Quantum Computing Epiphany Assignment 4

Q1 $U_{F T}$ is a unitary operator, so $U_{F T}^{-1}=U_{F T}^{\dagger}$, so

$$
U_{F T}^{-1}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y=0}^{2^{n}-1} e^{-2 \pi i x y / 2^{n}}|y\rangle .
$$

The circuit is given by taking the circuit for $U_{F T}$ given in lectures and conjugating all the operators and reversing the order, giving

Q2

$$
U_{F T}|x\rangle=\frac{1}{\sqrt{8}}\left(|0\rangle+e^{i \pi x}|1\rangle\right)_{2}\left(|0\rangle+e^{i \pi x / 2}|1\rangle\right)_{1}\left(|0\rangle+e^{i \pi x / 4}|1\rangle\right)_{0} .
$$

Applying S_{0} and Z_{1} gives

$$
\begin{aligned}
S_{0} Z_{1} U_{F T}|x\rangle & =\frac{1}{\sqrt{8}}\left(|0\rangle+e^{i \pi x}|1\rangle\right)_{2}\left(|0\rangle-e^{i \pi x / 2}|1\rangle\right)_{1}\left(|0\rangle+e^{i \pi x / 4} e^{i \pi / 2}|1\rangle\right)_{0} \\
& =\frac{1}{\sqrt{8}}\left(|0\rangle+e^{i \pi(x+2)}|1\rangle\right)_{2}\left(|0\rangle+e^{i \pi(x+2) / 2}|1\rangle\right)_{1}\left(|0\rangle+e^{i \pi(x+2) / 4}|1\rangle\right)_{0}
\end{aligned}
$$

where for qubit 2 we note that $\exp (2 \pi i)=1$, so

$$
U_{F T}^{\dagger} S_{0} Z_{1} U_{F T}|x\rangle=|x+2(\bmod 8)\rangle
$$

with the $\bmod 8$ being due to $\exp (2 \pi i)=1$ again.
Q3 If we take $y=3$ for example, $r=330 . \operatorname{gcd}\left(3^{165}-1,713\right)=23$, which gives us $713=23 \times 31$.

