
Durham University
Academic Year 2022/2023

Quantum Computing

— Epiphany Term —

Iñaki García Etxebarria

(Based on previous versions by Simon Ross and Douglas Smith.)

Draft version, April 19, 2024

Note to the reader: This is a set of notes for the material for the second term of the Quantum
Computing course, where we will cover some of the fundamentals of this rapidly evolving field.
A couple of excellent textbooks that you can consult, in addition to these notes, are

• Quantum Information and Quantum Information by Nielsen and Chuang;

• Quantum Computer Science by Mermin.

• John Preskill’s notes, at http://theory.caltech.edu/~preskill/ph229/.

They often present things in a way that is slightly different to the approach being taken here.

Comments about the lecture notes are very welcome – especially if you find any mistakes
and/or typos.

http://theory.caltech.edu/~preskill/ph229/

CONTENTS 3

Contents

1 Classical computing 4
1.1 Basic gates . 4
1.2 Universal gate sets . 8

1.2.1 A reversible universal gate . 11
1.3 Computational resources & Complexity . 12

2 Quantum Circuits 14
2.1 Basic gates . 16
2.2 Universal quantum computation . 17

2.2.1 Representing the Ui as circuits . 19
2.3 Single-qubit unitaries . 24
2.4 Measurement . 27

3 Quantum error correction 28
3.1 Correcting single bit flips . 29
3.2 Correcting general single qubit errors . 32
3.3 Fault tolerant gates . 35

4 Quantum algorithms 37
4.1 Simon’s algorithm . 37
4.2 Quantum Fourier transform . 40
4.3 Shor’s algorithm . 42
4.4 Grover’s algorithm . 45

4

1 Classical computing

1.1 Basic gates

We will see that the ability to put a qubit in an entangled state which is a linear combination
of |0⟩ and |1⟩, |ψ⟩ = α|0⟩ + β|1⟩, makes quantum computation qualitatively different from
computation using classical bits, which are either 0 or 1. Clever algorithms can exploit this
freedom to perform computations much more efficiently on a quantum computer.
To make this comparison possible, we start with a very brief review of classical computation.

This is not meant as a reasonable introduction to the subject, but just to provide enough
familiarity to enable you to appreciate the differences in the quantum case.
The questions we want to answer are:

• What is a computation? How do we describe the process of performing a computation?

• How long does it take us to perform the computation, as a function of the size of the
input we’re operating on?

A simple example is the familiar procedure for adding two numbers: we add the least signifi-
cant digits, carry over to the next digit if necessary, and continue; this procedure has a resource
requirement that grows linearly in the number of digits.1

We will consider digital computation, so we are interested in computing an integer-valued
function f(x) of an integer-valued argument x. This is the kind of operation carried out
by actual computers. As we will see, the functions can be thought of as logical operations
(combinations of AND, OR, NOT, etc); finite-precision operations with real numbers can also
be represented in this way, by considering a decimal expansion of the real number as some
integer.
A computation is some procedure for evaluating a given function f(x). We will use an

abstract model of a computation by a circuit diagram. This is a graphical representation of a
function f(x), which builds it up out of a set of simple elementary operations. This captures
some features of the mode of operation of actual computers, although the specific function a
given circuit computes is fixed, while a programmable computer can compute any function,
which is specified by the program we input. The circuit model should not be taken too literally
as a description of the physical computer, but rather as an abstract way of understanding how
the desired function is built up from simpler operations. We introduce this here mainly because
we will heavily use a similar graphical representation in our discussion of quantum computing.
We want to represent an integer-valued function of an integer x. We represent x in binary

notation, as a string of bits xn−1xn−2 . . . x0. This is a positional notation, so the different bits
multiply powers of 2; what this means is

x = xn−1 × 2n−1 + xn−2 × 2n−2 + . . .+ x1 × 2 + x0 × 20.

1What about multiplication? As it turns out, the story here is much more subtle. We will summarise our
current status of knowledge about multiplication below.

1.1 Basic gates 5

So for example x = 1101 = 1× 23 + 1× 22 + 0× 2 + 1 = 13.
In the model, we draw a line, representing a wire, for each bit. We draw the input as a series

of wires, with the most significant bit at the top (note the difference in convention from Nielsen
& Chuang).
We draw a set of elementary operations as gates, acting on a sequence of bits. The gates are

joined together in sequence to form the desired operation. Note circuits read left to right, with
the last operation on the right, but if I write the operations as a formula they are written with
the last operation to the left. For example, this circuit

constructs the function f(x, y) = NOT(xAND(NOT y)). (We’ll define all the gates involved
in this circuit in a second.)
Let’s start by the simplest case: one bit in and one bit out. There are exactly four gates of

this type, which we will describe as functions f : {0, 1} → {0, 1}:

• The identity function f(x) = x. Since this involves no computation we do not indicate it
explicitly in the circuit model.

• The NOT gate, which inverts the given value: f(0) = 1 and f(1) = 0. The name of this
gate (as in some of the gates below) follows from the interpretation of the gate in terms of
classical logic, thinking of 0 as “False” and 1 as “True”. An alternative useful description
of this function is f(x) = x+ 1 mod 2. We will denote NOT gates in our circuits by

• The last two functions are the constant functions f(x) = 0 and f(x) = 1. We will not
have much use for these functions, so we will not introduce any special notation for them.

There is one operation that is often implicitly used when designing classical circuits, which
is duplicating a classical bit. We will denote this operation the FANOUT gate, and show it as
a wire splitting into two:

Classically this seems fairly harmless: in classical circuits we have a current flowing through a
wire, so all we are doing is soldering two wires together. But, in fact, this is our first example

1.1 Basic gates 6

of a gate that does not have a straightforward quantum version: by the no-cloning theorem we
cannot duplicate arbitrary qubits! Below I will discuss a way of getting around this issue by
using a CNOT gate (defined below) and some ancillary bits.
Let us move on to gates with two inputs, and one output. There are 24 = 16 possible gates

of this type, but we will focus on three:

• AND acts on two bits, and produces one. AND(0, 0) = AND(0, 1) = AND(1, 0) = 0,
AND(1, 1) = 1. Note that AND(x, y) = AND(y, x). In this case, and in the operations
below, we often write AND(x, y) as xANDy to avoid writing too many parenthesis. We
represent this gate as

• OR takes two bits as input, producing one output bit. OR(0, 0) = 0, OR(0, 1) =
OR(1, 0) = OR(1, 1) = 1. For this gate we also have OR(x, y) = OR(y, x). We rep-
resent it by:

• A third interesting gate is NAND(x, y) = NOT(AND(x, y)). That is, NAND(0, 0) =
NAND(0, 1) = NAND(1, 0) = 1 and NAND(1, 1) = 0. We represent it by

Again we are in a situation in which something looks very sensible classically, but in fact
is not doable in the quantum setting: the AND, OR and NAND gates all go from two input
bits to one input bit. As functions f : {0, 1}2 → {0, 1} they are not invertible. When talking
about gates we say that they are not reversible, which we can think of as saying that the gate
is throwing away some information. Quantum gates, on the other hand, will be implemented
by unitary operators, which are in particular invertible.
In fact, there are good reasons to think about reversible gates in classical computers. Lan-

dauer’s principle (which I will not argue for in any detail) states that the act of erasing one
bit of information from our computation in a physical computer always carries a cost: the bit
cannot just disappear, but it needs to be moved into the ambient environment. Such a process
consumes an amount of energy E ≥ kBT log(2), with kB Boltzmann’s constant, and T the tem-
perature of the system. So, as long as we are at finite temperature, will incur some energy cost.

1.1 Basic gates 7

Although modern computers are far above Landauer’s bound, it shows that theoretically there
is a maximum operating efficiency for non-reversible computers. On the other hand, computers
build out of purely reversible gates do not run into this bound, and theoretically do not need
to dissipate energy while computing.
We have already seen one example of a reversible gate, the NOT gate: NOT(NOT(x)) = x,

so the gate is its own inverse. Another important reversible gate is the CNOT (“Controlled
NOT”) gate. This is a gate that takes two bits as input, know as the control bit — let us call
it x — and a target bit, which we call y. The CNOT gate leaves x unchanged, and maps y into
y + x mod 2: CNOT(x, y) = (x, x⊕ y), where we have introduced the notation

x⊕ y := x+ y mod 2

Equivalently, the CNOT gate applies NOT to y iff x = 1. We represent the CNOT gate by:

One of the reasons why this gate is particularly important because it allows us to copy the
control bit x in a reversible way by setting y = 0:

In doing this we need an ancillary bit. This is an extra bit initialised to a constant value,
independent of the input value of the function. By convention we’ll often take the input bit to
be initialised to 0.

Remark 1.1.1. Jumping ahead a little bit, we will see in the next section that the CNOT gate
can be promoted to a quantum gate. This may be a little surprising: we have just seen that
the CNOT gate effectively duplicates the input bit x, but the no-cloning theorem tells us that
quantum states cannot be cloned. How can this be? The resolution of this puzzle is that for
generic input states the quantum version of the CNOT gate entangles, instead of cloning: say
that our input state is |x⟩ ⊗ |0⟩, with |x⟩ = α|0⟩ + β|1⟩. We can equivalently say that our
input state is α|00⟩ + β|10⟩. After applying quantum version of the the CNOT gate we have
α|00⟩+β|11⟩, which for generic |x⟩ is an entangled state, rather than the product state |x⟩⊗|x⟩
forbidden by the no-cloning theorem.

✎ Exercise 1.1. Given the family of input states |θ⟩ ⊗ |0⟩, with |θ⟩ = cos(θ)|0⟩+ sin(θ)|1⟩,
compute the entanglement entropy of CNOT(|θ⟩⊗|0⟩) = cos(θ)|00⟩+sin(θ)|11⟩ and |θ⟩⊗|θ⟩.

1.2 Universal gate sets 8

The CNOT gate admits an infinite set of generalisations, the CnNOT gates, which have n
control bits and apply NOT to a single target bit if all of the control bits are equal to 1. More
algebraically:

CnNOT(x1, . . . , xn, y) = (x1, . . . , xn, (x1AND . . .ANDxn)⊕ y) .

We can view the NOT and CNOT gates as the n = 0 and n = 1 special cases of this sequence.
All members of this family are reversible, since (CnNOT)2 = id.
The n = 2 member of this family, sometimes knows as the CCNOT gate, “Controlled Con-

trolled NOT”, or Toffoli gate, is particularly interesting for reasons that will become clear
below. Graphically we represent this gate by

✎ Example 1.1.3. Here is the circuit diagram for the function f(x) = x+ 2 mod 16.

In this circuit, the right-most gate flips the second bit, adding 2 if it was initially 0. If it was
initially, 1, we need to carry over to the next bit; this is implemented by the previous gate, a
CNOT gate, which flips the third bit if the second bit was 1. Further carries are implemented
by the CCNOT gate, which flip the target bit if all the control bits are 1. Because we are using
just four bits, our addition works modulo 16: when we apply this circuit to 14 = (1110)2 we get
0 = (0000)2, and similarly 15 = (1111)2 gets mapped to 1 = (0001)2.

1.2 Universal gate sets

If we wanted to promote the circuit in example 1.1.3 to work on five bits, in order to represent
the function f(x) = x + 2 mod 32, this could be done by using a CCCNOT gate. But this
is somewhat unsatisfactory: does it mean that in order to implement arbitrary logic functions
in the circuit model we need to keep having to come up with arbitrarily complicated gates?
Fortunately, this is not the case: we will now show that it is possible to represent any function
f : {0, 1}n → {0, 1}m from m bits to n bits in terms of a finite number of gates.

1.2 Universal gate sets 9

Definition 1.2.1. A finite set of gates which suffices to construct arbitrary functions f : {0, 1}n →
{0, 1}m is known as a Universal Gate Set (or UGS).

We will give multiple examples of universal gate sets below. In order to simplify the proof
below, we write f in components

f(xn−1, . . . , x0) = (fm−1(xn−1, . . . , x0), . . . , f0(xn−1, . . . , x0)) ,

and show that each of the components fa : {0, 1}n → {0, 1}, a = 0, . . . ,m− 1, mapping n bits
to a single bit can be built out of the given universal gate set. Once we show that any function
fa : {0, 1}n → {0, 1} can be built out of the gates in the UGS we can then build f itself as
follows:

where we have shown the m = 2 case for simplicity. Note that in order to be able to decompose
an arbitrary m-output function into single output functions we need a way of copying input
bits. Here we have chosen to do so by using a CNOT gate and ancillary bits, so it should be
the case that CNOT can also be derived from (or a member of) our universal gate set. This
will be the case for all the cases we discuss below.

