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Q.1

S.1

Q.2

S.2

1 Classical Computers

Give a reversible circuit to add two single-bit numbers x and y, giving the output as a two-bit
number.

Note that there is never a unique circuit but in this case the obvious simple circuit is

|z)
v)
|a1) = 10)
|ag) = 10)

In this case the order of the gates doesn’t matter. The CCNOT get sets a; = 1lifz =y =1
while the two CNOT gates set ay = 1 if precisely one of x =1 or y = 1.

List all possible single-bit functions of a two-bit input x (so f(x1z9) is 0 or 1 for each input).
Give reversible circuit representations using the universal gate set {NOT,CNOT,CCNOT}
for all such functions with f(00) = 0. State a simple modification of these circuits to produce
circuits for all such functions with f(00) = 1. Given that {NOT,CNOT} is not a universal
gate set, is it possible to construct all the functions without using CCNOT?

There are four possible values for z, and f(z) has two possible values for each choice, so
there are 2* = 16 functions which we can label fo, fi,..., fi5. For the circuits we can take
3 bits in total, the two input bits and another bit initialised to 0 which will give the output
bit — it is not necessary to include any further (ancillary) bits. Taking x = zyz0, we can
write CCNOT to mean a CCNOT gate with the output bit as the target and the two input
bit as the controls, CNOTy (CNOT;) to mean CNOT acting on the output bit controlled
by x¢ (x1), and NOT to mean a NOT acting on the output. You can then easily draw the
circuits by placing these gates in the same order left to right. (Actually, if you use these gates
only the order does not matter — in general the order is important!) These are not unique
circuits so you may find different correct circuits. The following table summarises all the
details. Note that the list of all outputs for fx is just N written as a 4-digit binary in these
conventions. You could define the functions in other ways such as by using combinations of
logical operations, but this way it is manifest that we have included all possible functions
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Q.3

5.3

exactly once — the description in terms of logical operations is not unique.

x 00 01 10 11 Representation Logic output

fo 0 0 0 O Trivial 0

fi 0 0 0 1 CCNOT x9g AND x,
fo—0 0 1 0 CCNOT CNOT; (NOT x¢) AND
fg 0 0 1 1 CNOTl I

fi 0 1 0 O CCNOT CNOT, xg AND (NOT )
fs 0 1 0 1 CNOT, T

f6 0 1 1 0 CNOTO CNOTl o XOR T

fe 1.0 0 0 CCNOTCNOIT, CNOT, NOT o NOR x1

fo 1 0 0 1 CNOTy, CNOT, NOT o NXOR 1z,

fio 1.0 1 0 CNOTy NOT NOT «x

fu 10 1 1 CCNOT CNOTy NOT xg NAND (NOT )
fiz 11 0 1 CCNOT CNOT, NOT (NOT z9) NAND z,
fu 1.1 1 0 CCNOT NOT ro NAND z;

fis 11 1 1 NOT 1

Note that the second half (those with f(00) = 1) are the NOT of a function from the first
half, specifically fi5_y is related to fy in this way. So, if you have constructed circuits for
the functions with f(00) = 0, you can simply include a NOT gate at the end of the output
to produce the remaining circuits. If you have used the circuits described above, the NOT
gate can be placed anywhere on the output line — but note this is not true in general.

These realisations are not unique, but we cannot avoid using CCNOT for all of them.
In terms of the information given in the question, the simple argument is that f; imple-
ments CCNOT'. If we could construct it from just { NOT, CNOT} then we would be able
to use that circuit anywhere we wanted a CCNOT gate. Hence, we would have shown
that {NOT,CNOT} is a universal gate set, since we are told {NOT,CNOT,CCNOT} is.
Clearly this contradicts the statement in the question so it must not be possible to construct
a circuit for f; without using any CCNOT gates.

Actually, this argument is not quite correct since we only require the circuit to behave
as CCNOT when the target is initialised to 0. This leaves the possibility that we could
construct such a circuit without a CCNOT gate and it would behave as a CCNOT gate if
the target was initially 0, but differently if the target was initially 1. However, it is easy to
see that if we could construct any such a circuit, we could construct a CCNOT gate. To do
this, take the circuit with the output bit initialised to 0. Then the output will be 0 unless
both inputs were 1. This means that the output indicates whether or not the CCNOT gate
with these two inputs as control bits should act trivially (if output is 0) or as a NOT gate
(if output is 1) on the target of the CCNOT gate. So we can now take this output and use
it as the control bit for a CNOT gate acting on another bit which is the target bit of the
CCNOT gate which we have then constructed.

Give definitions of the complexity classes P, NP, PSPACFE and EXP, and prove the inclusions
PCNPCPSPACECEXP.

The definitions are bookwork. We interpret the inclusions in terms of problems. Any
problem in P is clearly in NP; we can check that a solution is correct in polynomial time
simply by solving the problem in polynomial time to see if the actual solution matches the



Quantum Computing III Epiphany Problem Set page 3

Q.4

5.4

proposed solution. Any problem in NP is in PSPACE as we can simply check all the possible
solutions one after the other until one works. This may take a very long time, but it will
only require polynomial space since any algorithm in NP requires only polynomial resource.
And everything is in EXP.

