1 Classical Computers

1 Give a reversible circuit to add two single-bit numbers x and y, giving the output as a two-bit number.

2 List all possible single-bit functions of a two-bit input x (so $f\left(x_{1} x_{0}\right)$ is 0 or 1 for each input). Give reversible circuit representations using the universal gate set \{NOT, CNOT, CCNOT\} for all such functions with $f(00)=0$. State a simple modification of these circuits to produce circuits for all such functions with $f(00)=1$. Given that $\{N O T, C N O T\}$ is not a universal gate set, is it possible to construct all the functions without using CCNOT?

3 Give definitions of the complexity classes P, NP, PSPACE and EXP, and prove the inclusions $P \subseteq N P \subseteq P S P A C E \subseteq E X P$.

2 Quantum Computers

4 Show that

$$
R_{\hat{n}}(\theta)=\cos (\theta / 2) I-i \sin (\theta / 2)\left(n_{x} X+n_{y} Y+n_{z} Z\right)
$$

where $\hat{n}=\left(n_{x}, n_{y}, n_{z}\right)$ is a unit vector in \mathbb{R}^{3}, is a unitary operator. Show that if a single qubit has the state

$$
\hat{\rho}=\frac{1}{2}(I+\mathbf{r} \cdot \boldsymbol{\sigma})=\frac{1}{2}(I+x X+y Y+z Z),
$$

where $\mathbf{r}=(x, y, z)$ is a unit vector (that is, this is a pure state), then the effect of the unitary operator $R_{\hat{n}}(\theta)$ is to rotate \mathbf{r} about the axis \hat{n} in the Bloch sphere by angle θ.

5 Compute the action of the circuits below on states in the computational basis. Give simpler equivalent circuits where possible.
a)

b)

c)

d)

6 Show that $S=\frac{1}{2}\left(1+X_{i} X_{j}+Y_{i} Y_{j}+Z_{i} Z_{j}\right)$ defines a swap operator, interchanging the state of qubits i and j.

7 By considering the action on computational basis states, show that the circuit given in lectures (and reproduced below) does implement the Toffoli gate (CCNOT).

8 Consider a two-qubit system. Construct a circuit to realise the operation $U=\left(\begin{array}{cc}T & 0 \\ 0 & X\end{array}\right)$, where T, X are the standard 2×2 matrices.
9 Consider a two-qubit system. Construct a circuit to realise the operation $U=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$
10 Consider a two-qubit system. We wish to construct a circuit to realise the operation

$$
U=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\
0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right)
$$

(a) First decompose this operator in terms of unitary operators U_{1}, U_{2}, U_{3} which each act non-trivially on a two-dimensional subspace of the Hilbert space, $U=U_{1} U_{2} U_{3}$.
(b) Use CNOTs to convert the operators which do not act on a subspace corresponding to a single qubit into ones that do.
(c) Draw the resulting quantum circuit.

11 Defining the error $E(U, V) \equiv \max _{\psi} \|(U-V)|\psi\rangle \|$, show that $\left.E\left(R_{\hat{n}}(\alpha), R_{\hat{n}}(\beta)\right)=\frac{1}{\sqrt{2}} \right\rvert\, 1-$ $e^{i(\alpha-\beta)} \mid$.

12 Delayed measurement: In the discussion of quantum teleportation, observers were often required to perform operations which depended on the result of a measurement. In a quantum circuit, we would represent such actions by performing a measurement on one qubit and then acting with a unitary on another if the result of the measurement was 1.

Show that such an operation can always be replaced by a controlled-unitary gate, with the measurement postponed to the end of the computation.

3 Error-correcting codes

13 Suppose three qubits were initially in some state $|\psi\rangle=\alpha|000\rangle+\beta|111\rangle$ in the usual code subspace for single qubit bit-flip error correction, and have subsequently become entangled with an environment, such that the joint state is $\left|e_{1}\right\rangle \otimes|\psi\rangle+\left|e_{2}\right\rangle \otimes X_{2}|\psi\rangle$. Show that the circuit below will return the qubits to their original state, transferring the entanglement with the environment to the ancillary qubit $|a\rangle$.

14 Construct a 3 -qubit code subspace protecting against single phase errors, that is against the random action of Z on any single qubit, by showing that the error syndromes $X_{0} X_{1}$ and $X_{0} X_{2}$ will diagnose single phase errors, and finding their $+1,+1$ eigenspace.

15 In classical codes, greater redundancy reduces the risk of errors; if we have five bits for each logical bit, we are protected against two single bit errors. Consider the 5 qubit code $|\overline{0}\rangle=|00000\rangle,|\overline{1}\rangle=|11111\rangle$. Does this protect against any two single bit flip errors? Justify your answer.

