Week 7 problems

1. (a)
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The Euler-Lagrange equations are

g1 + 5sin(q1) — 2¢2 cos(qigz) =0

g2 — 2¢1 cos(q1q2) + 2sin(gz) = 0.
Recalling that ¢i(t) = g¢2(t) = 0 implies §i(t) = ¢2(t) = 0, it is clear that
¢1(t) = ¢2(t) = 0 solves these equations.

For small displacements, to second order in the ¢;, we have cos(¢;) = 1—3¢7+. ..,
sin(q1g2) = qi1g2 + . ... Plugging these expansions into the original Lagrangian

we find ] 5
Lapprox = 5((]% + q%) - §Q% + 2q1q2 - qg +7.

The constant at the end does not influence the equations of motion, so it can
be ignored in what follows.

The Euler-Lagrange equations are

G1 +5¢1 —2¢2 =0
Go — 2q1 +2g2 = 0.

In matrix form:
q+Aq=0

A:(_52 ‘22>.

This matrix has eigenvalues A\; = 1, Ay = 6, and corresponding eigenvectors

1 2
1 — . 2 _
W) - (G)

Applying the general normal modes discussion, we have

q(t) = v (0 cos(t) + BV sin(t)) + v(a® cos(tv/6) + 5 sin(tV6))

with

The fact that we start from rest implies that
(8) — v 4 /Gy 5@

which implies ) = 83 = 0. The initial position equation, on the other hand,

implies
G) — v 4 y@ @

1
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which implies (¥ =1 and a® = 0. So the final solution is

(hin) = (o) =0

2. The equations of motion are given by

3.

oL 4 (0C\_d (0£\_ .,
ou  dt \ Ouy dz \ Ou, T e = e = -

Plugging

U(ilf,t) _ 6i(wt‘:l:kx)

into this equation we get

(mQ . w2 + k2>ei(wtikx) -0

so the necessary relation is w? = k? + m?2.

(a) The general solution to the wave equation is

u(z,t) = g(x —ct) + h(z + ct)

The boundary conditions tell us that u(z,0) = g(x) + h(x) = f(x) and that
u(z,0) = —cg'(x) 4+ ch/(x) = 0. From the second equation we see we can choose
g(x) = h(z) (up to a constant shift, which will not affect the final result), in
which case the first equation tells us that g(x) = h(z) = f(z)/2. Therefore we
have that

(@, ) = % (flx = ct) + f(x + b))

The function f(z) vanishes for |x| > b and looks like a parabolic dip inside this
region. The solution u(x,t) looks like two copies of this dip each scaled by a
half, one half which moves to the right with speed ¢ and the other half moves
to the left with speed c.
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(b) In this case, substituting the general solution into the boundary conditions gives
u(z,0) =0 = g(z) + h(z) and u(x,0) = f(z) = —cg'(x) + ch/(z). We see that
g(x) = —h(x) and that 2¢h’(x) = f(x), from which it follows that

u(x,t) = ! /de(s)ds.

2_C T—ct
This is a “spreading bump”, where the height in the middle at late times is

1 [> 1 2h3
— dr = — 2 _v))dr = ——.
2c /OO J(w)de 2c (z Jd 3c

To see why this is the right sketch: fix a finite positive time ¢. Then the function

r+ct
u(z,t) :/ f(s)ds
T—ct
becomes purely a function of z, that you want to sketch. To see what the sketch
is, note that f(s) is only non-vanishing for s between —b and b. Let me call this
interval B = [—b,b]. On the other hand, you are integrating f(s) in the interval
X(z) = [z — ct,x + ct] (note that this is a function of = only, as I am fixing
t to a fixed value). There are three cases to consider (I will choose = positive
for simplicity, it is easy to argue that u(x,t) is symmetric in x because f(s) is
symmetric in s):
e B does not intersect X (x), which happens if x — ¢t > b. In this case
u(z,t) = 0.
e B is fully contained in X (x). This happens when z — ¢t < —b (note that
because x > 0 this implies ¢t > b, which implies x + ¢t > b). Then
1 [® T, 2b°
5 /_OO f(x)dx = 5 _b(x b*)dx = "
as above.
e For values of z between —b+ ¢t and b + ¢t you have some function interpo-
lating continuously (because you are integrating an continuous function on
a continuously varying interval) between —2b° /3¢ and 0.



