Week 9 problems

1. Differentiating X with respect to t we find

$$
\begin{aligned}
\frac{d X(a, b)}{d t} & =\int_{a}^{b} \frac{\partial}{\partial t}\left(\left(u_{t}\right)^{3}+3 u_{t}\left(u_{x}\right)^{2}\right) d x \\
& =\int_{a}^{b} 3\left(u_{t}\right)^{2} u_{t t}+3 u_{t t}\left(u_{x}\right)^{2}+6 u_{t} u_{x} u_{t x} d x \\
& =\int_{a}^{b} 3\left(u_{t}\right)^{2} u_{x x}+3 u_{x x}\left(u_{x}\right)^{2}+6 u_{t} u_{x} u_{t x} d x \\
& =\int_{a}^{b} \frac{\partial}{\partial x}\left(3\left(u_{t}\right)^{2} u_{x}+\left(u_{x}\right)^{3}\right) d x \\
& =\left[3\left(u_{t}\right)^{2} u_{x}+\left(u_{x}\right)^{3}\right]_{a}^{b} .
\end{aligned}
$$

This is in the desired form with $g\left(u, u_{t}, u_{x}\right)=3\left(u_{t}\right)^{2} u_{x}+\left(u_{x}\right)^{3}$. Provided that $u_{x}, u_{t} \rightarrow$ 0 as $|x| \rightarrow \infty$ we can show that

$$
\frac{d X(-\infty, \infty)}{d t}=\left[3\left(u_{t}\right)^{2} u_{x}+\left(u_{x}\right)^{3}\right]_{-\infty}^{\infty}=0
$$

so that $X(-\infty, \infty)$ is conserved.
2. (a) Calculating the time derivative of the energy we find that

$$
\frac{d}{d t} E(a, b)=\int_{a}^{b} \frac{\partial u}{\partial t} \frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial u}{\partial x} \frac{\partial^{2} u}{\partial x \partial t} d x
$$

Now we can use the wave equation write this as

$$
\begin{aligned}
\frac{d}{d t} E(a, b) & =\int_{a}^{b} \frac{\partial u}{\partial t} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x} \frac{\partial^{2} u}{\partial x \partial t} d x \\
& =\int_{a}^{b} \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial t} \frac{\partial u}{\partial x}\right) d x \\
& =\left[\frac{\partial u}{\partial t} \frac{\partial u}{\partial x}\right]_{a}^{b}
\end{aligned}
$$

(b) If $u(x, t)=f(x+t)-f(x-t)$, then $u_{t}=f^{\prime}(x+t)+f^{\prime}(x-t)$ and $u_{x}=$ $f^{\prime}(x+t)-f^{\prime}(x-t)$. It follows that the energy

$$
\begin{aligned}
E(a, b) & =\frac{1}{2} \int_{a}^{b}\left(u_{t}\right)^{2}+\left(u_{x}\right)^{2} d x \\
& =\frac{1}{2} \int_{a}^{b}\left(f^{\prime}(x+t)+f^{\prime}(x-t)\right)^{2}+\left(f^{\prime}(x+t)-f^{\prime}(x-t)\right)^{2} d x \\
& =\int_{a}^{b}\left(f^{\prime}(x+t)\right)^{2}+\left(f^{\prime}(x-t)\right)^{2} d x .
\end{aligned}
$$

(c) In the given case we have that $f(s)=\exp \left(-s^{2} / 2\right)$, so that $f^{\prime}(s)=-s \exp \left(-s^{2} / 2\right)$. Putting this into the formula for E we find

$$
E(0, \infty)=\int_{0}^{\infty}(x+t)^{2} e^{-(x+t)^{2}}+(x-t)^{2} e^{-(x-t)^{2}} d x
$$

If we change the variables of integration in the first term to $x^{\prime}=-x$ we see that

$$
\begin{aligned}
E(0, \infty) & =\int_{-\infty}^{0}\left(-x^{\prime}+t\right)^{2} e^{-\left(-x^{\prime}+t\right)^{2}} d x^{\prime}+\int_{0}^{\infty}(x-t)^{2} e^{-(x-t)^{2}} d x \\
& =\int_{-\infty}^{\infty}(x-t)^{2} e^{-(x-t)^{2}} d x
\end{aligned}
$$

Finally changing variables to $p=x-t$ we see that

$$
E(0, \infty)=\int_{-\infty}^{\infty} p^{2} e^{-p^{2}} d p
$$

Notice that we have already shown that $E(0, \infty)$ is independent of time! We can evaluate this integral using integration by parts

$$
\int_{-\infty}^{\infty} p^{2} e^{-p^{2}} d p=\int_{-\infty}^{\infty} p\left(p e^{-p^{2}}\right) d p=\left[-\frac{p}{2} e^{-p^{2}}\right]_{-\infty}^{\infty}+\frac{1}{2} \int_{-\infty}^{\infty} e^{-p^{2}} d p=\frac{\sqrt{\pi}}{2}
$$

(d) The equation in part (a) tells us that

$$
\frac{d}{d t} E(0, \infty)=\left[\frac{\partial u}{\partial t} \frac{\partial u}{\partial x}\right]_{0}^{\infty}
$$

or in terms of f

$$
\begin{aligned}
\frac{d}{d t} E(0, \infty) & =\left[\left(f^{\prime}(x+t)+f^{\prime}(x-t)\right)\left(f^{\prime}(x+t)-f^{\prime}(x-t)\right)\right]_{0}^{\infty} \\
& =\left[\left(f^{\prime}(x+t)\right)^{2}-\left(f^{\prime}(x-t)\right)^{2}\right]_{0}^{\infty} \\
& =f^{\prime}(-t)^{2}-f^{\prime}(t)^{2}=0
\end{aligned}
$$

3. By conservation of energy, the energy stored in the boundary $E_{b}(t)$ changes only due to the incoming flux from the left:

$$
\frac{d E_{b}(t)}{d t}=\lim _{x \rightarrow 0^{-}} T_{t x}(x, t)
$$

The energy stored at the boundary is given by the extension of the spring:

$$
E_{b}(t)=\frac{1}{2} \kappa u(0, t)^{2}
$$

so that

$$
\frac{d E_{b}(t)}{d t}=\kappa u(0, t) u_{t}(0, t)
$$

On the other hand, for the one-dimensional string:

$$
T_{t x}(x, t)=-\tau u_{x}(x, t) u_{t}(x, t)
$$

so that

$$
\lim _{x \rightarrow 0^{-}} T_{t x}(x, t)=-\tau u_{x}(0, t) u_{t}(0, t)
$$

so the energy conservation equation simplifies to

$$
\kappa u(0, t)=-\tau u_{x}(0, t) .
$$

For the case of the given ansatz

$$
u(x, t)=\Re\left(\left(e^{i p x}+R e^{-i p x}\right) e^{-i p c t}\right)
$$

conservation of energy becomes

$$
\kappa \Re\left((1+R) e^{-i p c t}\right)=-\tau \Re\left(i p(1-R) e^{-i p c t}\right)
$$

which holds for all t if and only if

$$
\kappa(1+R)=-\tau i p(1-R)
$$

and a little bit of algebra then leads to

$$
R=\frac{i p+\kappa / \tau}{i p-\kappa / \tau} .
$$

As a couple of simple checks, note that for $\kappa \rightarrow \infty$, we should expect to have effective Dirichlet boundary conditions (since it costs infinite energy to extend the spring). And indeed, in this case $R=-1$. Similarly, for $\kappa \rightarrow 0$ the spring is effectively not there, so we expect to reproduce the result from having Neumann boundary conditions, $R=+1$.

