
Quantum Computing III Epiphany Problem Set page 1

1 Classical Computers

1 Give a reversible circuit to add two single-bit numbers x and y, giving the output as a
two-bit number.

2 List all possible single-bit functions of a two-bit input x (so f(x1x0) is 0 or 1 for each input).
Give reversible circuit representations using the universal gate set {NOT,CNOT,CCNOT}
for all such functions with f(00) = 0. State a simple modification of these circuits to produce
circuits for all such functions with f(00) = 1. Given that {NOT,CNOT} is not a universal
gate set, is it possible to construct all the functions without using CCNOT?

3 Give definitions of the complexity classes P, NP, PSPACE and EXP, and prove the inclusions
P ⊆ NP ⊆ PSPACE ⊆ EXP .

2 Quantum Computers

4 Show that
Rn̂(θ) = cos(θ/2)I − i sin(θ/2)(nxX + nyY + nzZ),

where n̂ = (nx, ny, nz) is a unit vector in R3, is a unitary operator. Show that if a single
qubit has the state

ρ̂ =
1

2
(I + r · σ) = 1

2
(I + xX + yY + zZ),

where r = (x, y, z) is a unit vector (that is, this is a pure state), then the effect of the unitary
operator Rn̂(θ) is to rotate r about the axis n̂ in the Bloch sphere by an angle θ.

5 Compute the action of the circuits below on states in the computational basis. Give simpler
equivalent circuits where possible.

a)

|q1〉 H • H

|q0〉 H ⊕ H b)

|q1〉 X • X

|q0〉 ⊕

c)

|q1〉 H • H Z

|q0〉 ⊕ H • H d)

|q2〉 • • •

|q1〉 • ⊕ • ⊕

|q0〉 ⊕ ⊕ ⊕

6 Show that S = 1
2
(1 +XiXj + YiYj + ZiZj) defines a swap operator, interchanging the state

of qubits i and j.

7 By considering the action on computational basis states, show that the circuit given in
lectures (and reproduced below) does implement the Toffoli gate (CCNOT).

|q2〉 • • • • T

|q1〉 • • T † ⊕ T † ⊕ S

|q0〉 H ⊕ T † ⊕ T ⊕ T † ⊕ T H
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8 Consider a two-qubit system. Construct a circuit to realise the operation U =

(
T 0
0 X

)
,

where T , X are the standard 2× 2 matrices.

9 Consider a two-qubit system. Construct a circuit to realise the operation U =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


10 Consider a two-qubit system. We wish to construct a circuit to realise the operation

U =


1 0 0 0
0 1

2
1
2

1√
2

0 1
2

1
2

− 1√
2

0 1√
2

− 1√
2

0


(a) First decompose this operator in terms of unitary operators U1, U2, U3 which each act

non-trivially on a two-dimensional subspace of the Hilbert space, U = U1U2U3.

(b) Use CNOTs to convert the operators which do not act on a subspace corresponding to
a single qubit into ones that do.

(c) Draw the resulting quantum circuit.

11 Defining the error E(U, V ) ≡ maxψ ||(U − V )|ψ⟩||, show that E(Rn̂(α), Rn̂(β)) = 1√
2
|1 −

ei(α−β)|.

12 Delayed measurement: In the discussion of quantum teleportation, observers were often re-
quired to perform operations which depended on the result of a measurement. In a quantum
circuit, we would represent such actions by performing a measurement on one qubit and
then acting with a unitary on another if the result of the measurement was 1.

Show that such an operation can always be replaced by a controlled-unitary gate, with the
measurement postponed to the end of the computation.

3 Error-correcting codes

13 Suppose three qubits were initially in some state |ψ⟩ = α|000⟩ + β|111⟩ in the usual code
subspace for single qubit bit-flip error correction, and have subsequently become entangled
with an environment, such that the joint state is |e1⟩ ⊗ |ψ⟩ + |e2⟩ ⊗X2|ψ⟩. Show that the
circuit below will return the qubits to their original state, transferring the entanglement
with the environment to the ancillary qubit |a⟩.

|q2〉 • ⊕

|q1〉

|q0〉 •

|a〉 = |0〉 ⊕⊕ •
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14 Construct a 3-qubit code subspace protecting against single phase errors, that is against the
random action of Z on any single qubit, by showing that the error syndromes X0X1 and
X0X2 will diagnose single phase errors, and finding their +1, +1 eigenspace.

