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8 Fields II

1. The equation of motion that follows from the Lagrangian, without assuming that ρ
or τ are constant, follows straightforwardly from the Euler-Lagrange equations:

∂

∂x

(
τ

(
∂u

∂x

))
− ∂

∂t

(
ρ

(
∂u

∂t

))
= 0

Substituting in a solution of the form u(x, t) = X(x) cos(ωt) into the equation we
find

cos(ωt)
∂

∂x

(
τ(x)

dX

dx

)
= −ω2ρ(x) cos(ωt)X(x)

so X satisfies the ordinary differential equation

d

dx

(
τ(x)

dX

dx

)
+ ω2ρ(x)X(x) = 0.

If τ and ρ are constants this is

d2X

dx2
+ ω2 ρ

τ
X = 0

or equivalently, introducing c2 = τ/ρ

d2X

dx2
+ (ω2/c2)X = 0

which can be solved in terms of sines and cosines

X = α cos((ω/c)x) + β sin((ω/c)x)

with α, β arbitrary constants.

2. A straightforward way of solving this problem is by plugging the given solution into
utt = uxx:

∞∑
n=1

b̈n(t) sin(nx) =
∞∑
n=1

(−n2)bn(x) sin(nx) .

Integrating against sin(mx) over the [0, π] interval, and using∫ π

0

sin(mx) sin(nx) =
π

2
δn,m

we find
b̈m(t) +m2bm(t) = 0
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8 for all m. The solution to this equation is bn(t) = αn cos(nt) + βn sin(nt) (I am
changing back to an index n, this is an arbitrary naming convention), with arbitrary
constants αn, βn (determined by initial conditions), so our general solution is

u(x, t) =
∞∑
n=1

(αn cos(nt) + βn sin(nt)) sin(nx) .

There is a second way of solving the problem which is slightly more complicated
but interesting. Notice that we have a theory on an interval, with a known explicit
dependence of the solution on x, so we can think of this effectively as a problem
that depends on time only, with the bn(t) our generalised coordinates. We obtain
the Lagrangian for the bn(t) generalised coordinates by integrating the Lagrangian
density L = u2

t − u2
x for u(x, t) over the interval x ∈ [0, π].

Substituting the expansion of u(x, t) into the expression for L we find

L(b(t), ḃ(t)) =

∫ π

0

L(u, ut, ux)dx

=

∫ π

0

(u2
t − u2

x)dx

=

∫ π

0

(
(

∞∑
n=1

ḃn(t) sin(nx))(
∞∑

m=1

ḃm(t) sin(mx))

)
dx

−
∫ π

0

(
(

∞∑
n=1

bn(t)n cos(nx))(
∞∑

m=1

bm(t)m cos(mx))

)
dx

where we indicate by b(t) the (countably infinite) set of all bn(t). Now∫ π

0

sin(mx) sin(nx)dx =

∫ π

0

cos(mx) cos(nx) = δnm
π

2
.

Our expression for L simplifies to

L =
∞∑
n=1

∞∑
m=1

(
ḃn(t)ḃm(t)δnm

π

2

)
−

∞∑
n=1

∞∑
m=1

mnbn(t)bm(t)δnm
π

2

=
π

2

∞∑
n=1

(
(ḃn(t))

2 − n2(bn(t))
2
)
.

What we see is that the string can be thought of an infinite collection of harmonic
oscillators, each oscillator corresponding to a particular harmonic. What is quite
nice about this example is that you can really see that the string is a system with an
infinite number of degrees of freedom (in this countably infinite).
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8 The Euler-Lagrange equations for bn are

d

dt

(
∂L

∂ḃn

)
− ∂L

∂bn
= 0

This gives the equations of motion

π(b̈n + n2bn) = 0.

The solution to this equation is

bn = αn cos(nt) + βn sin(nt).

This gives us that

u(x, t) =
∞∑
n=1

(αn cos(nt) + βn sin(nt)) sin(nx)

as above.

3. (a) The definition of the energy momentum tensor is

Tij = ui
∂L
∂uj

− δijL .

