MATH2071 Mathematical Physics II Solutions Week 8

Fields II

1. The equation of motion that follows from the Lagrangian, without assuming that p
or 7 are constant, follows straightforwardly from the Euler-Lagrange equations:

D (VY[ ()Y
ox\"\oz)) o \"\ot)) =
Substituting in a solution of the form u(x,t) = X(x)cos(wt) into the equation we

find
cos(wt)% (T(x)cfl—i(> = —w?p(x) cos(wt) X ()

so X satisfies the ordinary differential equation

% (m@%) +wp(2)X () = 0.

If 7 and p are constants this is

or equivalently, introducing ¢ = 7/p

d*X 9, 9
W—i—(w /C)X:O

which can be solved in terms of sines and cosines
X = acos((w/c)x) + Bsin((w/c)x)
with «, # arbitrary constants.
2. A straightforward way of solving this problem is by plugging the given solution into

Ut = Ugg:
)

Z by (t) sin(nx) =

n=1

(—n?)by, () sin(nx) .
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Integrating against sin(max) over the [0, 7| interval, and using

/ sin(max) sin(nz) = Z(Sn’m
0 2

we find )
b (1) + m?by, (t) = 0
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for all m. The solution to this equation is b,(t) = a, cos(nt) + B, sin(nt) (I am
changing back to an index n, this is an arbitrary naming convention), with arbitrary
constants «,, 5, (determined by initial conditions), so our general solution is

Z o, cos(nt) + B, sin(nt)) sin(nzx) .
n=1

There is a second way of solving the problem which is slightly more complicated
but interesting. Notice that we have a theory on an interval, with a known explicit
dependence of the solution on z, so we can think of this effectively as a problem
that depends on time only, with the b,(¢) our generalised coordinates. We obtain
the Lagrangian for the b,(t) generalised coordinates by integrating the Lagrangian
density £ = u? — u? for u(z,t) over the interval z € [0, 7].

Substituting the expansion of u(z,t) into the expression for £ we find
Lb(0).b(1) = [ £l )
0

— [ -y
0

/(Zb ) sin(nz) gbm smmx))dx
/(an n cos(nx) ibm mcosmx)))dx

—1
where we indicate by b(t) the (countably infinite) set of all b,(t). Now

T

/ sin(ma) sin(nz)dz :/ cos(mx) cos(nx) = 5nm§
0 0

Our expression for L simplifies to

L — 3 Zl <6n(t)bm(t)5nmg) _ Zl z:lmnbn(t)bm(t)(snmg
o

What we see is that the string can be thought of an infinite collection of harmonic
oscillators, each oscillator corresponding to a particular harmonic. What is quite
nice about this example is that you can really see that the string is a system with an
infinite number of degrees of freedom (in this countably infinite).
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The Euler-Lagrange equations for b,, are
a (3_.L) _OL
dt \ ob,, ob,,
This gives the equations of motion
7 (b, + n?b,) = 0.
The solution to this equation is
b, = oy, cos(nt) + f3, sin(nt).

This gives us that
Z ay, cos(nt) + B, sin(nt)) sin(nx)
n=1

as above.

3. (a) The definition of the energy momentum tensor is

oL
Ouj

T‘zj = U7 —

— (SZJE .

Plugging in the definition of the modified Lagrangian density we get (with xy =t
and z; = x as usual):

suf 4 su2 — m? cos(u) — Uyl
T = 1,2 1,2 2
Ug Uy —5U; — uz —m?cos(u)

(b) The equation of motion satisfied by w is given by the Euler-Lagrange equation

0L 4 (9L\ d (o£)
ou  dx \ Ouy, dt \ou, ]

which in our case reads
—m?sin(u) + Ugy — Uy = 0

If we assume that u(x,t) = f(z — ct) we have

umx — f/l

with f” = dcf and
Uy = C2 f//
so that the equation satisfied by f is

m2

1—¢2

fl/ —

sin(f).



()

MATH2071 Mathematical Physics II Solutions Week 8

For the right hand side we have

2 4m?2 pC _ 53pC
m 5 sin (4arctan(e”)) = m [ ‘ ¢ 2]
l—c (1 + e2e¢)

C1l—¢?
from the relation given. For the left hand side, using the chain rule and the
other relation given:

oy g P
and deriving once more
fr(o) =4[ LD - 2
[T e (14 e200)?
o [ Lo —20]
= 4p“e
P (1+ 62P4)2
) ePs — e30¢
—4p? | =
g [(1 T e2p<)2}

which implies that the equation is satisfied as long as p? = m?/(1 — ¢?).
The soliton travels towards the right with constant speed ¢, keeping its shape.
At  — ¢t — —o0o (so on the infinite left) we have
u(z,t) ~ 4arctan(0) = 0
while on the infinite right we have
u(z,t) ~ 4arctan(+o0) = 27

A plot of the resulting structure is shown in the figure below, it is a travelling
lump of energy that brings down u from 27 to 0.