Proposition 1.2.2. {NOT, AND, OR, CNOT} are a universal gate set.

Proof. Because CNOT is a member of our UGS, we can apply the splitting construction we
have just discussed, and restrict our attention to functions f : {0, 1}n → {0, 1} producing a
single bit.
We work by induction, starting from the base case n = 1. As we described above, there

are four functions from one bit to one bit. The identity function f(x) = x and the negation
f(x) = x ⊕ 1 = NOT(x) are clearly realisable using gates in our universal gate set, so we are
left with the constant functions f(x) = 0 and f(x) = 1. These can be constructed using the
AND gate and an ancillary bit. For instance, for f(x) = 0 we can take the circuit

1.2 Universal gate sets 10

and for f(x) = 1 the same circuit composed with a NOT gate. So the set of gates given above
is universal for n = 1.

Assume now that we know that the set of gates above is universal for n input bits, and let us
show that it is then universal for n+1 input bits. We can view any function f(xn, xn−1, . . . , x0)
of n+ 1 bits as a pair of functions f(0, xn−1, . . . , x0) and f(1, xn−1, . . . , x0) of n input bits. By
the inductive assumption, these are constructible in terms of the universal gate set. We can
then assemble a circuit computing f(xn, . . . , x0) in terms of the gates in the universal gate set
and f(0, xn−1, . . . , x0), f(1, xn−1, . . . , x0) (which can in turn be assembled out of the gates in
the universal gate set):

This circuit first makes a copy of all of the input bits using CNOT gates and ancillary bits, and
then selects the result of f(1, xn−1, . . . , x0) or f(0, xn−1, . . . , x0) depending on whether xn is 1
or 0. This is the purpose of the AND gates: recall that 0AND x = 0 and 1ANDx = x. Assume
for instance that xn = 1. Then the top AND gate will produce the result f(1, xn−1, . . . , x0),
and the bottom AND gate will produce 0. Using that 0ORx = x, the circuit then produces
f(1, xn−1, . . . , x0). A similar argument shows that the circuit produces f(0, xn−1, . . . , x0) when
xn = 0.

✎ Exercise 1.2. Find a circuit for the Toffoli gate built from these elementary gates.

The universal gate set that we have just discussed is not minimal, and can be reduced to a
smaller set without losing the universality property, as the following easy corollary shows.

Corollary 1.2.4. {CNOT, AND} are a universal gate set.

1.2 Universal gate sets 11

Proof. The NOT gate can be constructed from CNOT by taking the control bit to be an
ancillary bit set to 1:2

In writing this equality, and similar equalities below, we are ignoring an ancillary bit set to 1
on the left hand side, which is unaffected by the NOT operation.
Once we have NOT and AND, we can construct OR using De Morgan’s law, from classical

logic:
NOT (xOR y) = (NOT x)AND (NOT y) .

1.2.1 A reversible universal gate

Interestingly, it is possible to give a universal gate set consisting of a single gate, which is
furthermore reversible. This is the Toffoli (or CCNOT) gate. Given corollary 1.2.4, all we need
to show is that both CNOT and AND can be built out of the Toffoli gate. The CNOT gate
can be constructed similarly to the way we constructed NOT in corollary 1.2.4:

The AND gate is also not difficult to construct

where the equality sign means in this case that after applying the CCNOT gate the value of
the target bit is xAND y.

2This is an exception to our general convention of setting all input ancillary bits to 0. We are defining the
NOT gate in terms of other gates here, so using the NOT gate to flip the input ancillary bit would make our
definition (harmlessly) recursive. This slight infelicity would be avoided by choosing the convention that all
ancillary bits are equal to 1.

1.3 Computational resources & Complexity 12

1.3 Computational resources & Complexity

Different computational problems can have very different resource requirements. Different ways
to do a computation also may require very different resources.
An algorithm is a procedure for performing a calculation; that is, some way to evaluate a

function f(x). In our circuit model, different algorithms are represented by different circuits
which give the same output f(x).
We want to study the resource requirements for a given circuit. There are two important

resource requirements in practice: time and space. In the circuit model, time is represented
by the number of elementary gates, that is the number of operations we have to perform. Space
is represented by the number of bits. We will focus primarily on the first kind of resource.
A nice example is finding the greatest common divisor of two numbers a and b.

• A brute force approach would be to consider each number less than a and b in turn, and
check whether it divides each of a and b. If b < a and b has n bits, there are 2n numbers
we need to check. The resource required for this computation grows exponentially in the
size of the input.

• Euclid’s algorithm provides a more efficient approach. We find the remainder on dividing
a by b, so a = k1b + r1. A theorem in number theory tells us gcd(a, b) = gcd(r1, b).
Then find the remainder on dividing b by r1, so b = k2r1 + r2; by the same theorem
gcd(r1, b) = gcd(r1, r2), and carry on, computing r3 by r1 = k3r2 + r3 etc until the
remainder is zero: rm = km+1rm+1. Then gcd(a, b) = gcd(rm, rm+1) = rm+1. (See
appendix A of Nielsen & Chuang for the relevant proofs.)

This algorithm is polynomial in the input size n. This is because ri+2 < ri/2, so there are
at most 2n steps in the procedure, and (as we will not show) the divide and remainder
operation at each step requires at most n2 operations, so the worst-case time to run is of
order 2n3.

Proof that ri+2 < ri/2: either ri+1 < ri/2, or ri+1 > ri/2 and hence ri = 1× ri+1 + ri+2,
so ri+2 = ri − ri+1 < ri/2.

We want to classify algorithms into complexity classes, based on their resource require-
ments as a function of the input size.
We classify algorithms by finding an upper bound on the time it takes the algorithms to run

as a function of the size n of the input to the algorithm. That is, we focus on the worst case
scenario; there may be instances where the algorithm will work more quickly.
Our first two classes are

• P, algorithms which run in time at most polynomial in the size of the input.

• EXP, algorithms which run in time at most exponential in the size of the input.

1.3 Computational resources & Complexity 13

One reason this very coarse division into P and EXP is a useful classification of algorithms
is that it is believed to be independent of the details of our model of computation. This is
expressed by the strong Church-Turing thesis: Any model of computation can be simulated on
a universal computer with at most a polynomial increase in the number of elementary operations
involved, so whether an algorithm is in P is independent of our model of computation.
For an n-bit input, a lookup table of f(x) for all values of x would have 2n entries, and looking

up f(x) in the table provides an algorithm in EXP. Thus, exponential time is the worst case
scenario, we don’t need anything bigger.
For a given problem, this divides algorithms into good or bad (useful and not so useful).

We’d like to also classify problems, into hard and easy. For a given problem, we say that the
problem is in P if we know an algorithm in P to solve it. It’s hard to prove that a problem is
not in P: not knowing an efficient algorithm doesn’t mean that one doesn’t exist!
Our focus will mostly be on the time it takes to run an algorithm, but a similar classification

exists when we consider space. We can define

• PSPACE, algorithms which require space at most polynomial in the size of the input.

Obviously P ⊆ PSPACE. It is believed that P ̸= PSPACE for problems.
An important example of a problem for which we don’t have an algorithm in P is factoring:

given a number x, finding its prime factors. However, if we are given a putative factorization
x = pn1

1 p
n2
2 . . ., there is a polynomial-time algorithm to multiply the RHS and see if we get x.

This example motivates another class:

• NP, given a problem and a candidate solution, algorithms which run in time at most
polynomial in the size of the input exist which can verify the solution.

It is believed that P ̸= NP for problems; this is one of the fundamental problems in the
classification of computational complexity.
There are problems which are NP-complete, which means that any problem in NP can

be reduced to them with only a polynomial increase in resources. Thus, finding an efficient
algorithm (in P) for an NP-complete problem would allow one to solve any problem in NP
efficiently, and hence would show P = NP.
Probabilistic classical computers: For some problems, introducing a random element

leads to more efficient algorithms. We allow the machine’s behaviour to also depend on the
value of a random variable. This includes cases where the algorithm does not return the correct
answer with certainty. This is still useful: We can either run the machine multiple times to
increase the probability of correctness, or for problems in NP, use the checker algorithm to
verify the solution. We define the class

• BPP, algorithms which require time at most polynomial in the size of the input to return
an answer correct with probability greater than 3/4 (say) on a probabilistic computer.

14

Obviously P ⊆ BPP.
Probabilistic computing is relevant to us because most quantum algorithms are also proba-

bilistic; they don’t return the correct answer with certainty.
Anything in BPP can be efficiently solved using classical computers. The efficiency gain

from quantum computing will be demonstrated by finding problems for which we do not (yet)
have algorithms in BPP which can be solved efficiently on quantum computers.

2 Quantum Circuits

We turn now to quantum computing. We will introduce a circuit model of quantum computing,
analogous to the classical one we had above. That is, we will consider operations which are
built up out of a set of elementary operations.
The essence of the transition from classical to quantum computing is bits → qubits.
The object quantum computing acts on is a state vector |ψ⟩ in a finite-dimensional Hilbert

space H. We want to represent this state “in terms of qubits”. With no real loss of generality,
we can take H have dimension 2n, and write is as a tensor product H = H0× . . .×Hn−1, where
each of the Hi is a two-dimensional qubit Hilbert space with basis {|0⟩, |1⟩}. H then has a basis

|x⟩ = |xn−1xn−2 . . . x0⟩ = |xn−1⟩ ⊗ |xn−2⟩ . . .⊗ |x0⟩

labelled by n-bit numbers. The general state is then

|ψ⟩ =
2n−1∑

x=0

ψx|x⟩.

Note that specifying a quantum state requires 2n variables ψx; compare the classical case where
the state was an n-bit number x.
A quantum operation is a unitary operator U on the Hilbert space H, U ∈ U(2n). That U is

unitary implies that the vectors |x′⟩ = U |x⟩ are orthonormal, so they form a transformed basis
for H. By linearity, action of U on the computational basis states |x⟩ determines its action
on any state |ψ⟩.
We will consider unitary operations on the n qubits constructed by combining a set of el-

ementary operations which each act just on a few qubits. A key point will be to show that
we can build the action of any unitary operator on H using a simple set of elementary gate
operations. That is, this is a universal model of computation, as in the classical case. This is
is more non-trivial than in the classical case.
We represent the unitary operation by a circuit diagram, as in the classical case, with a wire

for each qubit and the elementary operations represented as ”gates” acting on one or more
qubits. Unlike the classical case, the circuit is not restricted to map basis states to basis states,
which gives us a much larger space of possibilities.

15

Quantum computation contains classical computation

Any classical computation, represented by a reversible circuit, can be implemented as a unitary
operator acting on the corresponding Hilbert space H. This can be seen in two steps:

• The elementary classical gates correspond to unitary operators.

• A classical circuit is some combination of elementary gates acting on a few bits; this maps
to a combination of the corresponding unitary operators each acting on a few qubits,
defining a unitary operator on H.

The classical elementary gates were

• NOT, which maps 0 → 1, 1 → 0; this corresponds to the unitary U =

[
0 1
1 0

]
. We can

see this is unitary by noting U † = U , U2 = I

• CNOT which maps 00 → 00, 01 → 01, 10 → 11, 11 → 10 (with the left bit as the control).
This corresponds to the unitary (in the basis |00⟩, |01⟩, |10⟩, |11⟩)

U =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.0.1)

• CCNOT, which acts trivially on all computational basis states except the last two, which
it exchanges: 110 → 111, 111 → 110. This corresponds to an 8 × 8 matrix which is the

identity apart from a 2× 2 block at bottom right which is NOT, that is
0 1
1 0

.

This establishes that any classical computation can be performed on a quantum computer,
and any reversible circuit defines a quantum unitary operation. This provides us with a rich
set of examples of quantum circuits.
Example: Consider the add 2 classical circuit we had before.

Given a state |x⟩ in the computational basis the output of the circuit is |(x+2)mod2n⟩. For
an arbitrary quantum state |ψ⟩ = ∑

x αx|x⟩, the output is |ψ′⟩ = ∑
x αx|(x + 2)mod2n⟩, with

the same coefficients in the superposition multiplying transformed basis states.