16 Suppose we have a state $|\psi\rangle$ which was encoded using the Steane code, and we want to check whether a Y_{2} error has acted on it. Identify an appropriate error syndrome to diagnose this error, and draw a quantum circuit to measure this syndrome.

17 How many distinct subspaces do we need to encode a single logical qubit to allow for recovery from independent single qubit errors acting on up to two qubits in an n-qubit system? What is the smallest number of qubits where such an encoding could exist?
18 Demonstrate that if we have two logical qubits encoded using the Steane code, $\overline{C N O T}=$ $\prod_{i=1}^{7} C N O T_{i i}$ implements the CNOT operation on the logical qubits, where $\mathrm{CNOT}_{i i}$ is the CNOT operation between the i th physical qubit of the first codeword and the i th physical qubit of the second codeword.
Hint: This can be solved elegantly using the representation of the logical $|\overline{0}\rangle$ and $|\overline{1}\rangle$ in terms of the M_{a}.

19 We wish to construct a 5 qubit error correcting code.
(a) Show that

$$
M_{0}=Z_{1} X_{2} X_{3} Z_{4}, \quad M_{1}=Z_{0} Z_{2} X_{3} X_{4}, \quad M_{2}=X_{0} Z_{1} Z_{3} X_{4}, \quad M_{3}=X_{0} X_{1} Z_{2} Z_{4}
$$

are a good set of error syndromes, by showing that they all commute, and that the possible errors will map the $(+1,+1,+1,+1)$ eigenspace to distinct orthogonal subspaces.
(b) Find a basis for the $(+1,+1,+1,+1)$ eigenspace.
(c) Show that for an appropriate choice of encoding, $\bar{Z}=Z_{0} Z_{1} Z_{2} Z_{3} Z_{4}$ acts as Pauli Z on the logical qubit, and $\bar{X}=X_{0} X_{1} X_{2} X_{3} X_{4}$ acts as Pauli X on the logical qubit.

4 Quantum Algorithms

20 A general state of an n-qubit system can be written as

$$
|\psi\rangle=\sum_{y=0}^{2^{n}-1} \psi(y)|y\rangle
$$

Find the condition on $\psi(y)$ for this to be a product state, so that

$$
|\psi\rangle=\prod_{i=0}^{n}[a(i)|0\rangle+b(i)|1\rangle]
$$

for some functions a, b.

21 Consider the Bernstein-Vazirani problem: Given a unitary operator U_{f} acting on n input bits x and one output bit m such that

$$
U_{f}|x\rangle|m\rangle=|x\rangle|m \oplus f(x)\rangle,
$$

where $f(x)=a \cdot x$, we want to find the value of a. Here $a \cdot x$ is the bitwise multiplication introduced in lectures, with $x \cdot y=x_{n-1} y_{n-1} \oplus \ldots \oplus x_{0} y_{0}$, where \oplus denotes addition mod 2 (or equivalently $X O R$ when acting on single bit values).
(a) Describe how to construct a quantum circuit realising U_{f} for specific values of n and a. Illustrate this explicitly for $n=5$ and $a=(10010)_{2}$.
(b) Using this quantum circuit and the result of question 5 a), or otherwise, show that

$$
H^{\otimes(n+1)} U_{f} H^{\otimes(n+1)}|0\rangle_{n}|1\rangle_{1}=|a\rangle_{n}|1\rangle_{1} .
$$

Hence, using this quantum operation, we can learn the value of a with a single application of U_{f}.

22 Determine the action of $U_{F T}^{2}$. Hence show that $U_{F T}^{4}=I$.
23 Give the inverse for $U_{F T}$, and give the explicit quantum circuit for the inverse for three qubits.

24 Consider the Quantum Fourier Transform, defined as the linear operator $U_{F T}$ on an n qubit Hilbert space whose action on basis states $|x\rangle, x=0, \ldots 2^{n}-1$ is

$$
U_{F T}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y=0}^{2^{n}-1} e^{2 \pi i x y / N}|y\rangle,
$$

where $N=2^{n}$.
(a) Show that we can rewrite the transform as a product of states for the individual qubits,

$$
U_{F T}|x\rangle=\frac{1}{2^{n / 2}} \otimes_{l=0}^{n-1}\left[|0\rangle+\alpha_{l}|1\rangle\right],
$$

where you should give a formula for the phases α_{l}.
(b) Show directly (that is, without assuming the unitarity of $U_{F T}$) that for $x \neq z, U_{F T}|x\rangle$ is orthogonal to $U_{F T}|z\rangle$.
(c) Consider a 3 -qubit system, and consider the unitary transform $U_{F T}^{\dagger} S_{0} Z_{1} U_{F T}$, represented by the quantum circuit below.

