Week 7 problems

1. (a) The Euler-Lagrange equations are

$$
\begin{aligned}
& \ddot{q}_{1}+5 \sin \left(q_{1}\right)-2 q_{2} \cos \left(q_{1} q_{2}\right)=0 \\
& \ddot{q}_{2}-2 q_{1} \cos \left(q_{1} q_{2}\right)+2 \sin \left(q_{2}\right)=0 .
\end{aligned}
$$

Recalling that $q_{1}(t)=q_{2}(t)=0$ implies $\ddot{q}_{1}(t)=\ddot{q}_{2}(t)=0$, it is clear that $q_{1}(t)=q_{2}(t)=0$ solves these equations.
(b) For small displacements, to second order in the q_{i}, we have $\cos \left(q_{i}\right)=1-\frac{1}{2} q_{i}^{2}+\ldots$, $\sin \left(q_{1} q_{2}\right)=q_{1} q_{2}+\ldots$. Plugging these expansions into the original Lagrangian we find

$$
L_{\text {approx }}=\frac{1}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right)-\frac{5}{2} q_{1}^{2}+2 q_{1} q_{2}-q_{2}^{2}+7 .
$$

The constant at the end does not influence the equations of motion, so it can be ignored in what follows.
(c) The Euler-Lagrange equations are

$$
\begin{aligned}
& \ddot{q}_{1}+5 q_{1}-2 q_{2}=0 \\
& \ddot{q}_{2}-2 q_{1}+2 q_{2}=0 .
\end{aligned}
$$

In matrix form:

$$
\ddot{\mathbf{q}}+A \mathbf{q}=0
$$

with

$$
A=\left(\begin{array}{cc}
5 & -2 \\
-2 & 2
\end{array}\right)
$$

This matrix has eigenvalues $\lambda_{1}=1, \lambda_{2}=6$, and corresponding eigenvectors

$$
\mathbf{v}^{(1)}=\binom{1}{2} \quad ; \quad \mathbf{v}^{(2)}=\binom{2}{-1} .
$$

Applying the general normal modes discussion, we have

$$
\mathbf{q}(t)=\mathbf{v}^{(1)}\left(\alpha^{(1)} \cos (t)+\beta^{(1)} \sin (t)\right)+\mathbf{v}^{(2)}\left(\alpha^{(2)} \cos (t \sqrt{6})+\beta^{(2)} \sin (t \sqrt{6})\right) .
$$

(d) The fact that we start from rest implies that

$$
\binom{0}{0}=\mathbf{v}^{(1)} \beta^{(1)}+\sqrt{6} \mathbf{v}^{(2)} \beta^{(2)}
$$

which implies $\beta^{(1)}=\beta^{(2)}=0$. The initial position equation, on the other hand, implies

$$
\binom{1}{2}=\mathbf{v}^{(1)} \alpha^{(1)}+\mathbf{v}^{(2)} \alpha^{(2)}
$$

which implies $\alpha^{(1)}=1$ and $\alpha^{(2)}=0$. So the final solution is

$$
\binom{q_{1}(t)}{q_{2}(t)}=\binom{1}{2} \cos (t)
$$

2. The equations of motion are given by

$$
\frac{\partial \mathcal{L}}{\partial u}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial u_{t}}\right)-\frac{d}{d x}\left(\frac{\partial \mathcal{L}}{\partial u_{x}}\right)=m^{2} u+u_{t t}-u_{x x}=0 .
$$

Plugging

$$
u(x, t)=e^{i(\omega t \pm k x)}
$$

into this equation we get

$$
\left(m^{2}-\omega^{2}+k^{2}\right) e^{i(\omega t \pm k x)}=0
$$

so the necessary relation is $\omega^{2}=k^{2}+m^{2}$.
3. (a) The general solution to the wave equation is

$$
u(x, t)=g(x-c t)+h(x+c t)
$$

The boundary conditions tell us that $u(x, 0)=g(x)+h(x)=f(x)$ and that $u_{t}(x, 0)=-c g^{\prime}(x)+c h^{\prime}(x)=0$. From the second equation we see we can choose $g(x)=h(x)$ (up to a constant shift, which will not affect the final result), in which case the first equation tells us that $g(x)=h(x)=f(x) / 2$. Therefore we have that

$$
u(x, t)=\frac{1}{2}(f(x-c t)+f(x+c t))
$$

The function $f(x)$ vanishes for $|x|>b$ and looks like a parabolic dip inside this region. The solution $u(x, t)$ looks like two copies of this dip each scaled by a half, one half which moves to the right with speed c and the other half moves to the left with speed c.

(b) In this case, substituting the general solution into the boundary conditions gives $u(x, 0)=0=g(x)+h(x)$ and $u_{t}(x, 0)=f(x)=-c g^{\prime}(x)+c h^{\prime}(x)$. We see that $g(x)=-h(x)$ and that $2 c h^{\prime}(x)=f(x)$, from which it follows that

$$
u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} f(s) d s
$$

This is a "spreading bump", where the height in the middle at late times is

$$
\frac{1}{2 c} \int_{-\infty}^{\infty} f(x) d x=\frac{1}{2 c} \int_{-b}^{b}\left(x^{2}-b^{2}\right) d x=-\frac{2 b^{3}}{3 c} .
$$

To see why this is the right sketch: fix a finite positive time t. Then the function

$$
u(x, t)=\int_{x-c t}^{x+c t} f(s) d s
$$

becomes purely a function of x, that you want to sketch. To see what the sketch is, note that $f(s)$ is only non-vanishing for s between $-b$ and b. Let me call this interval $B=[-b, b]$. On the other hand, you are integrating $f(s)$ in the interval $X(x)=[x-c t, x+c t]$ (note that this is a function of x only, as I am fixing t to a fixed value). There are three cases to consider (I will choose x positive for simplicity, it is easy to argue that $u(x, t)$ is symmetric in x because $f(s)$ is symmetric in s):

- B does not intersect $X(x)$, which happens if $x-c t>b$. In this case $u(x, t)=0$.
- B is fully contained in $X(x)$. This happens when $x-c t<-b$ (note that because $x>0$ this implies $c t>b$, which implies $x+c t>b$). Then

$$
\frac{1}{2 c} \int_{-\infty}^{\infty} f(x) d x=\frac{1}{2 c} \int_{-b}^{b}\left(x^{2}-b^{2}\right) d x=-\frac{2 b^{3}}{3 c}
$$

as above.

- For values of x between $-b+c t$ and $b+c t$ you have some function interpolating continuously (because you are integrating an continuous function on a continuously varying interval) between $-2 b^{3} / 3 c$ and 0 .