2.1 Basic gates 16

2.1 Basic gates

As with classical circuits, we will build the quantum circuits out of a small number of funda-
mental gates. To realise general unitaries, we need to slightly enlarge the gate set we considered
above. Let us therefore describe some of the basic gates commonly encountered in quantum
circuits and their properties.
Single-qubit gates: Classically, a single bit was either 0 or 1, and the only reversible

possibilities are to do nothing, or to take the NOT of the bit. A single qubit by contrast has a
two-dimensional Hilbert space, and we can act with any 2× 2 unitary matrix U .
We will later use the Bloch sphere representation of a single qubit,

|ψ⟩ = cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩. (2.1.1)

An arbitrary unitary operator can be written up to a phase as some rotation on the Bloch
sphere, U = eiαRn̂(θ), where Rn̂ is the rotation about the axis n̂.
For now, we focus on particular examples of 2 × 2 unitaries we will often use. Important

examples include the Pauli matrices

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (2.1.2)

The first is the analogue of NOT, X|0⟩ = |1⟩, X|1⟩ = |0⟩. Z is a relative phase shift, Z|0⟩ = |0⟩,
Z|1⟩ = −|1⟩, so α|0⟩+β|1⟩ maps to α|0⟩−β|1⟩; recall that while an overall phase is irrelevant in
quantum mechanics, such relative phases carry important information. Classically, something
like Z would not matter, because it’s only non-trivial acting on a superposition of basis states.
[Draw pictures]
It is useful to introduce two other relative phase shifts, which are roots of Z:

S =

[
1 0
0 i

]
, T =

[
1 0
0 eiπ/4

]
, (2.1.3)

so T 2 = S and S2 = Z. Finally, a one-qubit gate we will use all the time is the Hadamard gate,

H =
1√
2

[
1 1
1 −1

]
, (2.1.4)

which maps H|0⟩ = |+⟩ = 1√
2
(|0⟩ + |1⟩), and H|1⟩ = |−⟩ = 1√

2
(|0⟩ − |1⟩). This is really

transforms the computational basis into a different basis.
Two-qubit gates: A fundamental two-qubit gate is the CNOT we saw above. The action

of this gate is crucial because it creates entanglement between the two qubits. Suppose the
control qubit is in a superposition of |0⟩ and |1⟩, so

|ψ⟩ = (α|0⟩+ β|1⟩)⊗ |0⟩, (2.1.5)

2.2 Universal quantum computation 17

then
CNOT |ψ⟩ = (α|0⟩ ⊗ |0⟩+ β|1⟩ ⊗ |1⟩), (2.1.6)

and the output is an entangled state. We can do the calculation easily in matrix notation,
where

|ψ⟩ =

α
0
β
0

 , CNOT |ψ⟩ =

α
0
0
β

 , (2.1.7)

but the entangled nature of the second state is much clearer in the Dirac notation. We can also
have CNOT with the second bit as the control, which acts as X on the first qubit when the
second qubit is |1⟩. In the matrix representation,

U =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , (2.1.8)

and we reverse the picture,

|q1〉 ⊕

|q0〉 •

2.2 Universal quantum computation

We want to show that the circuit model, with circuits built from these basic gates, is universal
for quantum computation; that is, any n-qubit unitary U can be realised as a circuit built from
the basic gates. We work from the top down, starting with a general unitary and decomposing
it in terms of simpler building blocks.
We first show that any unitary operation can be constructed from transformations which

are non-trivial only in one 2× 2 block; that is, which act non-trivially on the two-dimensional
subspace spanned by two basis states |s⟩, |t⟩.
Let’s see explicitly how it works in the 3 × 3 case. In this case it should sound familiar: if

my unitaries were real matrices, this would be the statement that any rotation can be written
as a combination of rotations in two-dimensional planes. Given a unitary

U =

a d g
b e h
c f j

 , (2.2.1)

2.2 Universal quantum computation 18

We will find unitaries U1, U2, U3 which each have a non-trivial 2×2 block such that U3U2U1U =
I. We choose U1 to have only the first 2× 2 block non-trivial, and to be such that

U1U =

a′ d′ g′

b′ e′ h′

c′ f ′ j′

 , (2.2.2)

has b′ = 0. If b = 0, we can simply take U1 = I. If b ̸= 0, we take

U1 =

α∗ β∗ 0
β −α 0
0 0 1

 , (2.2.3)

with α = a√
|a|2+|b|2

, β = b√
|a|2+|b|2

, so that

b′ = βa− αb = 0. (2.2.4)

We then similarly choose

U2 =

α∗ 0 β∗

0 1 0
β 0 −α

 , (2.2.5)

such that

U2U1U =

a′′ d′′ g′′

b′′ e′′ h′′

c′′ f ′′ j′′

 (2.2.6)

has b′′ = c′′ = 0, and a′′ = 1. This requires α = a′√
|a′|2+|c′|2

, β = c′√
|a′|2+|c′|2

, so

c′′ = βa′ − αc′ = 0. (2.2.7)

Unitarity of U2U1U then also implies d′′ = g′′ = 0, so

U2U1U =

1 0 0
0 e′′ h′′

0 f ′′ j′′

 ≡ U †

3 , (2.2.8)

where U3 is non-trivial only in the bottom 2× 2 block.
If we had started with an N ×N matrix U , we can find N −1 unitaries U1, U2 . . . UN−1 where

Ui is non-trivial just in the first and i+ 1th row such that UN−1 . . . U1U has first row and first
column 10 . . . 0, and a non-trivial N − 1 × N − 1 block. So by induction, we can reduce any
unitary to a product of unitaries Ui which are each non-trivial just in two rows and columns.
That is, the individual unitaries Ui act on a two-dimensional subspace of the Hilbert space,
spanned by some pair of basis states |s⟩, |t⟩.

2.2 Universal quantum computation 19

It takes 1
2
N(N − 1) such unitaries to represent the generic U . We are interested in U acting

on a set of n qubits, so N = 2n, and we need ∼ 4n elementary unitaries. This indicates that
the complexity of the generic unitary will be exponential in the number of qubits, just as in
the classical case.

• Any N×N unitary U can be realised as a product terms of 1
2
N(N−1) unitaries Ui which

act on a two-dimensional subspace spanned by a pair of basis states |s⟩, |t⟩.

For example, in the 4× 4 case,

U =

∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
0 0 0 1

∗ 0 ∗ 0
0 1 0 0
∗ 0 ∗ 0
0 0 0 1

∗ 0 0 ∗
0 1 0 0
0 0 1 0
∗ 0 0 ∗

1 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 1

1 0 0 0
0 ∗ 0 ∗
0 0 1 0
0 ∗ 0 ∗

1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗

 ,

where the stars represent the entries of 2× 2 unitary matrices.

2.2.1 Representing the Ui as circuits

We now want to construct a circuit representations for each of the Ui acting on some subspace
span(|s⟩, |t⟩). Let’s do this first in the 4× 4 case and then generalise.

•

1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗

: This acts on the subspace spanned by |10⟩, |11⟩. We define this to be a

controlled-unitary gate, by analogy to CNOT: this operates on the target bit with a
2×2 unitary U if the control bit is 1, and the identity if the control bit is 0. We represent
such controlled-unitary operations as

|q1〉 •

|q0〉 U

•

∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
0 0 0 1

: This acts on the subspace spanned by |00⟩, |01⟩. This is the same

controlled-unitary, but acting if the control bit is 0 and not if the control bit is 1. This is
realised by adding NOTs to the control bit:

|q1〉 X • X

|q0〉 U

2.2 Universal quantum computation 20

Note that in the 2-qubit Hilbert space, NOT on q1 is represented by

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (while

NOT on q0 is

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

), so this circuit corresponds to the matrix multiplication

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1 0 0 0
0 1 0 0
0 0 ∗ ∗
0 0 ∗ ∗

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

•

1 0 0 0
0 ∗ 0 ∗
0 0 1 0
0 ∗ 0 ∗

: This acts on the subspace spanned by |01⟩, |11⟩. This is just the

controlled-unitary with control and target reversed:

|q1〉 U

|q0〉 •

•

∗ 0 ∗ 0
0 1 0 0
∗ 0 ∗ 0
0 0 0 1

: This acts on the subspace spanned by |00⟩, |10⟩. Again this is a previous

circuit with control and target reversed:

|q1〉 U

|q0〉 X • X

•

1 0 0 0
0 ∗ ∗ 0
0 ∗ ∗ 0
0 0 0 1

: This acts on the subspace spanned by |01⟩, |10⟩. Map this to |01⟩, |11⟩

by CNOT, so the circuit is

|q1〉 • U •

|q0〉 ⊕ • ⊕

2.2 Universal quantum computation 21

•

∗ 0 0 ∗
0 1 0 0
0 0 1 0
∗ 0 0 ∗

: This acts on the subspace spanned by |00⟩, |11⟩. Map this to |00⟩, |10⟩

by CNOT, and use the previous circuit for that case, so the circuit is

|q1〉 • U •

|q0〉 ⊕ X • X ⊕

Thus, we see that for 4× 4, we can give a circuit representation involving a new controlled-
unitary operation for all the Ui. To extend this to the N × N case, first consider the matrix
which acts non-trivially on the subspace spanned by |1 . . . 10⟩ and |1 . . . 11⟩: we define this to
be a multiply-controlled unitary, applying some 2× 2 unitary U to the last qubit if all the
others are 1, and the identity otherwise. For example, in a 4-qubit Hilbert space, if we had a
unitary acting in a subspace spanned by |1110⟩ and |1111⟩, this is

|q3〉 •

|q2〉 •

|q1〉 •

|q0〉 U

In general, if s and t differ in a single bit, and all the other bits are 1, this is a multiply-
controlled unitary with that bit as the target. E.g., for |1011⟩ and |1111⟩, we have

|q3〉 •

|q2〉 U

|q1〉 •

|q0〉 •

If they differ in a single bit, but the others are not all 1, we need NOTs in the circuit to reverse
the control bits which are 0; E.g., for |0001⟩ and |0101⟩, we have

|q3〉 X • X

|q2〉 U

|q1〉 X • X

|q0〉 •

2.2 Universal quantum computation 22

If |s⟩ and |t⟩ don’t differ just in a single digit. We then need to transform the basis in such
a way that they will. We do this by applying multiply controlled NOT gates to flip the bits
of (say) s so that all but one are the same as t. The process of flipping bits one by one to get
from s to t is called a Gray code.
For example, if s = 111 and t = 000, a Gray code (not unique!) is given by the sequence

111, 110, 100, 000. The first step corresponds to a CCNOT gate, which flips the 3rd bit if the
other bits are 11 (and not otherwise). In the second step, we want to flip the second qubit if
the first qubit is 1 and the last is 0. This corresponds to

|q2〉 • •

|q1〉 • ⊕

|q0〉 ⊕ X • X

Then, we act on the subspace spanned by |100⟩ and |000⟩, which is acting with a controlled
unitary on the first qubit when the other two are zero. In total, to act with a unitary whose
2× 2 block is spanned by s = 111 and t = 000, we do

|q2〉 • • U • •

|q1〉 • ⊕ X • X ⊕ •

|q0〉 ⊕ X • • • X ⊕

In summary:

• Any unitary U can be realised by a circuit involving multiply-controlled unitaries which
each act on a single qubit, depending on one or more control qubits.

CCNOT acts like a reversible AND, so given some ancillary qubits initially set to zero, we can
use CCNOT to combine the controls, so all we will need is CCNOT and controlled-unitaries.

|q4〉 • •

|q3〉 • •

|q2〉 • •

|q1〉 • •

|a3〉 ⊕ • • ⊕

|a2〉 ⊕ • • ⊕

|a1〉 ⊕ • ⊕

|q0〉 U

2.2 Universal quantum computation 23

So multiply-controlled unitaries can be realised in terms of controlled-unitary and CCNOT.
In the context of quantum computing, CCNOT is referred to as the Toffoli gate. Because

of its central role in this simplification, it is sometimes taken as one of the elementary gates.
However, I decided not to, so I need to reduce it to simpler components.

|q2〉 • • • • T

|q1〉 • • T † ⊕ T † ⊕ S

|q0〉 H ⊕ T † ⊕ T ⊕ T † ⊕ T H

Verifying that this reproduces Toffoli (i.e., CCNOT) is Q7 on the homework.
In summary, at this stage

• Any unitary U can be realised by a circuit involving controlled-unitary operations, with
a single control and target qubit.