Plugging in the definition of the modified Lagrangian density we get (with x0 ≡ t
and x1 ≡ x as usual):

Tij =

(
1
2
u2
t +

1
2
u2
x −m2 cos(u) −utux

uxut −1
2
u2
t − 1

2
u2
x −m2 cos(u)

)
(b) The equation of motion satisfied by u is given by the Euler-Lagrange equation

∂L
∂u

− d

dx

(
∂L
∂ux

)
− d

dt

(
∂L
∂ut

)
= 0

which in our case reads

−m2 sin(u) + uxx − utt = 0

If we assume that u(x, t) = f(x− ct) we have

uxx = f ′′

with f ′′ = d2f(ζ)
dζ2

and
utt = c2f ′′

so that the equation satisfied by f is

f ′′ =
m2

1− c2
sin(f) .

3
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8 (c) For the right hand side we have

m2

1− c2
sin
(
4 arctan(eρζ)

)
=

4m2

1− c2

[
eρζ − e3ρζ

(1 + e2ρζ)2

]
from the relation given. For the left hand side, using the chain rule and the
other relation given:

f ′(ζ) = 4
ρeρζ

1 + e2ρζ

and deriving once more

f ′′(ζ) = 4

[
ρ2eρζ

1 + e2ρζ
− 2ρ2e3ρζ

(1 + e2ρζ)2

]
= 4ρ2eρζ

[
1 + e2ρζ − 2e2ρζ

(1 + e2ρζ)2

]
= 4ρ2

[
eρζ − e3ρζ

(1 + e2ρζ)2

]
which implies that the equation is satisfied as long as ρ2 = m2/(1− c2).

(d) The soliton travels towards the right with constant speed c, keeping its shape.
At x− ct → −∞ (so on the infinite left) we have

u(x, t) ≈ 4 arctan(0) = 0

while on the infinite right we have

u(x, t) ≈ 4 arctan(+∞) = 2π

A plot of the resulting structure is shown in the figure below, it is a travelling
lump of energy that brings down u from 2π to 0.
It is illuminating to compute the energy density for the soliton solution we have
been discussing. A straightforward computation using for the tt component of
the energy-momentum tensor computed above, and the fact that

cos(4 arctan(x)) =
1− 6x2 + x4

(1 + x2)2

gives

E(x, t) = Ttt(ζ) = − m2

(1 + e2ρζ)2

[
1 + e4ρζ − e2ρζ

(
6 + 8

1 + c2

1− c2

)]
We have that

lim
x→−∞

E(x, t) = lim
x→∞

= −m2

which is a constant, which we might redefine away. The non-trivial part of the
energy of the solitonic wave is concentrated around x − ct = 0, as sketched in
the next figure (for some arbitrary choice of constants).

4
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8 4. We have ∑
j

∂Tij

∂xj

=
∑
j

∂

∂xj

(
ui

∂L
∂uj

− δijL
)

= ui

(∑
j

∂

∂xj

(
∂L
∂uj

))
+
∑
j

(
∂ui

∂xj

∂L
∂uj

)
− ∂L

∂xi

.

Using the Euler-Lagrange equations on the first term this becomes∑
j

∂Tij

∂xj

= ui
∂L
∂u

+
∑
j

(
∂ui

∂xj

∂L
∂uj

)
− ∂L

∂xi

.

and introducing uij =
∂2L

∂xi∂xj
= ∂2L

∂xj∂xi
= uji this can be written as

∑
j

∂Tij

∂xj

= ui
∂L
∂u

+
∑
j

(
uij

∂L
∂uj

)
− ∂L

dxi

.

Since we have, by the chain rule:

∂L
∂xi

=
∂L
∂u

ui +
∑
j

∂L
∂uj

uij

we are done: ∑
j

∂Tij

∂xj

= 0 .

5. (a) The definition of the Ttt component of the energy momentum tensor (which we
identify with the energy) is

Ttt = ut
∂L
∂ut

− L

In the given Lagrangian density ut only appears in the kinetic term:

∂L
∂ut

=
∂T
∂ut

= 2utf(u)

so that

Ttt = ut(2ut)f(u)− L
= 2T − (T − V)
= T + V .