2 Quantum Computers

Show that
R;(0) = cos(0/2)] —isin(0/2)(n, X +n,Y +n.Z),

where i = (ng,ny,n.) is a unit vector in R?, is a unitary operator. Show that if a single
qubit has the state

1 1
ﬁ:5(1+r-a):§(I+xX+yY+zZ),

where r = (x,y, 2) is a unit vector (that is, this is a pure state), then the effect of the unitary
operator Ry(0) is to rotate v about the azis n in the Bloch sphere by an angle 6.

To show it is unitary is just a calculation, but to show that we have a rotation can be done
in different ways. Note first that conceptually we know the result must be a rotation since
this is a unitary transformation of a single-qubit pure state — hence it must map the Bloch
sphere to itself and preserve inner products (which are determined by relative positions on
the Bloch sphere). The question is then, precisely what rotation is taking place.

There are several ways to approach this problem. A nice, but slightly abstract approach is
to construct an argument by showing that R 1)(f) rotates by angle § around the z-axis
(which is a straightforward calculation), and then use symmetry to argue for the result.
More precisely, we use the fact that we can always choose our coordinates or our basis
vectors in R? so that any given vector, taking n in this case, is pointing along the new z-axis
which we could label the z’-axis. Then, since the statement is not dependent on any specific
choice of coordinates or basis, we have the result provided the operators R; and p take the
same form in any orthonormal basis. This is almost true. Under a change of basis we have
n; — n; = M;;n; and r; — r; = M;;r; where M is an orthogonal matrix implementing the
rotation. Now, if we also define o} = M;;0; then r- o = r;0; = 1,0} so the operators take the
same form in any orthonormal basis provided we can interpret the o} as Pauli o-matrices.
It is straightforward to check that indeed we have ojo} + 0’0} = 20;;1 etc.

Below we outline a direct calculation.

We know X, Y, and Z are unitary, so
RL(0) = cos(8/2)] +isin(6/2)(n X +n,Y +n.Z) = Ry(—0).
Multiplying,
Ra(0)Ra(—0) = cos*(0/2)1 +sin®*(0/2)(n2X? + nyny (XY + Y X) +n,n (X Z + ZX)
+n2Y? +nyn.(YZ + ZY) +nZ?.

Now the Pauli matrices satisfy XY +YX = XZ+ZX =YZ +ZY =0, and X? =Y? =
72 =1, so
Ri(0)Ri(—0) = [cos®(0/2) +sin®(0/2)(nl + nl +n2)|[ =1

as N is a unit vector. Thus, R' = R~!, and this is a unitary operator.
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Applying this transformation to p,

1
f = RIpR= 5[003(6’/2)] +1sin(0/2)(n, X +n,Y +n,2)|(I + 2 X +yY + 22)

x[cos(0/2)] —isin(0/2)(n, X +n,Y +n.Z)]
1

= 3 {cos®(0/2)(I + xX + yY + 2Z) + icos(0/2) sin(0/2)[n, X + n,Y +n.Z, xX + yY + 2Z]
+sin?(0/2)[1 + (ne X + n,Y +n.Z)(aX +yY + 2Z)(n. X +n,Y +n.2)]}
1

=3 {1+ cos®(0/2)(xX + yY + 22)
—2cos(0/2)sin(0/2)[(nyy — nyx) Z + (nyz — ny) X + (n.x — ngy2)Y]
+sin?(0/2) (ngxl + ingyZ — ingzY — ingrZ + nyyl +inyzX + inxY —in,yX + n,zl)
X (ny X +n,Y +n,2)|}
1

= 3 {1+ cos®(0/2)(xX + yY + 2Z) — sin(0)[(n,y — nyx)Z + (nyz — n.y) X + (n.x — ny2)Y]
+sin*(6/2)[(2n,0n T — 2)X + (2nyh T — Y)Y + (2n.n -t — 2)Z]}

If we write r = (- r)n +r,, where r; is the component of r which is orthogonal to n, this

becomes .
= 5[[+(fl-r)fl-X—|—cos€rL-X+sin9(rL x n) - X],

which indeed gives a rotation about n by an angle 6.

Q.5 Compute the action of the circuits below on states in the computational basis. Give simpler
equivalent circuits where possible.

lq1) ﬁ}“"@% 1) E}—‘
a) 90) @@ b) l90) ——&——

|q2)
!qﬁﬁ}—‘ HiZ q1)
¢) 1) H i d) lao)

S.5 (a) First, recall the states |+) = \/L§(|O> + |1)). Then [00) — |+ +) — |+ +) — [00),
01) = |+ =) = [ = =) = [11), [10) = | = 4) = | = +) = [10), [11) = [ - —) =
| + —) — |01). This is equivalent to CNOT with ¢y as the control bit.

(b) This is very straightforward to calculate directly for each computational basis state.
|00) — [10) — |11) — |01). |01) — |11) — [10) — |00). |10) — |00) — |00) — |10).
[11) — |01) — |01) — |11).

