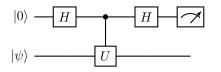
Quantum Computing Epiphany Assignment 3

Q1 Consider a two-qubit system. We wish to construct a circuit to realise the operation

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

- **1.1** First decompose this operator as a product of unitary operators which each act non-trivially only on a two-dimensional subspace of the Hilbert space.
- **1.2** Use the Gray code construction to convert the operators which do not act on a subspace corresponding to a single qubit into ones that do.
- **1.3** Draw the resulting quantum circuit, making any obvious simplifications.
- **Q2** Suppose we have a unitary operator U on a one-qubit Hilbert space, with an eigenvector $|\psi\rangle$ such that $U|\psi\rangle = e^{2\pi i\varphi}|\psi\rangle$, and we want to find the phase, i.e. $\varphi \in [-1/2, 1/2)$.
 - 2.1 Show that the following measurement on the top qubit



produces a result 0 with probability $p = \cos^2(\pi \varphi)$.

- **2.2** Explain what do you need to add to the circuit so that, no matter the result of the measurement, the final state is back to $|0\rangle \otimes |\psi\rangle$. Do not remove any gates from the circuit above, only add gates to the right of the measurement gate.
- **2.3** Briefly describe how this can be used to estimate the value of φ , describing any limitations.