15 In classical codes, greater redundancy reduces the risk of errors; if we have five bits for
each logical bit, we are protected against two single bit errors. Consider the 5 qubit code
|0̄⟩ = |00000⟩, |1̄⟩ = |11111⟩. Does this protect against any two single bit flip errors? Justify
your answer.

16 Suppose we have a state |ψ⟩ which was encoded using the Steane code, and we want to check
whether a Y2 error has acted on it. Identify an appropriate error syndrome to diagnose this
error, and draw a quantum circuit to measure this syndrome.

17 How many distinct subspaces do we need to encode a single logical qubit to allow for recovery
from independent single qubit errors acting on up to two qubits in an n-qubit system? What
is the smallest number of qubits where such an encoding could exist?

18 Demonstrate that if we have two logical qubits encoded using the Steane code, CNOT =∏7
i=1CNOTii implements the CNOT operation on the logical qubits, where CNOTii is the

CNOT operation between the ith physical qubit of the first codeword and the ith physical
qubit of the second codeword.

Hint: This can be solved elegantly using the representation of the logical |0̄⟩ and |1̄⟩ in terms
of the Ma.

19 We wish to construct a 5 qubit error correcting code.

(a) Show that

M0 = Z1X2X3Z4, M1 = Z0Z2X3X4, M2 = X0Z1Z3X4, M3 = X0X1Z2Z4

are a good set of error syndromes, by showing that they all commute, and that the pos-
sible errors will map the (+1,+1,+1,+1) eigenspace to distinct orthogonal subspaces.

(b) Find a basis for the (+1,+1,+1,+1) eigenspace.

(c) Show that for an appropriate choice of encoding, Z̄ = Z0Z1Z2Z3Z4 acts as Pauli Z on
the logical qubit, and X̄ = X0X1X2X3X4 acts as Pauli X on the logical qubit.

4 Quantum Algorithms

20 A general state of an n-qubit system can be written as

|ψ⟩ =
2n−1∑
y=0

ψ(y)|y⟩.

Find the condition on ψ(y) for this to be a product state, so that

|ψ⟩ =
n∏
i=0

[a(i)|0⟩+ b(i)|1⟩]

for some functions a, b.
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21 Consider the Bernstein-Vazirani problem: Given a unitary operator Uf acting on n input
bits x and one output bit m such that

Uf |x⟩|m⟩ = |x⟩|m⊕ f(x)⟩,

where f(x) = a · x, we want to find the value of a. Here a · x is the bitwise multiplication
introduced in lectures, with x · y = xn−1yn−1 ⊕ . . .⊕ x0y0, where ⊕ denotes addition mod 2
(or equivalently XOR when acting on single bit values).

(a) Describe how to construct a quantum circuit realising Uf for specific values of n and
a. Illustrate this explicitly for n = 5 and a = (10010)2.

(b) Using this quantum circuit and the result of question 5 a), or otherwise, show that

H⊗(n+1)UfH
⊗(n+1)|0⟩n|1⟩1 = |a⟩n|1⟩1.

Hence, using this quantum operation, we can learn the value of a with a single appli-
cation of Uf .

22 Determine the action of U2
FT . Hence show that U4

FT = I.

23 Give the inverse for UFT , and give the explicit quantum circuit for the inverse for three
qubits.

24 Consider the Quantum Fourier Transform, defined as the linear operator UFT on an n qubit
Hilbert space whose action on basis states |x⟩, x = 0, . . . 2n − 1 is

UFT |x⟩ =
1

2n/2

2n−1∑
y=0

e2πixy/N |y⟩ ,

where N = 2n.