Finally, we can relate any controlled unitary to CNOT and single qubit unitaries. To do this,
we need a result we will prove in the next section, that given a 2 × 2 unitary U , there exist
unitary operators A,B,C such that ABC = I and U = eiαAXBXC, for some phase α. The
appropriate circuit realising the controlled-unitary is then:

|q1〉 • •
[
1 0
0 eiα

]

|q0〉 C ⊕ B ⊕ A

Example: Controlled-Z. Here we can use the fact that Z = HXH and HH = I to write a
simplified version,
|q1〉 •

|q0〉 Z =

|q1〉 •

|q0〉 H ⊕ H .
To check this, we can do the matrix multiplication, or consider the action on the computational
basis states. It is immediately obvious that |0⟩⊗ |0⟩ → |0⟩⊗ |0⟩, |0⟩⊗ |1⟩ → |0⟩⊗ |1⟩, as acting
with H twice does nothing. If we start with |1⟩ ⊗ |0⟩, H gives us |1⟩ ⊗ 1√

2
(|0⟩ + |1⟩), and the

controlled-NOT gives |1⟩ ⊗ 1√
2
(|1⟩ + |0⟩), no effect, which H maps back to |1⟩ ⊗ |0⟩. Starting

with |1⟩ ⊗ |1⟩, H gives us |1⟩ ⊗ 1√
2
(|0⟩ − |1⟩), and the controlled-NOT gives |1⟩ ⊗ 1√

2
(|1⟩ − |0⟩),

so H gives |1⟩ ⊗ (−|1⟩), as desired.
So finally, the key result of this section is that

• Any unitary U can be realised in terms of single-qubit unitaries and CNOT.

2.3 Single-qubit unitaries 24

This universality result is quite beautiful, and remarkable: we can build arbitrary matrices
acting on n qubit Hilbert spaces using just CNOT and arbitrary unitaries acting on individual
qubits.
This result is not yet a complete reduction to the elementary gate set we started with. In

the next section, we will consider the single qubit unitaries in more detail, and see that we can
approximate a given unitary arbitrarily closely using a discrete set of transformations.
Complexity: Before turning to this, we consider the dependence of the number of gates on

the number of qubits. The most important factor comes from the first step, where we broke U
up into unitaries Ui with a single non-trivial 2× 2 block. We saw that this generically involves
1
2
N(N − 1) unitaries Ui. As N = 2n, this is exponential in the number of qubits, ∼ 22n.

The Gray code can require n Cn−1NOTs, and turning these multiply controlled unitaries into
controlled unitaries requires n CCNOT gates, so overall the typical U needs of order n222n

operations, exponential in the number of qubits. Dealing with the single-qubit unitaries will
change the coefficient, but will not introduce any additional scaling with n.
Our focus will be on identifying problems which do have tractable implementations in the

quantum circuit model. The complexity class corresponding to this is

• BQP, Problems for which there is a unitary operation U which gives the answer with
bounded probability which can be realised by a quantum circuit with a polynomial number
of elements.

Quantum computing is at least as powerful as classical computing, as any polynomial-size
reversible classical circuit could be implemented on qubits. so BPP ⊆ BQP. The key question
in quantum computing is if there are interesting problems with solutions in BQP not in BPP.

2.3 Single-qubit unitaries

Above, we reduced arbitrary unitary operators on the Hilbert space of n qubits to a combination
of CNOT operations and single-qubit unitaries. Now let us discuss the single-qubit unitaries.
We want to represent these as a product of a set of elementary gates. Unlike in classical
computation, where the single-bit operations were inherently discrete, we still have a continuous
family of single-qubit unitaries to consider. The continuity of quantum operations is an essential
difference from classical operations.
A key point is then that we can approximate a continuous operation by a product of a set

of elementary operations. A useful example is provided by 1× 1 unitaries, U = eiθ. The space
of such unitaries is rotations in the plane, that is the unit circle S1. Given a rotation by some
angle α which is not a rational multiple of π, The set {nα|n ∈ Z} is dense in the circle. That
is, we can approximate any rotation to any accuracy we wish by taking n rotations by α for
some n.
We now show that the same is true for 2× 2 unitaries: they can be thought of as rotations of

the sphere, and an arbitrary rotation can be approximated by products of elementary rotations.

2.3 Single-qubit unitaries 25

Single-qubit unitaries are rotations in the Bloch sphere representation: In the
Bloch sphere representation,

ρ̂ =
1

2
(I + r⃗ · σ⃗) = 1

2
(I + xX + yY + zZ), (2.3.1)

a pure state is specified by a vector r⃗ on the unit two-sphere. A unitary transformation U acts
as ρ→ UρU †. In question 4 on the problem sheet, you show that the unitary transformation

Rn̂(θ) = cos(θ/2)I − i sin(θ/2)(nxX + nyY + nzZ) (2.3.2)

corresponds to a rotation of r⃗ by an angle θ around the axis n⃗ in R3. In particular, we can
think of the Pauli matrices X, Y , Z as generating rotations around the x, y, z axes:

Rx(θ) = e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

(
cos θ/2 −i sin θ/2

−i sin θ/2 cos θ/2

)
(2.3.3)

Ry(θ) = e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =

(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
(2.3.4)

Rz(θ) = e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =

(
e−iθ/2 0
0 eiθ/2

)
(2.3.5)

We want to show that any single-qubit unitary U can be written as U = eiαRn̂(θ) for some
choice of phase α, axis n̂ and angle θ. Note that the phase α drops out of the action on ρ̂:

U : ρ̂→ Uρ̂U † = R†
n̂(θ)ρ̂Rn̂(θ), (2.3.6)

so the rotation of the Bloch sphere is the essential physical part of the unitary transformation.
To see this, let’s work out a parametrisation of arbitrary unitaries. Write U as

U =

(
σ β
γ δ

)
(2.3.7)

The requirement that the first row is a unit vector implies |σ|2 + |β|2 = 1, so (σ, β) =
(eiϕ1 cos(θ/2),−eiϕ2 sin(θ/2)) for some reals θ, ϕ1, ϕ2. Requiring that the first column is also
a unit vector gives |σ|2 + |γ|2 = 1, so γ = eiϕ3 sin θ/2, and making the second row a unit vector
|γ|2 + |δ|2 = 1, so δ = eiϕ4 cos θ/2. Thus,

U =

(
eiϕ1 cos θ/2 −eiϕ2 sin θ/2
eiϕ3 sin θ/2 eiϕ4 cos θ/2

)
. (2.3.8)

To make the two rows orthogonal, we need ϕ1−ϕ3 = ϕ2−ϕ4 = −φ2. To make the two columns
orthogonal, we need ϕ1 − ϕ2 = ϕ3 − ϕ4 = −φ1. These can be solved by writing

ϕ1 = α− φ1/2− φ2/2 (2.3.9)

ϕ2 = α− φ1/2 + φ2/2 (2.3.10)

ϕ3 = α + φ1/2− φ2/2 (2.3.11)

ϕ4 = α + φ1/2 + φ2/2 (2.3.12)

2.3 Single-qubit unitaries 26

Thus a convenient parametrisation of an arbitrary unitary U ∈ U(2) is

U = eiα
(
e−iφ1/2−iφ2/2 cos θ/2 −e−iφ1/2+iφ2/2 sin θ/2
eiφ1/2−iφ2/2 sin θ/2 eiφ1/2+iφ2/2 cos θ/2

)
. (2.3.13)

This is equivalent to

U = eiα
(
e−iφ1/2 0

0 eiφ1/2

)(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)(
e−iφ2/2 0

0 eiφ2/2

)
(2.3.14)

which is just
U = eiαRz(φ1)Ry(θ)Rz(φ2) (2.3.15)

This product of three rotations is itself a rotation, so this establishes that any unitary U can
be written as a rotation in the Bloch sphere up to an overall phase. This representation of the
unitary has a useful generalisation: given two non-parallel unit vectors n,m, any unitary can
be written as

U = eiαRn(β)Rm(γ)Rn(δ) (2.3.16)

for some values of α, β, γ, δ. The proof is left as an exercise.
We can now demonstrate the result we used earlier: Given a 2 × 2 unitary U , there exist

unitary operators A,B,C such that ABC = I and U = eiαAXBXC, for some phase α. This
is simply achieved by setting

A = Rz(φ1)Ry(θ/2), B = Ry(−θ/2)Rz(−(φ1 + φ2)/2), C = Rz((φ2 − φ1)/2. (2.3.17)

Clearly ABC = I. The crucial point is

XBX = XRy(−θ/2)XXRz(−(φ1 + φ2)/2)X = Ry(θ/2)Rz((φ1 + φ2)/2), (2.3.18)

which you should check; then U = eiαRz(φ1)Ry(θ)Rz(φ2) = eiαAXBXC.
Single-qubit unitaries in terms of elementary gates: We wanted to show that we

could approximately build any single-qubit unitary by a combination of our elementary gates.
Unitaries are rotations in the Bloch sphere. The Bloch sphere rotation can be written as
a combination of three rotations Rn(β)Rm(γ)Rn(δ), so if we can construct rotations Rn(θ1),
Rm(θ2) about any two distinct axes, where θ1/2π, θ2/2π are not rational multiples of π, we
can use these to construct approximations of Rn(β), Rm(γ) for arbitrary angles, and hence
approximately recover an arbitrary unitary.
We wanted to use as elementary gates T and H. Now

T =

(
1 0
0 eiπ/4

)
= eiπ/8

(
e−iπ/8 0
0 eiπ/8

)
= eiπ/8Rz(π/4),

and

H =
1√
2

(
1 1
1 −1

)
=

1√
2
(X + Z) = −iRn(π),

2.4 Measurement 27

where n = 1√
2
(1, 0, 1). These are rational rotations, but

HT = −ieiπ/8 1√
2

(
sin π/8 + i cosπ/8 − sin π/8 + i cos π/8
sin π/8 + i cosπ/8 sin π/8− i cosπ/8

)
= −ieπ/8Rn(θ),

where

Rn(θ) =
1√
2
sin π/8I + i

1√
2
cosπ/8(X + tan π/8Y + Z),

so cos θ = 1√
2
sin π/8 and n = [1 + tan2 π/8]−1/2(1, tanπ/8, 1). This gives an irrational angle θ.

Similarly

TH = −ieiπ/8 1√
2

(
sin π/8 + i cos π/8 sinπ/8 + i cosπ/8
− sinπ/8 + i cosπ/8 sin π/8− i cosπ/8

)
= −ieπ/8Rm(θ),

where

Rm(θ) =
1√
2
sinπ/8I + i

1√
2
cos π/8(X − tanπ/8Y + Z),

so cos θ = 1√
2
sin π/8 and n = [1+ tan2 π/8]−1/2(1,− tanπ/8, 1). This is again a rotation about

an irrational angle, in a different axis. Thus, (HT)k(TH)l(HT)m for appropriate integers k, l,m
can approximate any rotation in the Bloch sphere, and hence any single-qubit unitary, up to
an irrelevant overall phase.
Thus, all we need is H, T and CNOT; we can build any desired unitary out of these com-

ponents. This completes the proof of universality of quantum circuits with this gate set for
quantum computation.

