
−c

)
which implies D = 0, α = c. The solution is then

q⃗(t) =

(
c
−c

)
cos(ωt) .

9. (a) In the y coordinates we have

L =
1

2
(ẏ21 + ẏ22)−

1

2
κ(y1 + a)2 − 1

2
κ(y2 − y1 + a)2 − gy1 − gy2 .

Note that our conventions are that y increases upwards, so the unextended
springs will have negative values for y1 and y2. Introducing q1 and q2 such that
y1 = q1 − a, y2 = q2 − 2a we find

L =
1

2
(q̇21 + q̇22)−

1

2
κq21 −

1

2
κ(q2 − q1)

2 − gq1 − gq2 + 3ga .

The last term is a constant, so it will not affect the equations of motion.

(b) The equations of motion for the Lagrangian above are

q̈1 + 2κq1 − κq2 + g = 0

q̈2 − κq1 + κq2 + g = 0 .

The position of equilibrium is the solution of these equations with q1 and q2
constant in time (which implies, in particular, that q̈1 = q̈2 = 0.) That is, we
need to solve

2κq
(0)
1 − κq

(0)
2 + g = 0

−κq
(0)
1 + κq2 + g = 0 .

9
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6 In matrix form this is
Aq⃗(0) = −g

(
1
1

)
with

A =

(
2κ −κ
−κ κ

)
.

We have
A−1 =

1

κ

(
1 1
1 2

)
so (

q
(0)
1

q
(0)
2

)
= −gA−1

(
1
1

)
= −g

κ

(
2
3

)
(c) Introducing r1 = q1 +

2g
κ

, r2 = q2 +
3g
κ

, we find a new Lagrangian

L =
1

2
(ṙ21 + ṙ22)−

1

2
κ(2r21 − 2r1r2 + r22) +

5g2

2κ
+ 3ga .

As a small check, note that there are no longer any linear terms in the new
variables, as should be the case since we should now be expanding around a
minimum.
In these new variables the Euler-Lagrange equations are

r̈1 + 2κr1 − κr2 = 0

r̈2 − κr1 + κr2 = 0

or in vector notation
¨⃗r + Ar⃗ = 0

with
A =

(
2κ −κ
−κ κ

)
The eigenvalue equation is

det(λ− A) = λ2 − 3λ+ 1 = 0

with solutions

λ(1) = κ
3 +

√
5

2
; λ(2) = κ

3−
√
5

2
.

The corresponding eigenvectors are

v⃗(1) =

(
1

1−
√
5

2

)
; v⃗(2) =

(
1

1+
√
5

2

)
.

The general solutions is, as usual:

r⃗(t) =
∑

i∈{1,2}

v⃗(i)
(
α(i) cos(ω(i)t) + β(i) sin(ω(i)t)

)
with ω(i) =

√
λ(i).
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