Show that this circuit implements the operation $x \rightarrow x+2 \bmod 8$.

25 Suppose we have a unitary operator U on a one-qubit Hilbert space, with an eigenvector $|\psi\rangle$ such that $U|\psi\rangle=e^{2 \pi i \varphi}|\psi\rangle$, and we want to find the phase φ.
(a) Show that if the qubit q_{0} is initially set to 0 , the measurement

produces a result 0 with probability $p=\cos ^{2}(\pi \varphi)$.
(b) Find the probability for a 0 result when U is replaced by U^{k}. Hence give a procedure for estimating φ.

26 Find the period of the function $f(a)=y^{a} \bmod N$ for $N=713$, for some y of your choosing (if the period is odd, choose again). Use the result to find a prime factor of N.

27 The diffusion operator is defined by

$$
D=2|\psi\rangle\langle\psi|-I,
$$

where $|\psi\rangle=\frac{1}{2^{n / 2}} \sum_{y=0}^{2^{n}-1}|y\rangle$ is the uniform superposition of all the computational basis states.
(a) Show that D is a unitary operator.
(b) Show that the action of this operator on an arbitrary state $|\chi\rangle=\sum_{x} \chi_{x}|x\rangle$ is

$$
D|\chi\rangle=\sum_{x}\left(2 \bar{\chi}-\chi_{x}\right)|x\rangle,
$$

where $\bar{\chi}=\frac{1}{2^{n}} \sum_{x} \chi_{x}$ is the average value of the coefficients. It is for this reason that D is also referred to as inversion about the mean.
(c) Construct a quantum circuit to realise this operator.

28 Suppose we have a quantum circuit implementing a unitary operator U such that $U|0\rangle=|\psi\rangle$. Using this, give a circuit implementing the operator

$$
U_{\psi}=I-2|\psi\rangle\langle\psi| .
$$

29 Consider a function $f(x)$, where x is a 3 -bit number, which has two values a_{1}, a_{2} such that $f\left(a_{1}\right)=f\left(a_{2}\right)=1$, and $f(x)=0$ for all other values.
(a) The state

$$
|\psi\rangle=H^{\otimes 3}|0\rangle=\frac{1}{\sqrt{8}} \sum_{i=0}^{7}|i\rangle
$$

can be decomposed into a component $|\psi\rangle_{a}$ in the subspace \mathcal{H}_{a} spanned by $\left|a_{1}\right\rangle,\left|a_{2}\right\rangle$, and a component $|\psi\rangle_{\perp}$ in the orthogonal subspace \mathcal{H}_{\perp}. Give explicit expressions for the unit normalised vectors

$$
|a\rangle=\frac{|\psi\rangle_{a}}{\||\psi\rangle_{a} \|}, \quad|\perp\rangle=\frac{|\psi\rangle_{\perp}}{\||\psi\rangle_{\perp} \|} .
$$

(b) Given a unitary U_{f} such that

$$
U_{f}|x\rangle \otimes|m\rangle=|x\rangle \otimes|m \oplus f(x)\rangle
$$

where $|m\rangle$ is the state of a single ancillary qubit, construct an operation V which reflects vectors in the Hilbert space about the subspace \mathcal{H}_{\perp}. That is, if $|\chi\rangle=|\chi\rangle_{a}+|\chi\rangle_{\perp}$ with $|\chi\rangle_{a} \in \mathcal{H}_{a}$ and $|\chi\rangle_{\perp} \in \mathcal{H}_{\perp}$,

$$
V|\chi\rangle=-|\chi\rangle_{a}+|\chi\rangle_{\perp} .
$$

(c) Show that if we have a vector in the two-dimensional subspace spanned by $|a\rangle$ and $|\perp\rangle$, applying V and

$$
D=2|\psi\rangle\langle\psi|-I
$$

rotates the state in this subspace, and find the rotation angle.
(d) Give an algorithm to use this rotation to find one of the special values a_{1}, a_{2}.

30 Generalise the Grover search algorithm to the case where the function $f(x)$ has more than one value where $f(x)=1$; that is, to find one of a number of special items. If x has n digits and there are r special values, how many times should we apply the Grover iteration? How many searches will it typically take to find all the special values? [You can give estimations with the assumptions $N=2^{n} \gg \geq 1$.]