2.4 Measurement

Hilbert space is a large place, and the power of quantum computation derives from the fact
that we can use a quantum computer to perform operations on a linear superposition of states
of interest. However, it is essential to remember that the state of a quantum system is not
observable. All we can do is to perform some measurement on the system.
Without any loss of generality, we can restrict our consideration to measurements in the

computational basis, that is, to measuring whether the individual qubits are |0⟩ or |1⟩. This is
represented in a circuit by attaching a pointer to each of the qubits to be measured.

|q0〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

If we wanted to do a measurement in a different basis, this can be achieved by first acting
with a unitary to transform the basis we want to measure in to the computational basis, and
then measuring in the computational basis.
Thus, the output of a quantum computer looks the same as a classical one: some string of

bits s, and the quantum system in the corresponding basis state |s⟩.
Example: Measuring an operator. Suppose we have a single-qubit operator U , with eigen-

values ±1, so that it is both Hermitian and unitary, and we want to measure it; that is, given

28

an input state |ψin⟩, we seek to obtain a measurement result giving one of the two eigenvalues
and projecting |ψin⟩ to the corresponding eigenstate.
This is realised by the following circuit:

|q0〉 H • H

|ψ〉 U

We can see this by following the progression of the state through the system: we start in
|0⟩ ⊗ |ψin⟩. Acting with H takes us to 1√

2
(|0⟩ + |1⟩) ⊗ |ψin⟩. Acting with controlled-U gives

1√
2
(|0⟩ ⊗ |ψin⟩+ |1⟩ ⊗ U |ψin⟩). Finally, acting with H again gives

1

2
[(|0⟩+ |1⟩)⊗ |ψin⟩+(|0⟩− |1⟩)⊗U |ψin⟩] =

1

2
|0⟩⊗ (1+U)|ψin⟩+

1

2
|1⟩⊗ (1−U)|ψin⟩. (2.4.1)

But 1
2
(1 + U) is the projector to the +1 eigenspace of U , and 1

2
(1− U) is the projector to the

−1 eigenspace of U . If we write |ψin⟩ = α|U+⟩+β|U−⟩, with U |U±⟩ = ±|U±⟩, The output state
is

α|0⟩ ⊗ |U+⟩+ β|1⟩ ⊗ |U−⟩, (2.4.2)

So the result of the measurement is 0 with probability |α|2, giving the plus eigenstate |U+⟩,
and 1 with probability |β|2, giving the minus eigenstate |U−⟩.

3 Quantum error correction

So far, we have assumed that everything works perfectly. Of course this is not the case in
reality; the physical systems representing our qubits will interact with their environment, and
our implementation of the unitary operators will also not be perfect, so the state of our system
will not always be what we want. Worse, it may not have a state on its own, because it
has become entangled with the environment. Our interest here will not be in the difficult
engineering problem of how to reduce these sources of errors, but in the conceptual point that
we can make it possible to recover from errors by storing information redundantly.
For classical computing, errors are not a big problem. This is fundamentally because we

store information digitally, and we use large enough physical systems to store zeros and ones
that the probability that the systems configuration will be changed from that representing
zero to that representing one by noise is very small. Errors are more of a problem in classical
communication, where we use noisier, less controlled systems than in computation (radio waves
or fiber optic cables).
Classically, we can recover from errors by storing the information redundantly. For example,

if there is some small probability p that any given bit will be flipped from 0 to 1 (or vice-versa)
in transmission, we can reduce the error probability by transmitting the string 000 to represent
0, and 111 to represent 1. If say 001 is received, we apply majority rule, assuming a single bit

3.1 Correcting single bit flips 29

flip has occurred, and read this as 0. The chance that in fact two bit flips occurred and the
transmitted bit was in fact 1 is now p2, so our error probability is reduced. There is a beautiful
classical theory of how to efficiently transmit information, introducing just enough redundancy
to overcome the noise, but let us move on to the quantum case.
Challenges for quantum error correction:

• Given a state |ψ⟩, we do not have the ability to make copies of |ψ⟩.

• Errors in |ψ⟩ will be continuous and not discrete; the state will evolve into some state
|ψ⟩+ ϵ|χ⟩.

• To check for errors, we would need to measure something; but we know measurement of
a quantum system alters the state.

Nonetheless, we will see that a version of redundant encoding, called a code subspace, will enable
us to recover from quantum errors.
The key assumption is that errors affect only a single qubit; that is, the physical realisation of

the separate qubits are assumed to be well enough separated that errors cannot simultaneously
affect more than one qubit.

3.1 Correcting single bit flips

We first consider a simplified situation, where we imagine the only kind of error that can occur
is a flip of an individual qubit, as in the classical case. So we suppose that each qubit will have,
with some probability p, the not gate X applied. If we encoded a state

|ψ⟩ = α|0⟩+ β|1⟩ (3.1.1)

on a single qubit, this would be corrupted if X is applied. |ψ⟩ → α|1⟩+ β|0⟩.
The key idea of quantum error correction is to instead encode the desired state in a code

subspace. We encode each qubit as three qubits, as in the classical case above. We map the
logical qubit |0̄⟩ to the physical state |000⟩, and |1̄⟩ to the physical state |111⟩, so the state

|ψ⟩ = α|0̄⟩+ β|1̄⟩ = α|000⟩+ β|111⟩. (3.1.2)

Thus, the state we want to represent lives in the two-dimensional subspace of the eight-
dimensional Hilbert space of three qubits spanned by |000⟩ and |111⟩. We can prepare the
state (3.1.2) from a single-qubit state (3.1.1) by acting with CNOT gates

|q2〉 = |ψ〉 • •

|q1〉 = |0〉 ⊕

|q0〉 = |0〉 ⊕

3.1 Correcting single bit flips 30

A single bit flip can map this state to

α|001⟩+ β|110⟩, α|010⟩+ β|101⟩, α|100⟩+ β|011⟩. (3.1.3)

These states are all orthogonal to the original state and to each other. That is, each of them
lies in a different, orthogonal, two-dimensional subspace of the three qubit Hilbert space. This
is the essence of the encoding. Since different errors map to different orthogonal subspaces, we
can make a measurement to determine which of these subspaces we are in without affecting the
coefficients α, β parametrising our state.
The different subspaces can be distinguished by error syndromes: operators chosen so that

the different subspaces are eigenspaces of the operators with different eigenvalues. For this case,
syndromes are formed from Pauli Z, which has eigenvalue +1 on |0⟩ and −1 on |1⟩. Calling the
three qubits 0, 1, 2 consider for example Z0Z1 and Z0Z2. (Z1Z2 = Z0Z1Z1Z2 is not independent,
so we don’t need to consider it separately.) We can easily compute

Z0Z1|000⟩ = |000⟩, Z0Z1|111⟩ = |111⟩, Z0Z2|000⟩ = |000⟩, Z0Z2|111⟩ = |111⟩, (3.1.4)

so the original subspace is the (+1,+1) eigenspace,

Z0Z1|001⟩ = −|001⟩, Z0Z1|110⟩ = −|110⟩, Z0Z2|001⟩ = −|001⟩, Z0Z2|110⟩ = −|110⟩,
(3.1.5)

so this is the (-1,-1) eigenspace,

Z0Z1|010⟩ = −|010⟩, Z0Z1|101⟩ = −|101⟩, Z0Z2|010⟩ = |010⟩, Z0Z2|101⟩ = |101⟩,
(3.1.6)

so this is the (-1, +1) eigenspace, and

Z0Z1|100⟩ = |100⟩, Z0Z1|011⟩ = |011⟩, Z0Z2|100⟩ = −|100⟩, Z0Z2|011⟩ = −|011⟩,
(3.1.7)

so this is the (+1,-1) eigenspace.
Thus, if the state |ψ⟩ is mapped to

(1− ϵ)|ψ⟩+ δ1X2|ψ⟩+ δ2X1|ψ⟩+ δ3X0|ψ⟩ (3.1.8)

by some single-qubit error, we can detect the error by measuring Z0Z1 and Z0Z2. This will
project the state to one of the four possibilities

|ψ⟩, X2|ψ⟩, X1|ψ⟩ X0|ψ⟩, (3.1.9)

and the measured eigenvalues tell us which one. Applying I,X2, X1, X0 respectively gives us
back the original state |ψ⟩.
We have chosen subspaces such that the error will move us out of the code subspace into an

orthogonal space without distorting the encoded state; measuring the syndromes then projects

3.1 Correcting single bit flips 31

us into a definite subspace, which we can then rotate back to the original subspace by an
appropriate operation.
In quantum circuit terms, the measurement of a syndrome is carried out as in the example in

section 2.4. For example, measurement of Z0Z2 is realised by the measurement of the ancillary
qubit in this circuit.

|q2〉 Z

|q1〉

|q0〉 Z

|a〉 = |0〉 H • • H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Measuring 0 corresponds to the +1 eigenvalue of Z0Z2, and measuring 1 corresponds to the −1
eigenvalue. A simpler circuit that realises the same operation is

|q2〉 •

|q1〉

|q0〉 •

|a〉 = |0〉 ⊕⊕
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

Exercise: check these are equivalent.
We want to apply an appropriate correction conditional on the result of the measurement.

We don’t actually need to perform a measurement to do so; this can be expressed as a controlled
unitary, conditional on the value of the ancilla. So the circuit below performs error correction
for our three qubit code. The errors are transferred to the ancillary bits, whose final state is
dependent on the error. The role of a measurement would be to reset these ancilla so that they
can be re-used.

The above three-qubit code is the most economical way to recover from bit flips on single
qubits. If we wanted to construct a two qubit code, we would need three orthogonal subspaces

3.2 Correcting general single qubit errors 32

(one for |ψ⟩, one for X0|ψ⟩, one for X1|ψ⟩), but the two qubit Hilbert space is only four
dimensional, so there’s not enough room! But we can do it with any larger number of bits.
In general we need n + 1 orthogonal two-dimensional subspaces, which is possible in the 2n

dimensional n qubit Hilbert space so long as 2n−1 ≥ n + 1, which is true for all n ≥ 3. For
larger numbers of qubits, we have more space, which could enable us to correct for more errors.

3.2 Correcting general single qubit errors

The generalisation of the above argument to general single qubit errors is conceptually straight-
forward. If we imagine the error consists of acting with some arbitrary unitary operation Ui on
one of the physical qubits, we can use the Bloch sphere rotation representation to write

Ui = eiI + aiXi + biYi + ciZi (3.2.1)

for some coefficients ai, bi, ci, ei. So if we have a state |ψ⟩ of a single logical qubit encoded in
an n-qubit Hilbert space, the action of a single qubit error on a given qubit i transforms |ψ⟩ to

(1− ϵ)|ψ⟩+ aiXi|ψ⟩+ biYi|ψ⟩+ ciZi|ψ⟩. (3.2.2)

Thus, we need to encode |ψ⟩ in a code subspace such that Xi|ψ⟩, Yi|ψ⟩ and Zi|ψ⟩ all live
in orthogonal two-dimensional subspaces for each i, with appropriate error syndromes whose
measurement projects the state into one of the subspaces. This will also allow us to recover
from entanglement with the environment. If the error depends on the state of the environment,
the state after an error occurs will be entangled,

|e1⟩ ⊗ |ψ⟩+
∑

i

|e2i⟩ ⊗Xi|ψ⟩+ |e3i⟩ ⊗ Yi|ψ⟩+ |e4i⟩ ⊗ Zi|ψ⟩. (3.2.3)

Measuring the error syndromes will project the qubits to one of the subspaces,

|ψ⟩, Xi|ψ⟩, Yi|ψ⟩ Zi|ψ⟩, (3.2.4)

leaving us in a product state of the qubits and the environment. The value of the error
syndromes should tell us which subspace we are in, so that we can apply an appropriate
correction to return the qubits to their original pre-error state |ψ⟩.
We need 3n + 1 two-dimensional subspaces, corresponding to the 3n distinct single-qubit

error components and the original state |ψ⟩. This requires

2n−1 ≥ 3n+ 1. (3.2.5)

The smallest possible value is thus n = 5. There is a 5-qubit code, but we will discuss instead
the Steane code, which has n = 7, as it’s easier to construct fault tolerant gates (our next
subject) in this case.