6
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8 (b) Conservation of energy is
∂E
∂t

+
∂T01

∂x
= 0 .

From the definition of the energy-momentum tensor we have

T01 = −ut
∂V
∂ux

.

So we have
dE(a,b)

dt
=

d

dt

∫ b

a

E dx

=

∫ b

a

∂E
∂t

dx

= −
∫ b

a

∂T01

∂x
dx

= − [T01]
b
a

so we have
F = −ut

∂V
∂ux

.

6. (a) The fact that u(0, t) = 0 implies

ut(0, t) = lim
x→0−

∂u(x, t)

∂t
=

∂

∂t

(
lim
x→0−

u(x, t)

)
=

∂

∂t
(0) = 0

(assuming that u is regular enough). The energy flux entering the boundary
from the left for a one-dimensional string is given by

Ttx(0, t) = −τux(0, t)ut(0, t) = −τux(0, t) · 0 = 0 .

Now consider the given ansatz

u(x, t) = ℜ
(
(eikx +Re−ikx)e−ikct

)
The boundary condition u(0, t) = 0 implies

ℜ
(
(1 +R)e−ikct

)
= 0

which is satisfied for all t if and only if R = −1.
(b) The boundary condition reads, in terms of f and g:

f(−ct) + g(ct) = 0 .

This should holds for all t, so we find that g(ζ) = −f(−ζ), for any ζ. D’Alembert’s
solution then becomes

u(x, t) = f(x− ct)− f(−x− ct) .

For any fixed t this is an odd function.

7
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8 (c) The case of Neumann boundary conditions is ux(0, t) = 0. The energy flux into
the boundary then clearly vanishes:

Ttx(0, t) = −τux(0, t)ut(0, t) = −τ · 0 · ut(0, t) = 0 .

For the case of the given ansatz

u(x, t) = ℜ
(
(eikx +Re−ikx)e−ikct

)
we have

ux(x, t) = ℜ
(
(ikeikx −Rike−ikx)e−ikct

)
so that

ux(0, t) = ℜ
(
ik(1−R)e−ikct

)
which is satisfied for all t if and only if R = 1.

(d) We have
f ′(−ct) + g′(ct) = 0

which implies that for any ζ we have f ′(ζ) = −g′(−ζ). By integration, this
implies f(ζ) = g(−ζ)+p, for some constant p. We thus find the general solution
in this case to be

u(x, t) = g(x+ ct) + g(ct− x) + p .

(We could absorb p into the definition of g, if we like.) At any fixed t this is a
symmetric function around x = 0.

7. All the results follow from applying the chain rule, and using the fact that Fi(u, x, t)
depends on u, x, t but not on ux or ut. For instance

dF

dx
=

∂F

∂x
+

∂F

∂u
ux

so from here
∂
(
dF
dx

)
∂ux

=
∂

∂ux

(
∂F

∂x
+

∂F

∂u
ux

)
=

∂F

∂u

using the fact that neither ∂F
∂x

nor ∂F
∂u

depend on ux. The other identities of this kind
can be proved similarly. For the second class of Lemmas we use the chain rule and
that partial derivatives commute:

d

dx

(
∂F

∂u

)
=

∂

∂x

(
∂F

∂u

)
+

∂

∂u

(
∂F

∂u

)
ux

=
∂

∂x

(
∂F

∂u

)
+

∂

∂u

(
∂F

∂u
ux

)
=

∂

∂u

(
∂F

∂x

)
+

∂

∂u

(
∂F

∂u
ux

)
=

∂

∂u

(
∂F

∂x
+

∂F

∂u
ux

)
=

∂

∂u

(
dF

dx

)
8
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8 With these lemmas in hand it is easy to prove what we want:

∂
(
dF2

dt

)
∂u

− d

dt

(
∂
(
dF2

dt

)
∂ut

)
− d

dx

(
∂
(
dF2

dt

)
∂ux

)
=

d

dt

(
∂F2

∂u

)
− d

dt

(
∂F2

∂u

)
− d

dx
(0) = 0

and similarly for dF1(u,x,t)
dx

.
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