It is illuminating to compute the energy density for the soliton solution we have
been discussing. A straightforward computation using for the ¢t component of
the energy-momentum tensor computed above, and the fact that

1 — 622+ 2*
cos(4 arctan(x)) = (1+x—x:—)2x
gives
E(z,t) = Tu(C) = m 1+ e — ¢ 6+8HC2
x,t) =1y = (1 + €2p<)2 € e 1—c2
We have that
lim S(x,t) = lim = —m?
200 T—00

which is a constant, which we might redefine away. The non-trivial part of the
energy of the solitonic wave is concentrated around x — ¢t = 0, as sketched in
the next figure (for some arbitrary choice of constants).
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4. We have

GTU
Z Oz, ( "Ou, %ﬁ)
ou; OL oL
(Z ox; (3%)) * ZJ: (ij 8_%> Oz

Using the Euler-Lagrange equations on the first term this becomes

aT;; oL Ou; 0L oL
J U=+ Z ( U _) B '

8ZE]‘ ou P 8Ij 8uj 8@

. . 2 2 . .
and introducing w;; = #aﬁxj = ij aﬁzi = uj; this can be written as

oT; oL oL\ o
or,  “ou " 2 (“” auj> dz;

J

Since we have, by the chain rule:

oL _oL 9L
ox;  ou' L ou,

we are done:
S
Oz, N

5. (a) The definition of the T}, component of the energy momentum tensor (which we
identify with the energy) is

oL
Ty = Uta—u - L
t

In the given Lagrangian density u; only appears in the kinetic term:

oL JT

3ut 8Ut n 2Utf( )

so that

Ty = ue(2uy) f(u) — L
— 2T (T - V)
_ T4y,



(b) Conservation of energy is

— =0.
ot + Ox
From the definition of the energy-momentum tensor we have
%
To = — .
01 Ut D,
So we have
dE@upy d [°
—=— [ &£d
aar ), °
b
o€
= —d
/a ar "
b
!
= — d
o Ox v
= —[Tonl,
so we have gy
F=- .
taux

6. (a) The fact that u(0,t) = 0 implies

. Ou(x,t 0 . 0
w(0:1) = lim % ~ o (JE?- W’”) =50 =0

(assuming that wu is regular enough). The energy flux entering the boundary
from the left for a one-dimensional string is given by

Ti2(0,t) = —7u, (0, t)us(0,t) = —7u,(0,¢) - 0=10.
Now consider the given ansatz
u(a,t) = R ((e“” X Re—ikm>e—ikct>
The boundary condition u(0,¢) = 0 implies
R((1+ R)e ™) =0
which is satisfied for all ¢ if and only if R = —1.
(b) The boundary condition reads, in terms of f and g:

f(—ct)+g(ct) =0.

This should holds for all ¢, so we find that g({) = —f(—(), for any (. D’Alembert’s
solution then becomes

u(z,t) = f(x —ct) — f(—x —ct) .

For any fixed ¢ this is an odd function.
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(¢) The case of Neumann boundary conditions is u,(0,¢) = 0. The energy flux into
the boundary then clearly vanishes:
Ti:(0,t) = —7ug(0,t)uy(0,t) = —7 -0 - u(0,¢) = 0.
For the case of the given ansatz
u(x, t) =R ((ezka: + Re—ikm)e—ikct)
we have . ' '
ug(x,t) =R ((i/{:ezk’” — Rike_m)e_’m)
so that '
uz(0,t) = R (ik(1 — R)e™ ")
which is satisfied for all ¢ if and only if R = 1.
(d) We have
fl(=ct) +g'(ct) =0
which implies that for any ¢ we have f'(¢) = —¢'(—(). By integration, this
implies f(¢) = g(—{)+p, for some constant p. We thus find the general solution
in this case to be
u(z,t) = g(x +ct) + glct —x) +p.
(We could absorb p into the definition of g, if we like.) At any fixed ¢ this is a
symmetric function around x = 0.

7. All the results follow from applying the chain rule, and using the fact that F;(u, z,t)

depends on u, z, t but not on u, or u;. For instance
dF OF N OF
dr ~ dx  Ou

e

so from here

(k) o OF  OF OF
oz | ou'"

8um © Ouy, - ou
using the fact that neither 2 a nor gF depend on u,. The other identities of this kind

can be proved similarly. For the second class of Lemmas we use the chain rule and
that partial derivatives commute:

(s,
)+ (o )
8)+ 8F )

)
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With these lemmas in hand it is easy to prove what we want:

O(5) _d (0(@) _d (0(@F)\ _d (om\ _ 4
ou dt Oouy dx Ou, dt \ Ou dt

dFy (u,z,t)
dx :

and similarly for

(

oF,
ou

)

d