3.2 Correcting general single qubit errors 33

The idea again is to construct subspaces such that they are all eigenspaces of some error
syndrome operators. The syndrome operators need to be mutually commuting, so that they
can have simultaneous eigenvectors. I need 22 subspaces, which is a five-digit binary number,
so I could get away with five syndrome operators, but it makes life easier to deal with even
numbers. The Steane code is thus obtained by considering six commuting syndrome operators,

M0 = X0X4X5X6, M1 = X1X3X5X6, M2 = X2X3X4X6, (3.2.6)

N0 = Z0Z4Z5Z6, N1 = Z1Z3Z5Z6, N2 = Z2Z3Z4Z6. (3.2.7)

Exercise: check these all commute. Let us label these asMa, Na, a = 0, 1, 2, while the individual
qubit operators are Xi, etc i = 0, . . . , 6.
The code subspace is spanned by

|0̄⟩ = 1

23/2
(1 +M0)(1 +M1)(1 +M2)|0000000⟩, (3.2.8)

|1̄⟩ = 1

23/2
(1 +M0)(1 +M1)(1 +M2)|1111111⟩ =

1

23/2
(1 +M0)(1 +M1)(1 +M2)X̄|0000000⟩,

(3.2.9)
where

X̄ = X0X1X2X3X4X5X6. (3.2.10)

Since M2
a = I, Ma(1 +Ma) = (1 +Ma), and these states are eigenstates of the Ma with

eigenvalue +1. Since the Na commute with theMa, the Na simply act on |0000000⟩, |1111111⟩,
which are eigenstates of the Na with eigenvalue +1.
The state after the error in (3.2.2) is a superposition with Xi, Yi or Zi acting on a state in

the code subspace. If I act with an Xi, the Ma commute with it, so this remains an eigenstate
of Ma with eigenvalue +1. The Na which contain Zi acting on the same qubit anticommute
with Xi, so acting with Xi flips the Na eigenvalue from +1 to −1. In detail, the Na eigenvalues
are

X0 : (−1, 1, 1), X1 : (1,−1, 1), X2 : (1, 1,−1), X3 : (1,−1,−1), (3.2.11)

X4 : (−1, 1,−1), X5 : (−1,−1, 1), X6 : (−1,−1,−1) (3.2.12)

Similarly, if I act with Zi, the Na still have eigenvalue +1, while the eigenvalue of the Ma

containing the Xi acting on the same qubit flips from +1 to −1. In detail, the Ma eigenvalues
are

Z0 : (−1, 1, 1), Z1 : (1,−1, 1), Z2 : (1, 1,−1), Z3 : (1,−1,−1), (3.2.13)

Z4 : (−1, 1,−1), Z5 : (−1,−1, 1), Z6 : (−1,−1,−1) (3.2.14)

Finally, acting with the Yi flips the eigenvalue of both Ma containing the Xi acting on that
qubit and the Na containing the Zi acting on that qubit. The Ma = Na eigenvalues are

Y0 : (−1, 1, 1), Y1 : (1,−1, 1), Y2 : (1, 1,−1), Y3 : (1,−1,−1), (3.2.15)

3.2 Correcting general single qubit errors 34

Y4 : (−1, 1,−1), Y5 : (−1,−1, 1), Y6 : (−1,−1,−1) (3.2.16)

Given a state of the form (3.2.2), measuring the Ma, Na will then project it onto one of
the 22 components where a single error (or no error) has definitely acted, and acting with the
appropriate single-qubit operator will return us to the original state in the code subspace.
Note that although errors apply arbitrary single-qubit operators, we do not have to be able

to apply arbitrary operators to correct errors: the syndrome measurement projects us onto the
component of the state where one of the Pauli matrices has acted.
The basis states in the code subspace are explicitly

|0̄⟩ =
1

23/2
(1 +X0X4X5X6)(1 +X1X3X5X6)(1 +X2X3X4X6)|0000000⟩ (3.2.17)

=
1

23/2
(1 +X0X4X5X6)(1 +X1X3X5X6)(|0000000⟩+ |1011100⟩ (3.2.18)

=
1

23/2
(1 +X0X4X5X6)(|0000000⟩+ |1101010⟩+ |1011100⟩+ |0110110⟩) (3.2.19)

=
1

23/2
(|0000000⟩+ |1110001⟩+ |1101010⟩+ |0011011⟩ (3.2.20)

+|1011100⟩+ |0101101⟩+ |0110110⟩+ |1000111⟩) (3.2.21)

and

|1̄⟩ = X̄|0̄⟩ = 1

23/2
(|1111111⟩+ |0001110⟩+ |0010101⟩+ |1100100⟩ (3.2.22)

+|0100011⟩+ |1010010⟩+ |1001001⟩+ |0111000⟩) (3.2.23)

A simple quantum circuit that converts a single qubit state (α|0⟩+ β|1⟩)|0⟩6 to α|0̄⟩+ β|1̄⟩ is

Discuss circuits for measurement and error correction?

3.3 Fault tolerant gates 35

3.3 Fault tolerant gates

Obviously, we don’t just want to be able to store states in a way that’s protected from errors;
we want to be able to operate on them as well. To do this, we want operations on the physical
qubits that implement unitary operations on the logical qubits. That is, we want operations Ū
on the physical Hilbert space which realise given unitary operations U on the logical Hilbert
space. These will necessarily map the code subspace to itself.
An example is the operation X̄ = X0X1X2X3X4X5X6 introduced above, which implements

a Pauli X operation on the logical qubits:

X̄|0̄⟩ = |1̄⟩, X̄|1̄⟩ = |0̄⟩. (3.3.1)

It would be useful if these operations were fault tolerant, so that if there was an error on a
single physical qubit before the unitary operation, acting with the unitary will leave us in a
state which still differs from the desired state only by an error on a single physical qubit. That
is, for any state |ψ⟩ in the code subspace and single-qubit error Ui, we want

ŪUi|ψ⟩ = VjŪ |ψ⟩, (3.3.2)

for some single-qubit error Vj.
This will automatically be satisfied if Ū is a product of single-qubit unitaries, as for X̄, but

can be achieved in more general ways.
This is equivalent to requiring that Ū maps each eigenspace of the error syndromes to some

eigenspace of the error syndromes.
Fault-tolerance also ensures that malfunctioning of a single element of Ū will only introduce

single qubit errors, so we can use our error correction protocol to correct errors in the gates
themselves.
Another example is Z̄ = Z0Z1Z2Z3Z4Z5Z6 commutes with the Mi, and leaves |0000000⟩

invariant, so it leaves |0̄⟩ invariant. It also anticommutes with X̄, so it acts within the code
subspace, and

Z̄|0̄⟩ = |0̄⟩, Z̄|1̄⟩ = −|1̄⟩, (3.3.3)

so it realises Pauli Z on logical qubits. This can also be seen explicitly from the form of |0̄⟩
and |1̄⟩: the states in |0̄⟩ have an even number of 1’s, while those in |1̄⟩ have an odd number of
1’s. Exercise: Show that S0S1S2S3S4S5S6 realises the operation Z̄S̄ on logical qubits.
More surprisingly, H̄ = H0H1H2H3H4H5H6 realises the Hadamard gate on logical qubits,

that is

H̄|0̄⟩ = 1√
2
(|0̄⟩+ |1̄⟩), H̄|1̄⟩ = 1√

2
(|0̄⟩ − |1̄⟩). (3.3.4)

This can be seen by a brute force evaluation using the explicit forms of |0̄⟩ and |1̄⟩, but it is
more useful to understand it from the definitions. HiXi = ZiHi, so

MaH̄|ψ⟩ = H̄Na|ψ⟩, NaH̄|ψ⟩ = H̄Ma|ψ⟩ (3.3.5)

3.3 Fault tolerant gates 36

for any state |ψ⟩. So if the state |ψ⟩ is in an eigenspace of Ma and Na with some eigenvalues,
H̄|ψ⟩ will also lie in an eigenspace of Ma and Na, but with the eigenvalues of Ma and Na

interchanged. In particular, H̄ preserves the code subspace, so H̄|0̄⟩ and H̄|1̄⟩ lie in the code
subspace.

H̄|0̄⟩ = H̄
1

23/2
(1 +M0)(1 +M1)(1 +M2)|0000000⟩ =

1

23/2
(1 +N0)(1 +N1)(1 +N2)H̄|0000000⟩.

(3.3.6)
Acting on |000000⟩, H̄ gives the uniform superposition of all the computational basis states.
The (1 + Na) are projectors onto the +1 eigenspace of Na. We’re left with the component of
the uniform superposition which lies in the code subspace, which is simply

H̄|0̄⟩ = 1√
2
(|0̄⟩+ |1̄⟩). (3.3.7)

Similarly,

H̄|1̄⟩ = H̄
1

23/2
(1 +M0)(1 +M1)(1 +M2)|1111111⟩ =

1

23/2
(1 +N0)(1 +N1)(1 +N2)H̄|1111111⟩.

(3.3.8)
Acting on |1111111⟩, H̄ gives the uniform superposition of all the computational basis states,
with a minus sign for each state with an odd number of 1’s. The projection into the code
subspace is simply

H̄|0̄⟩ = 1√
2
(|0̄⟩ − |1̄⟩), (3.3.9)

as all the states in |1̄⟩ have an odd number of 1’s.
If we have two logical qubits encoded in 14 physical qubits with the Steane code, we can

apply a logical CNOT by applying the product of CNOTs between pairs of corresponding bits
in the two codewords,

CNOT =
7∏

i=1

CNOTii, (3.3.10)

where CNOTii is the CNOT operation between the ith qubit in the first codeword and the ith
qubit in the second codeword. The demonstration is left to the homework problems.
We also want a fault-tolerant T gate. This can’t be implemented by operations on single

qubits, but it can still be given a fault-tolerant implementation; see Nielsen & Chuang for
details.
With our logical qubits encoded in code subspaces, we can act with fault tolerant gates and

perform computations, so long as we act with the error measuring and correcting circuits often
enough to prevent errors on more than one qubit from accumulating.

37

4 Quantum algorithms

We now turn to the construction of algorithms which use the entangled nature of quantum
states to solve certain problems faster than is possible on a classical computer. Our discussion
is focused on the two most important examples of quantum algorithms: Shor’s factoring al-
gorithm, which uses a quantum version of the discrete Fourier transform, and Grover’s search
algorithm. These are the most often discussed cases and the most exciting applications of quan-
tum computing. However we first discuss a simpler algorithm, Simon’s algorithm - partially
because I like the name, but also because it provides a simpler context to introduce some of
the key ideas.

4.1 Simon’s algorithm

The key problem Shor’s algorithm solves is period-finding: that is, given an n-bit valued func-
tion f(x) of an n-bit valued input x, which we know is periodic with some unknown period
a, f(x + a) = f(x), Shor’s algorithm allows us to efficiently find a. In Simon’s problem, we
consider a simpler version of this problem, where f is periodic under not ordinary addition, but
bitwise addition. This is a somewhat artificial problem, but will serve to illustrate key ideas.
Bitwise addition a⊕ b = c is defined by writing a, b, c as bit strings, a = an−1 . . . a1a0, where

a0 is the least significant and an−1 is the most significant bit, and taking ci = ai + bi mod 2.
For example, 10011010⊕ 01101011 = 11110001.
Suppose we have an n-bit function f(x) which is periodic with period a, so f(x⊕ a) = f(x)

for all x, and f(x) ̸= f(y) otherwise. How many times do we need to evaluate the function
to find out the value of a? Classically, all we can do is to consider trial values xi, and keep
trying until we find two values such that f(xi) = f(xj). We can then calculate a = xi ⊕ xj (as
xi = xj ⊕ a, and xj ⊕ xj = 0).
How many trials will this take? After m trials, we know a ̸= xi ⊕ xj for any i, j ≤ m, so we

have eliminated at best 1
2
m(m − 1) values. There are 2n − 1 possible values for a, so it will

typically take order of 2n/2 trials to succeed. Using Simon’s algorithm we will instead find a in
slightly more than n trials.
In the quantum algorithm, we take the reversible circuit representation of the function f(x).

This defines a unitary operator Uf which acts on n input bits |x⟩ and n output bits |m⟩, such
that

Uf |x⟩|m⟩ = |x⟩|m⊕ f(x)⟩ (4.1.1)

We will always take the output bits to be initially in the state |0⟩, but we need to consider a
general state to fully specify the action of Uf . Having given its action on computational basis
states, its action on any state is fixed by linearity.
Uniform superposition: A key step in the quantum algorithm is to take the input in the

uniform superposition of all the computational basis states, 1
2n/2

∑2n−1
x=0 |x⟩, before acting with

4.1 Simon’s algorithm 38

Uf . This state is prepared by acting with the Hadamard H on each of the input bits;

H⊗n|0⟩ =
n−1∏

i=0

1√
2
(|0⟩i + |1⟩i) =

1

2n/2

2n−1∑

y=0

|y⟩ (4.1.2)

is an equally weighted superposition of all the computational basis states.
We also need to understand the action of this operator on general basis states. Recall

H|0⟩ = 1√
2
(|0⟩+ |1⟩), and H|1⟩ = 1√

2
(|0⟩ − |1⟩), so

H⊗n|x⟩ =
n−1∏

i=0

1√
2
(|0⟩i + (−1)xi |1⟩i) =

1

2n/2

2n−1∑

y=0

(−1)x·y|y⟩. (4.1.3)

The product is over the states of the individual bits. Since each bit is an even superposition
of its |0⟩ and |1⟩ states, every state in the computational basis (every possible value of the
bit string) is included in this superposition with equal weight. There is a (−1) sign for each
bit where both the input x and the output y have the value |1⟩, which we have combined by
introducing the bitwise product

x · y = xn−1yn−1 + . . .+ x0y0 mod 2, (4.1.4)

which is zero if there are an even number of bits where x and y are both one, and one if there
are an odd number of bits where x and y are both one.
For example, for three bits,

H⊗n|011⟩ = 1

23/2
(|0⟩+|1⟩)(|0⟩−|1⟩)(|0⟩−|1⟩) = 1

23/2
(|000⟩−|001⟩−|010⟩+|011⟩+|100⟩−|101⟩−|110⟩+|111⟩).

