
Quantum Computing Epiphany Assignment 1 Solutions

Note that the solutions to all parts below are certainly not unique.

1. There are four possible values for x, and f(x) has two possible values
for each choice, so there are 24 = 16 functions which we can label
f0, f1, . . . , f15. I have defined these function in the table below. Note
that the list of all outputs for fN is just N written as a 4-digit binary
in these conventions – this is a simple systematic way to include all
possible functions and to ensure you don’t duplicate any functions.

Note that the table listing the output values is by far the simplest way
to answer the question. If you use a description in terms of logical oper-
ations, since these expressions are not unique, you cannot immediately
tell if you’ve defined the same function twice (and hence missed another
function if you are relying on counting the number of functions).

2. I have not drawn the circuits but instead defined them in the text in
the table below. To answer the question correctly, you should draw the
circuits (or give a detailed explanation of how they are constructed as
I do now). Again, these are not unique so if you have another circuit
which does the same, that is fine, although it may be useful to spot easy
ways to simplify circuits. E.g. I have seen examples with two CmNOT
gates with the same control(s) and target following each other – that is
just the identity so both can be removed. Another example is including
an extra ancillary bit and simply copying (with a CNOT) what could be
the output bit to that bit – a similar example is unnecessarily making
copies of the input bits.

For the circuits we can take 3 bits in total, the two input bits and
another bit initialised to 0 which will give the output bit – it is not
necessary to include any further (ancillary) bits. (Some circuits can be
drawn using just the two input bits and clearly identifying which gives
the output – this is fine, but conventionally we will keep the input and
output lines separate.) Taking x = (x1x0)2, we can write CCNOT
to mean a CCNOT gate with the output bit as the target and the
two input bits (x1 and x0) as the controls, CNOT0 (CNOT1) to mean
CNOT acting on the output bit controlled by x0 (x1), and NOT to
mean a NOT acting on the output. (If you give some statements
without this level of detail, it is not clear what your circuits are –
anyway it is probably simplest just to draw the circuits.) You can then
easily draw the circuits by placing these gates in the same order left to
right. (Actually, if you use these gates only, the order does not matter



– in general the order is important!) Note that you were only asked to
draw the 8 functions which satisfy f(00) = 0. In this notation that is
the functions f0, f1, . . . , f7.

3. Note that the functions with f(00) = 1 (in this notation f8, f9, . . . , f15)
are the NOT of a function from the first half, specifically f15−N is
related to fN in this way. So, if you have constructed circuits for the
functions with f(00) = 0, you can simply include a NOT gate at the
end of the output to produce the remaining circuits. If you have used
the circuits described above, the NOT gate can be placed anywhere on
the output line – but note this is not true in general so the placement
on the output line might matter if you drew different circuits.

To answer the question fully it is not sufficient to simply state that
you take NOT of the function – you need to indicate (at least with an
example, but better to be general) where to put the NOT gate.

Here is the table, also including one expression for the functions in terms
of logical operations.

x 00 01 10 11 Representation Logic output
f0 0 0 0 0 Trivial 0
f1 0 0 0 1 CCNOT x0 AND x1

f2 0 0 1 0 CCNOT CNOT1 (NOT x0) AND x1

f3 0 0 1 1 CNOT1 x1

f4 0 1 0 0 CCNOT CNOT0 x0 AND (NOT x1)
f5 0 1 0 1 CNOT0 x0

f6 0 1 1 0 CNOT0 CNOT1 x0 XOR x1

f7 0 1 1 1 CCNOT CNOT0 CNOT1 x0 OR x1

f8 1 0 0 0 CCNOT CNOT0 CNOT1 NOT x0 NOR x1

f9 1 0 0 1 CNOT0 CNOT1 NOT x0 NXOR x1

f10 1 0 1 0 CNOT0 NOT NOT x0

f11 1 0 1 1 CCNOT CNOT0 NOT x0 NAND (NOT x1)
f12 1 1 0 0 CNOT1 NOT NOT x1

f13 1 1 0 1 CCNOT CNOT1 NOT (NOT x0) NAND x1

f14 1 1 1 0 CCNOT NOT x0 NAND x1

f15 1 1 1 1 NOT 1