(a) Show that we can rewrite the transform as a product of states for the individual qubits,

UFT |x⟩ =
1

2n/2
⊗n−1
l=0 [|0⟩+ αl|1⟩],

where you should give a formula for the phases αl.

(b) Show directly (that is, without assuming the unitarity of UFT ) that for x ̸= z, UFT |x⟩
is orthogonal to UFT |z⟩.

(c) Consider a 3-qubit system, and consider the unitary transform U †
FTS0Z1UFT , repre-

sented by the quantum circuit below.

|q2〉

UFT U †
FT|q1〉 Z

|q0〉 S

Show that this circuit implements the operation x→ x+ 2 mod 8.



Quantum Computing III Epiphany Problem Set page 5

25 Suppose we have a unitary operator U on a one-qubit Hilbert space, with an eigenvector |ψ⟩
such that U |ψ⟩ = e2πiφ|ψ⟩, and we want to find the phase φ.

(a) Show that if the qubit q0 is initially set to 0, the measurement

|0⟩ H H

|ψ⟩ U

produces a result 0 with probability p = cos2(πφ).

(b) Find the probability for a 0 result when U is replaced by Uk. Hence give a procedure
for estimating φ.

26 Find the period of the function f(a) = ya mod N for N = 713, for some y of your choosing
(if the period is odd, choose again). Use the result to find a prime factor of N .

27 The diffusion operator is defined by

D = 2|ψ⟩⟨ψ| − I,

where |ψ⟩ = 1
2n/2

∑2n−1
y=0 |y⟩ is the uniform superposition of all the computational basis states.

(a) Show that D is a unitary operator.

(b) Show that the action of this operator on an arbitrary state |χ⟩ = ∑
x χx|x⟩ is

D|χ⟩ =
∑
x

(2χ̄− χx)|x⟩,

where χ̄ = 1
2n

∑
x χx is the average value of the coefficients. It is for this reason that D

is also referred to as inversion about the mean.

(c) Construct a quantum circuit to realise this operator.

28 Suppose we have a quantum circuit implementing a unitary operator U such that U |0⟩ = |ψ⟩.
Using this, give a circuit implementing the operator

Uψ = I − 2|ψ⟩⟨ψ|.
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29 Consider a function f(x), where x is a 3-bit number, which has two values a1, a2 such that
f(a1) = f(a2) = 1, and f(x) = 0 for all other values.

(a) The state

|ψ⟩ = H⊗3|0⟩ = 1√
8

7∑
i=0

|i⟩

can be decomposed into a component |ψ⟩a in the subspace Ha spanned by |a1⟩, |a2⟩,
and a component |ψ⟩⊥ in the orthogonal subspace H⊥. Give explicit expressions for
the unit normalised vectors

|a⟩ = |ψ⟩a
∥|ψ⟩a∥

, | ⊥⟩ = |ψ⟩⊥
∥|ψ⟩⊥∥

.

(b) Given a unitary Uf such that

Uf |x⟩ ⊗ |m⟩ = |x⟩ ⊗ |m⊕ f(x)⟩,

where |m⟩ is the state of a single ancillary qubit, construct an operation V which reflects
vectors in the Hilbert space about the subspace H⊥. That is, if |χ⟩ = |χ⟩a + |χ⟩⊥ with
|χ⟩a ∈ Ha and |χ⟩⊥ ∈ H⊥,

V |χ⟩ = −|χ⟩a + |χ⟩⊥.

(c) Show that if we have a vector in the two-dimensional subspace spanned by |a⟩ and | ⊥⟩,
applying V and

D = 2|ψ⟩⟨ψ| − I

rotates the state in this subspace, and find the rotation angle.

(d) Give an algorithm to use this rotation to find one of the special values a1, a2.

30 Generalise the Grover search algorithm to the case where the function f(x) has more than
one value where f(x) = 1; that is, to find one of a number of special items. If x has n digits
and there are r special values, how many times should we apply the Grover iteration? How
many searches will it typically take to find all the special values? [You can give estimations
with the assumptions N = 2n ≫ r ≥ 1.]