(4.1.5)
Simon’s algorithm:

• Start with the system in the state |0⟩n|0⟩n, with all input and output qubits normalised
to |0⟩.

• Act with H⊗n on the input bits, giving 1
2n/2

∑2n−1
x=0 |x⟩|0⟩.

• Act with Uf , giving the entangled state 1
2n/2

∑2n−1
x=0 |x⟩|f(x)⟩.

• Measure the state of the output bits. This will give, at random, one of the 2n/2 possible
values f(x0). The state is 1√

2
(|x0⟩ + |x0 ⊕ a⟩)|f(x0)⟩. If we could measure both x0 and

x0 ⊕ a, we would be done, but we can’t. Given a quantum system in an unknown state,
we can’t determine the state. Measuring the input in the computational basis won’t help;
that would simply give us either x0 or x0 ⊕ a, giving us no information about a itself.

4.1 Simon’s algorithm 39

• The problem is the dependence on the random value x0. We act with H⊗n on the input
bits again, making the state

H⊗n 1√
2
(|x0⟩+ |x0 ⊕ a⟩) =

1

2(n+1)/2

2n−1∑

y=0

[(−1)x0·y + (−1)(x0⊕a)·y]|y⟩ (4.1.6)

=
1

2(n+1)/2

2n−1∑

y=0

(−1)x0·y(1 + (−1)a·y)|y⟩,

where we used (x0 ⊕ a) · y = x0 · y ⊕ a · y. (We no longer care about the output qubits,
so we haven’t written them explicitly.) This converts the dependence on x0 to an overall
phase for each computational basis state, separating it from the dependence on a. The a
dependent coefficient is zero if a · y = 1, and non-zero if a · y = 0. So the state is

1

2(n−1)/2

∑

b|b·a=0

(−1)x0·b|b⟩. (4.1.7)

• Now measure the state in the computational basis, obtaining one of the 2n−1 values b
such that b · a = 0.

A circuit for this algorithm, where we postpone all measurements to the end, as we are free
to do, is

|q1〉 H
Uf

H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q0〉 = |0〉
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

The joy of this algorithm is that every time we run it we learn something definite about a:
a number b such that b · a = 0. This can be thought of as a linear equation for the bits of a,
so it enables us to obtain one of the bits of a. a satisfies n− 1 independent linear equations of
this form, so running the algorithm n − 1 times to obtain n − 1 random values for b could be
enough to determine a uniquely. If we get unlucky and the first n− 1 values don’t give linearly
independent constraints, we may need to run a few more times before we determine a. But in
general Simon’s algorithm will find a in order n invocations of Uf , as opposed to 2n/2 classical
function evaluations.
Example: Consider a three-bit function f(x) with a = 010. Let’s say f(000) = f(010) = x,

f(001) = f(011) = y, f(100) = f(110) = z, f(101) = f(111) = w; the f values don’t matter.
In Simon’s algorithm,

• Applying H⊗n, and Uf , the state is

1

23/2
[(|000⟩+|010⟩)|x⟩+(|001⟩+|011⟩)|y⟩+(|100⟩+|110⟩)|z⟩+(|101⟩+|111⟩)|w⟩]. (4.1.8)

4.2 Quantum Fourier transform 40

• Suppose we measure the output to be |x⟩. Apply H⊗n again:

H⊗n 1√
2
(|000⟩+ |010⟩) = 1

2
(|000⟩+ |001⟩+ |100⟩+ |101⟩). (4.1.9)

• Measuring the state, we obtain one of the four values. Getting 000 tells us nothing.
Getting 001 tells us a0 = 0, 100 tells us a2 = 0, 101 tells us a0 + a2 = 0. Once we know
two of these things we can conclude a = 010, as that’s the only non-trivial solution.

Remarks:

• The key elements are the two uses of H⊗n: to create a superposition of all the compu-
tational basis states, and to convert the offset between |x0⟩ and |x0 ⊕ a⟩ into the phase
differences on the RHS of (4.1.6).

• We do not obtain more information from a quantum computer than a classical one; the
output is still one n-bit number. But it gives us flexibility to obtain different information,
and by focusing on relations between different values of f(x), we can learn what we want
faster.

4.2 Quantum Fourier transform

A key component of Shor’s algorithm is a quantum operation realising the discrete Fourier
transform. Since this is of more general use (although we’ll only use it for Shor’s algorithm)
and a bit technical, we discuss it separately first. The Quantum Fourier Transform is a unitary
operation UFT acting on n qubits such that on the computational basis states,

UFT |x⟩ =
1

2n/2

2n−1∑

y=0

e2πixy/2
n|y⟩. (4.2.1)

Exercise: Check this is unitary; that is, that UFT |x⟩ is norm one, and UFT |x⟩ is orthogonal to
UFT |x′⟩ for x ̸= x′.
This is called the quantum Fourier transform because it performs a discrete Fourier transform

on the components of an arbitrary state. If |ψ⟩ = ∑
x ψx|x⟩, |ψ̃⟩ = UFT |ψ⟩ =

∑
y ψ̃y|y⟩, where

ψ̃y =
1

2n/2

2n−1∑

x=0

e2πixy/2
n

ψx. (4.2.2)

This is precisely the discrete Fourier transform of the vector ψx (ask if they’ve seen that before).
Calculating a single component ψ̃y classically requires 2n additions. The fast Fourier trans-

form calculates all the ψ̃y in order n2n operations. Thus, the discrete Fourier transform is a

4.2 Quantum Fourier transform 41

‘hard’ classical function of the input; it requires an exponential circuit to compute. Remark-
ably, we can compute UFT using order n2 1- and 2-qubit operations, so this an ‘easy’ quantum
operator. Note that this speedup is not yet as meaningful as the one in Simon’s algorithm, as
we cannot extract the Fourier coefficients ψ̃y from UFT ; they are encoded in the superposition
coefficients of the output state, which we cannot extract by a measurement. But it’s reasonable
to expect that being able to do a FT efficiently could simplify some problems, and we will see
in Shor’s algorithm that we do achieve an exponential speedup in solving a real problem of
interest.
The key element in showing that UFT can be efficiently constructed is the realisation that

the output of (4.2.1) can be written as a tensor product of states for the individual qubits. If
y is the bit string y = yn−1 . . . y0, that is y = yn−12

n−1 + yn−22
n−2 + . . .+ y0, then

e2πixy/2
n

= e2πix(yn−1/2+yn−2/4+...+y0/2n) =
n−1∏

l=0

e2πixyl/2
n−l

. (4.2.3)

Thus,

UFT |x⟩ =
1

2n/2

2n−1∑

y=0

e2πixy/2
n|y⟩ = 1

2n/2

n−1∏

l=0

(|0⟩+ e2πix/2
n−l |1⟩). (4.2.4)

Note the similarity to the n-fold Hadamard,

H⊗n|x⟩ =
n−1∏

i=0

1√
2
(|0⟩i + (−1)xi |1⟩i) =

1

2n/2

2n−1∑

y=0

eiπx·y|y⟩. (4.2.5)

Unlike the Hadamard, however, the phases appearing in the individual qubit states depend on
x, not just on xl, so we will not be able to realise UFT just by single-qubit operations.
The phase can be further simplified by using the bit string representation of x: as x =

xn−12
n−1 + xn−22

n−2 + . . .+ x0,

e2πix/2
n−l

= e2πi(xn−12l−1+...+x02l−n) =
n−l−1∏

m=0

e2πixm/2n−m−l

, (4.2.6)

Where in the second step we use e2πir = 1 for integer r to drop all the terms with a non-negative
power of 2 in the expansion. The phase for l = n−1 thus depends only on x0, that for l = n−2
on x0 and x1, and so on:

UFT |x⟩ =
1

2n/2
(|0⟩+ eiπx0|1⟩)(|0⟩+ eiπx1eiπ/2x0 |1⟩)(|0⟩+ eiπx2eiπx1/2eiπx0/4|1⟩) . . . (4.2.7)

We recognise the first as the action of H on the 0th qubit of the input. It is therefore convenient
in realising UFT to reverse the order of the qubits; if the bottom qubit of the input is the least
significant bit of x, we interpret the bottom qubit of the output as the most significant bit of

4.3 Shor’s algorithm 42

y. The QFT can then be implemented by a series of controlled-phase gates, where we apply
the unitary

Rk =

(
1 0

0 eiπ/2
k

)
. (4.2.8)

Each qubit i has controlled-Rk applied controlled by each j < i, with k = i − j. (Note my
notation is slightly different from Nielsen & Chuang).
For example, for three qubits, the QFT is applied by the circuit below

|q2〉 H S T ×

|q1〉 • H S

|q0〉 • • H ×

Note the order- we want to be done with using a given qubit as control before we start acting
on it. The output is in reversed bit order; we could apply a series of swaps to restore the
conventional order, or simply proceed remembering that we’ve changed our convention for bit
order.
Exercise: construct a SWAP gate from our elementary gate set.
We see that we need to apply one gate to qubit 0, two gates to qubit 1, . . . , n gates to qubit

n-1, so the total number of gates required to implement the QFT is of order n2, as advertised.
[You might think this is a bit of a lie, as the Rk require very tiny phases for large k, which

might require a large number of elementary gates to implement. However, omitting the tiny
phases makes little difference to the outcome - see Mermin for a discussion.]
Could say something about phase estimation here

4.3 Shor’s algorithm

Shor’s algorithm uses the quantum Fourier transform to construct a quantum algorithm to
efficiently find prime factors. Given a composite number N , the task is to find one of its prime
factors, that is a prime number p such that p divides N . This is a task of real interest, since
the security of the public-key RSA cryptography system is based on the difficulty of finding
such factors. The best classical algorithms for finding prime factors is the number field sieve,
which takes time which grows exponentially in n1/3, where n is the number of bits of N .
Solving this problem using QFT requires us to first reduce factoring to period-finding. Given

N , choose some number y relatively prime to N . Construct the function

f(a) = ya mod N. (4.3.1)

f(0) = 1; the smallest value r such that f(r) = 1 again is the period of f . Clearly r ≤ N ,
as there are only N possible values for f(a). Note that as in Simon’s problem, this function

4.3 Shor’s algorithm 43

has f(a) = f(b) if and only if a − b = 0 mod r. We will use a quantum algorithm to gain
information about the period r.
Let’s first see how that will help us with factoring. We suppose r is even; if r were odd, pick

a different y and start again. We have

(yr − 1) = 0 mod N, (4.3.2)

so
(yr/2 − 1)(yr/2 + 1) = 0 mod N. (4.3.3)

If either of the factors on the LHS are an integer multiple of N , we pick a different y and start
again. Otherwise, we learn that yr/2− 1 and N have a common factor, and we can use Euclid’s
algorithm to find it efficiently.
Example: Take N = 221, y = 2. Then r = 24. So 212 − 1 = 4095 and 221 have a common

factor. gcd(4095, 221) = 13, from which we obtain 221 = 13 × 17. If I choose y = 3, r = 48.
324 − 1 is a big number; gcd(324 − 1, 221) = 13.
We assume we can construct a unitary Uf which realises the function f above, in the usual

sense that
Uf |x⟩|m⟩ = |x⟩|m⊕ f(x)⟩. (4.3.4)

To find the period in all cases, we need x to have at least n0 = logN bits, but actually, we will
take x to have n = 2 logN bits, for reasons we will see later. We take the output register to
have n0 bits.
Shor’s algorithm:

• Start with the system in the state |0⟩n|0⟩n0 , with all input and output qubits normalised
to |0⟩.

• Act with H⊗n on the input bits, giving 2−n/2
∑2n−1

x=0 |x⟩|0⟩.

• Act with Uf , giving the entangled state 2−n/2
∑2n−1

x=0 |x⟩|f(x)⟩.

