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7 Week 7 problems

1. (a) The Euler-Lagrange equations are

q̈1 + 5 sin(q1)− 2q2 cos(q1q2) = 0

q̈2 − 2q1 cos(q1q2) + 2 sin(q2) = 0 .

Recalling that q1(t) = q2(t) = 0 implies q̈1(t) = q̈2(t) = 0, it is clear that
q1(t) = q2(t) = 0 solves these equations.

(b) For small displacements, to second order in the qi, we have cos(qi) = 1− 1
2
q2i +. . .,

sin(q1q2) = q1q2 + . . .. Plugging these expansions into the original Lagrangian
we find

Lapprox =
1

2
(q̇21 + q̇22)−

5

2
q21 + 2q1q2 − q22 + 7 .

The constant at the end does not influence the equations of motion, so it can
be ignored in what follows.

(c) The Euler-Lagrange equations are

q̈1 + 5q1 − 2q2 = 0

q̈2 − 2q1 + 2q2 = 0 .

In matrix form:
q̈+ Aq = 0

with
A =

(
5 −2
−2 2

)
.

This matrix has eigenvalues λ1 = 1, λ2 = 6, and corresponding eigenvectors

v(1) =

(
1
2

)
; v(2) =

(
2
−1

)
.

Applying the general normal modes discussion, we have

q(t) = v(1)(α(1) cos(t) + β(1) sin(t)) + v(2)(α(2) cos(t
√
6) + β(2) sin(t

√
6)) .

(d) The fact that we start from rest implies that(
0
0

)
= v(1)β(1) +

√
6v(2)β(2)

which implies β(1) = β(2) = 0. The initial position equation, on the other hand,
implies (

1
2

)
= v(1)α(1) + v(2)α(2)
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7 which implies α(1) = 1 and α(2) = 0. So the final solution is(
q1(t)
q2(t)

)
=

(
1
2

)
cos(t) .

2. The equations of motion are given by

∂L
∂u

− d

dt

(
∂L
∂ut

)
− d

dx

(
∂L
∂ux

)
= m2u+ utt − uxx = 0 .

Plugging
u(x, t) = ei(ωt±kx)

into this equation we get

(m2 − ω2 + k2)ei(ωt±kx) = 0

so the necessary relation is ω2 = k2 +m2.

3. (a) The general solution to the wave equation is

u(x, t) = g(x− ct) + h(x+ ct)

The boundary conditions tell us that u(x, 0) = g(x) + h(x) = f(x) and that
ut(x, 0) = −cg′(x)+ch′(x) = 0. From the second equation we see we can choose
g(x) = h(x) (up to a constant shift, which will not affect the final result), in
which case the first equation tells us that g(x) = h(x) = f(x)/2. Therefore we
have that

u(x, t) =
1

2
(f(x− ct) + f(x+ ct))

The function f(x) vanishes for |x| > b and looks like a parabolic dip inside this
region. The solution u(x, t) looks like two copies of this dip each scaled by a
half, one half which moves to the right with speed c and the other half moves
to the left with speed c.

t = 0

t > 0

t � 0
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7 (b) In this case, substituting the general solution into the boundary conditions gives
u(x, 0) = 0 = g(x) + h(x) and ut(x, 0) = f(x) = −cg′(x) + ch′(x). We see that
g(x) = −h(x) and that 2ch′(x) = f(x), from which it follows that

u(x, t) =
1

2c

∫ x+ct

x−ct

f(s)ds.

This is a “spreading bump”, where the height in the middle at late times is

1

2c

∫ ∞

−∞
f(x)dx =

1

2c

∫ b

−b

(x2 − b2)dx = −2b3

3c
.

To see why this is the right sketch: fix a finite positive time t. Then the function

u(x, t) =

∫ x+ct

x−ct

f(s)ds

becomes purely a function of x, that you want to sketch. To see what the sketch
is, note that f(s) is only non-vanishing for s between −b and b. Let me call this
interval B = [−b, b]. On the other hand, you are integrating f(s) in the interval
X(x) = [x − ct, x + ct] (note that this is a function of x only, as I am fixing
t to a fixed value). There are three cases to consider (I will choose x positive
for simplicity, it is easy to argue that u(x, t) is symmetric in x because f(s) is
symmetric in s):

• B does not intersect X(x), which happens if x − ct > b. In this case
u(x, t) = 0.

• B is fully contained in X(x). This happens when x − ct < −b (note that
because x > 0 this implies ct > b, which implies x+ ct > b). Then

1

2c

∫ ∞

−∞
f(x)dx =

1

2c

∫ b

−b

(x2 − b2)dx = −2b3

3c

as above.
• For values of x between −b+ ct and b+ ct you have some function interpo-

lating continuously (because you are integrating an continuous function on
a continuously varying interval) between −2b3/3c and 0.
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