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9 Week 9 problems

1. Differentiating X with respect to t we find

dX(a, b)

dt
=

∫ b

a

∂

∂t

(
(ut)

3 + 3ut(ux)
2
)
dx

=

∫ b

a

3(ut)
2utt + 3utt(ux)

2 + 6utuxutxdx

=

∫ b

a

3(ut)
2uxx + 3uxx(ux)

2 + 6utuxutxdx

=

∫ b

a

∂

∂x

(
3(ut)

2ux + (ux)
3
)
dx

=
[
3(ut)

2ux + (ux)
3
]b
a
.

This is in the desired form with g(u, ut, ux) = 3(ut)
2ux+(ux)

3. Provided that ux, ut →
0 as |x| → ∞ we can show that

dX(−∞,∞)

dt
=

[
3(ut)

2ux + (ux)
3
]∞
−∞ = 0.

so that X(−∞,∞) is conserved.

2. 2.1. Calculating the time derivative of the energy we find that

d

dt
E(a, b) =

∫ b

a

∂u

∂t

∂2u

∂t2
+

∂u

∂x

∂2u

∂x∂t
dx

Now we can use the wave equation write this as

d

dt
E(a, b) =

∫ b

a

∂u

∂t

∂2u

∂x2
+

∂u

∂x

∂2u

∂x∂t
dx

=

∫ b

a

∂

∂x

(
∂u

∂t

∂u

∂x

)
dx

=

[
∂u

∂t

∂u

∂x

]b
a

.

2.2. If u(x, t) = f(x + t) − f(x − t), then ut = f ′(x + t) + f ′(x − t) and ux =
f ′(x+ t)− f ′(x− t). It follows that the energy

E(a, b) =
1

2

∫ b

a

(ut)
2 + (ux)

2dx

=
1

2

∫ b

a

(f ′(x+ t) + f ′(x− t))2 + (f ′(x+ t)− f ′(x− t))2dx

=

∫ b

a

(f ′(x+ t))2 + (f ′(x− t))2dx.
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9 2.3. In the given case we have that f(s) = exp(−s2/2), so that f ′(s) = −s exp(−s2/2).
Putting this into the formula for E we find

E(0,∞) =

∫ ∞

0

(x+ t)2e−(x+t)2 + (x− t)2e−(x−t)2dx.

If we change the variables of integration in the first term to x′ = −x we see that

E(0,∞) =

∫ 0

−∞
(−x′ + t)2e−(−x′+t)2dx′ +

∫ ∞

0

(x− t)2e−(x−t)2dx

=

∫ ∞

−∞
(x− t)2e−(x−t)2dx.

Finally changing variables to p = x− t we see that

E(0,∞) =

∫ ∞

−∞
p2e−p2dp

Notice that we have already shown that E(0,∞) is independent of time! We
can evaluate this integral using integration by parts∫ ∞

−∞
p2e−p2dp =

∫ ∞

−∞
p(pe−p2)dp =

[
−p

2
e−p2

]∞
−∞

+
1

2

∫ ∞

−∞
e−p2dp =

√
π

2
.

2.4. The equation in part (a) tells us that

d

dt
E(0,∞) =

[
∂u

∂t

∂u

∂x

]∞
0

.

or in terms of f

d

dt
E(0,∞) = [(f ′(x+ t) + f ′(x− t))(f ′(x+ t)− f ′(x− t))]

∞
0

=
[
(f ′(x+ t))2 − (f ′(x− t))2

]∞
0

= f ′(−t)2 − f ′(t)2 = 0.

3. By conservation of energy, the energy stored in the boundary Eb(t) changes only due
to the incoming flux from the left:

dEb(t)

dt
= lim

x→0−
Ttx(x, t)

The energy stored at the boundary is given by the extension of the spring:

Eb(t) =
1

2
κu(0, t)2

2
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9 so that
dEb(t)

dt
= κu(0, t)ut(0, t) .

On the other hand, for the one-dimensional string:

Ttx(x, t) = −τux(x, t)ut(x, t)

so that
lim
x→0−

Ttx(x, t) = −τux(0, t)ut(0, t)

so the energy conservation equation simplifies to

κu(0, t) = −τux(0, t) .

For the case of the given ansatz

u(x, t) = ℜ
(
(eipx +Re−ipx)e−ipct

)
conservation of energy becomes

κℜ
(
(1 +R)e−ipct

)
= −τℜ

(
ip(1−R)e−ipct

)
which holds for all t if and only if

κ(1 +R) = −τip(1−R)

and a little bit of algebra then leads to

R =
ip+ κ/τ

ip− κ/τ
.

As a couple of simple checks, note that for κ → ∞, we should expect to have effective
Dirichlet boundary conditions (since it costs infinite energy to extend the spring).
And indeed, in this case R = −1. Similarly, for κ → 0 the spring is effectively
not there, so we expect to reproduce the result from having Neumann boundary
conditions, R = +1.

3