• Measure the state of the output bits. This will give, at random, some value f(x0).
The state is a uniform superposition of the input values giving this function value,

1√
Q+1

∑Q
m=0 |x0 +mr⟩|f(x0)⟩, where Q+1 is a count of how many values in 0, . . . , 2n − 1

lead to the output f(x0).
3 To a very good approximation this is 2n/r. (Because of the

periodicity of f , these values are spaced by r.) In writing these formulas, we are assuming
that we choose the smallest possible x0. The shift by the random x0 prevents us from
learning anything useful about r by measuring the state of the input bits.

3If r is a power of 2, then Q = 2n

r − 1 regardless of the value of x0, but otherwise Q can deviate from this
value by 1, depending on x0. This does not affect the resulting probability distribution in any significant way,
so we will ignore this effect.

4.3 Shor’s algorithm 44

• Perform a QFT on the input, obtaining

UFT
1√
Q+ 1

Q∑

m=0

|x0 +mr⟩ =
1√
Q+ 1

Q∑

m=0

1

2n/2

2n−1∑

y=0

e2πi(x0+mr)y/2n|y⟩ (4.3.5)

=
1

2n/2

2n−1∑

y=0

e2πix0y/2n

[
1√
Q+ 1

Q∑

m=0

e2πimry/2n

]
|y⟩

(We no longer care about the output qubits, so we haven’t written them explicitly.) This
has transformed the dependence on x0 into a phase for each computational basis state.

• Now measure the state in the computational basis. The probability that we obtain a
value y is

p(y) =
1

2n(Q+ 1)
|

Q∑

m=0

e2πimry/2n|2. (4.3.6)

Crucially, this is independent of the random x0 (other than a small dependence via Q,
which does not affect the resulting probability distribution in any significant way), and
contains only dependence on r, which we wish to learn. The sum is a geometric series, so

p(y) =
1

2n(Q+ 1)

sin2(πry(Q+ 1)/2n)

sin2(πry/2n)
. (4.3.7)

If y is approximately an integer multiple of 2n/r, the terms in the sum are in phase and
will add coherently; in the second expression, the sines are small, and p(y) ≈ (Q+1)/2n.
There are r such values for y, each of which get a probability of order 1/r. Otherwise,
the terms in the sum approximately cancel, and p(y) ≈ 1/2n(Q+ 1). Even summed over
all the 2n possible values of y, this gives a small probability.

Thus, the output of Shor’s algorithm is, roughly speaking, a number y such that ry = 0 mod
2n. Compare to Simon’s algorithm, which gave a number b such that b · a = 0.
That is the quantum information part. With good probability, the value of y obtained is the

nearest integer to a multiple of 2n/r; that is, it is within 1/2 of j2n/r for some value j. Thus

| y
2n

− j

r
| ≤ 1

2n+1
=

1

2N2
, (4.3.8)

where we use N = 2n0 = 2n/2. There is a unique fraction j/r with r < N which satisfies this
bound, since

|j1
r1

− j2
r2
| ≥ 1

r1r2
≥ 1

N2
(4.3.9)

unless the fractions are the same. This is why we took n = 2n0 previously. This fraction can
be obtained efficiently from y/2n by the method of continued fractions.

4.4 Grover’s algorithm 45

If j and r have a common factor, we will obtain from this not the period r but some divisor
r0, but given the guess r0 it is easy to check if it is the period by computing f(r0) and seeing
if it’s equal to 1. If it’s not, we can try f(2r0), f(3r0), . . . , and failing this run the algorithm
again - the chance that j and r have common factors is less than 1/2. For some more details,
see either Mermin or Nielsen & Chuang.
Thus, we can determine the period of f(x) = yx mod N , and hence a prime factor of N ,

using a few invocations of Shor’s algorithm. The resource requirements for this algorithm are
mainly driven by Uf and the QFT, which are both polynomial in the number of bits n of N .
Details on Uf from Mermin?

4.4 Grover’s algorithm

i This section is not examinable. i

Search provides a very different example of a quantum algorithm. The problem is to find an
item in a list of N = 2n items that has some particular property (for example, the correct key for
a lock). We will describe the property as some one-bit function f(x) on n-bit numbers x, such
that f(a) = 1 for some a, and f(x) = 0 otherwise. To find the correct solution of a completely
unstructured problem classically requires order N attempts. The quantum algorithm in this
case does not give an exponential speedup - we will need order

√
N uses of the function - but

this is still a useful improvement, and the algorithm gives an interestingly different approach
to search.
We want to use the unitary operator Uf such that

Uf |x⟩|m⟩ = |x⟩|m⊕ f(x)⟩, (4.4.1)

to find a. We will do so by constructing a procedure to take a starting trial wavefunction and
increase its support along |a⟩.
In the absence of any knowledge of a, the best we can do for a trial wavefunction is to take

a uniform superposition

|ψ⟩ = 1√
N

N−1∑

x=0

|x⟩ = 1√
N

∑

x ̸=a

|x⟩+ 1√
N
|a⟩. (4.4.2)

This has some support along |a⟩, but it’s very small. We want to find a quantum operation
which will increase this support. We will work in the two-dimensional subspace spanned by |a⟩
and the uniform superposition of all the other states, which defines a vector

|a⊥⟩ =
1√

N − 1

∑

x ̸=a

|x⟩, (4.4.3)

so the uniform superposition is |ψ⟩ =
√
N−1√
N

|a⊥⟩+ 1√
N
|a⟩.

4.4 Grover’s algorithm 46

To increase the support along |a⟩, we consider two reflections: there is a reflection about |ψ⟩,
which is called diffusion, or inversion about the mean:

D = H⊗n(2|0⟩⟨0| − I)H⊗n = 2|ψ⟩⟨ψ| − I. (4.4.4)

It is clear that this is a unitary, as 2|0⟩⟨0| − I is a diagonal matrix with ±1 diagonal entries,
and hence unitary. The effect of diffusion on a given vector |χ⟩ is to reflect it about |ψ⟩. If I
decompose |χ⟩ into its component along |ψ⟩ and an orthogonal component,

|χ⟩ = ⟨ψ|χ⟩|ψ⟩+ |χ′⟩, (4.4.5)

where |χ′⟩ is orthogonal to |ψ⟩, then

D|χ⟩ = 2⟨ψ|χ⟩|ψ⟩ − |χ⟩ = ⟨ψ|χ⟩|ψ⟩ − |χ′⟩. (4.4.6)

So this is indeed a reflection; it keeps the component along |ψ⟩ unchanged, and reverses the
orthogonal component.

We suppose we also have a similar reflection about |a⊥⟩,

V = 2|a⊥⟩⟨a⊥| − I. (4.4.7)

This would keep the component along |a⊥⟩ unchanged, and reverse the orthogonal component.
Suppose we start with |ψ⟩, and do first V and then D; that is, we reflect first in |a⊥⟩, and then
in |ψ⟩.
The first step gives us

|χ⟩ = V |ψ⟩ =
√
N − 1√
N

|a⊥⟩ −
1√
N
|a⟩ = |ψ⟩ − 2

1√
N
|a⟩ (4.4.8)

|χ⟩ is nearly along |ψ⟩,
⟨ψ|χ⟩ = N − 1

N
− 1

N
=
N − 2

N
, (4.4.9)

4.4 Grover’s algorithm 47

so

|χ′⟩ = |χ⟩ − ⟨ψ|χ⟩|ψ⟩ = |ψ⟩ − 2
1√
N
|a⟩ − N − 2

N
|ψ⟩ = 2

N
|ψ⟩ − 2

1√
N
|a⟩, (4.4.10)

Thus D gives

D|χ⟩ = ⟨ψ|χ⟩|ψ⟩ − |χ′⟩ = N − 2

N
|ψ⟩ −

(
2

N
|ψ⟩ − 2

1√
N
|a⟩

)
(4.4.11)

=
N − 4

N
|ψ⟩+ 2√

N
|a⟩ = (1− δ)|a⊥⟩+

3N − 4

N
√
N

|a⟩, (4.4.12)

where (1− δ)2 + (3− 4/N)2/N = 1. This has increased the support along |a⟩.
This operation is very easy to understand geometrically. In the two-dimensional space

spanned by |a⊥⟩ and |a⟩, we reflect first in |a⊥⟩ and then in |ψ⟩. The combination of these two
reflections is a rotation. Call the angle between |ψ⟩ and |a⊥⟩ θ. Consider a general vector |χ⟩,
which makes some angle α with |a⊥⟩. The first reflection takes it to a vector which makes an
angle −α with |a⊥⟩, which is an angle −(α+ θ) with |ψ⟩. Thus, after the second reflection, we
have a vector at an angle α+θ from |ψ⟩, which is an angle α+2θ with |a⊥⟩. The two reflections
have rotated the vector away from |a⊥⟩ by 2θ, increasing the support along |a⟩, as desired.

The angle θ is simply given by

cos θ = ⟨ψ|a⊥⟩ =
√
N − 1√
N

≈ 1− 1

2N
, (4.4.13)

so θ ≈ 1√
N
.

That’s very nice, and we’ve seen that D is a simple unitary operator we can construct
explicitly, but if we don’t know |a⟩, how are we supposed to construct V ? The key idea in
Grover’s algorithm is to use Uf to realise V . On the two-dimensional subspace spanned by |a⊥⟩
and |a⟩, V is

V = |a⊥⟩⟨a⊥| − |a⟩⟨a|. (4.4.14)

4.4 Grover’s algorithm 48

So we want an operation that has a relative sign between |a⊥⟩ and |a⟩ (this is just the Z
operator in the |a⊥⟩, |a⟩ basis). We can convert Uf into such a reflection by taking the output
bit |m⟩ to be in the state 1√

2
(|0⟩ − |1⟩). Then

Uf |x⟩
1√
2
(|0⟩ − |1⟩) = (−1)f(x)|x⟩ 1√

2
(|0⟩ − |1⟩), (4.4.15)

as Uf does nothing if f(x) = 0, but adds one to the output if f(x) = 1, interchanging the |0⟩
and |1⟩ states. Thus, acting on a vector

|χ⟩ = α|a⊥⟩+ β|a⟩, (4.4.16)

Uf (|χ⟩ ⊗
1√
2
(|0⟩ − |1⟩)) = (α|a⊥⟩ − β|a⟩)⊗ 1√

2
(|0⟩ − |1⟩) = V |χ⟩ ⊗ 1√

2
(|0⟩ − |1⟩). (4.4.17)

The state of the output bit is left unaffected, and we obtain the desired reflection V on the
input. So without knowing a, just using the unitary realisation of the function f , we can
construct this reflection.
We can now give Grover’s algorithm:

• Start in the state |0⟩ ⊗ |0⟩.

• Act with NOT and H on the output qubit to reach the state |0⟩ ⊗ 1√
2
(|0⟩ − |1⟩).

• Apply H⊗n on the input to reach |ψ⟩ 1√
2
(|0⟩ − |1⟩).

• Apply the Grover iteration, acting with V = Uf and D. This will rotate |ψ⟩ through an
angle 2θ in the space spanned by |a⟩ and |a⊥⟩.

• Repeat the Grover iteration until the state of the input is as close as possible to |a⟩. Since
the input was initially |ψ⟩, which was at an angle π/2− θ from |a⟩, we want to iterate Q
times where 2Qθ ≈ π/2− θ. Using θ ≈ 1/

√
N , Q is the nearest integer to

√
Nπ/4− 1/2.

• Measure the input. This will with a high probability gives us a (the component along
|a⊥⟩ is generically of order O(1/

√
N), so this fails with probability O(1/N)). Check if

f(a) = 1 on the result; if it does not, repeat the algorithm.

The primary resource requirement is the
√
N evaluations of DV . The algorithm thus has a

resource exponential in the number of bits, so this is not feasible for large instances, but it is an
improvement over classical search, which required N evaluations of f in typical cases. Again,
the key is to use Uf to do something other than evaluate f , converting it into a relative phase
between the desired state and the rest.

	Classical computing
	Basic gates
	Universal gate sets
	A reversible universal gate

	Computational resources & Complexity

	Quantum Circuits
	Basic gates
	Universal quantum computation
	Representing the Ui as circuits

	Single-qubit unitaries
	Measurement

	Quantum error correction
	Correcting single bit flips
	Correcting general single qubit errors
	Fault tolerant gates

	Quantum algorithms
	Simon's algorithm
	Quantum Fourier transform
	Shor's algorithm
	Grover's algorithm