Alternatively, note that two NOT gates act on ¢; so it is unchanged. As it is used as
the control after the first NOT, ¢, is changed precisely when initially ¢; = 0.

(c) This is easier to do if we use the result in part (a), together with the fact that H? = I
which allow us to add two Hadamard gates to gy to the left of the CNOT gate, to write
it as

71

lq1) |
{1
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Then
00) = [0:4) = —=(100) + [11)) = —=(100) = [11)) — (o) = [1-)
01) = [0=) = —=(100) = [11)) = (100) + 1) = (0 + [1-)
10) = [14) = —=(10) +101)) = <= (110) + [01)) = (|14 +[0-)
1) = 1) = —=(10) = J01)) = —(110) = 1)) = —=(]1) = 10-)

(d) If gy is zero, the circuit simplifies to just two CNOTs (control ¢;, target qo), which is

trivial. For ¢ = 1 you can directly calculate |10gy) — [10go) — |11go) — |11(q0 B
1)) = [10(go & 1)) — [10go). [11g0) — [11(qo ® 1)) — [10(g0 © 1)) = [10(go & 1)) —
[11(g0 & 1)) — [11qo).

Alternatively, for g = 1 note that ¢ and ¢; are not changes, since for ¢; we have two
NOTs which gives the identity. For ¢y since ¢; has a NOT between the two CNOT's
where ¢ is the control, exactly one of them will act as NOT on ¢qy. However, the final

CNOT with control ¢, = 1 acts as another NOT on ¢, so it is also unchanged.

Thus, the action in the computational basis is completely trivial.

This is a trivial

unitary. The circuit can then be simplified to simply 3 horizontal lines.

Q.6 Show that S =
of qubits i and j.

S.6 Consider the action on computational basis states:

o X,;X;|00) = [11), Y;Y;|00) =
o X;X;|01) = [10), Y;Y}|01) =
o X,X;|10) = |01), Y;Y;]10) =
o X,X;|11) = [00), Y;Y;|11) =

—[11), Z;Z;]00) = |00), so S|00) =
110, Z:Z;]01) = —|01), so S|01) =
01), Z:Z;]10) = —|10), so S|10) =
—100), Z;Z;|11) = [11), so S|11) =

Alternatively, you could multiply out the matrices.

%(1 + X, X; + VY, + Z,Z;) defines a swap operator, interchanging the state

Q.7 By considering the action on computational basis states, show that the circuit given in lectures

(and reproduced below) does implement the Toffoli gate (CCNOT).

|g2)

k-

lq1)

l0) —{ H |

B
L 7Ll 7]
KiinaVinaiil

T

gl

Bl

S.7 For g; = 0 T does nothing to |g2) while the phase gates on ¢, are STTTT = I. For ¢, = 0,
the action on qo is HTT'TT'H = I. For ¢; = 1, the action on qo is HTT'XTT'XH = 1I.

For ¢, = 1, the action on ¢; is SXTTXT?': for ¢; = 0 this is an e~*/* phase which cancels

the phase from the T acting on ¢g. For ¢; = 1 it is an e
For ¢ = 1, ¢

contribute a e™/2

phase.

i /4

phase, so the upper two qubits
= 0 the action on q is HTXT'TXT'H = I.

For ¢ = 1,q; = 1, the action on qp is HTXTTXTXT'X H. It seems easiest at this stage
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5.9

to multiply out explicitly: TX = ( eig/4 (1) ) and TTX = ( e_?ﬂ/4 (1) ) so TXTTX =

6—1'71'/2 0

e—iﬂ'/4 0
, hence TXTTXTXTTX = /2
O elﬂ'

0 67L7r/4
is tHZH = —iX.

) = —i/. So, the action on ¢q

The overall phase cancels with the phase from the gates on go, ¢;. So this circuit acts as the
identity on the states with ¢o = 0 or ¢; = 0, and when ¢ = ¢; = 1, it acts as NOT on ¢,
realising the Toffoli gate.

. ' o _ , T
Consider a two-qubit system. Construct a circuit to realise the operation U = ( 0 )0( );

where T', X are the standard 2 X 2 matrices.

Acting on 2-qubit computational basis states |¢1qo), this is T on |gqo) if the ¢ = 0, and X
on |qo) if the ¢ = 1. Hence we want

) ET@HF
) 7|

\CIO

It is also correct to have the CNOT gate on the left.

0001

‘ . o . : 0010
Consider a two-qubit system. Construct a circuit to realise the operation U = 0100
1 000

This is just a NOT on both bits which you can see from the action of U on the computational
basis states.

If you don’t spot the simple solution above, the methodical approach is to write U as a
product of unitary matrices which are each 2 x 2 unitary matrices Ujj embedded in the 4 x 4
identity matrix, where U;; = Uj; has non-trivial entries in the 4, 75, ji and jj components
only. We do this by multiplying U by suitable U;; so that, working left to right and up to
down, we set the off-diagonal components of U to 0, essentially by doing row reduction (but
constrained since we can only use unitary matrices).

So, we start by choosing Uy4 to make the 4th element in the 1st row of U;4U vanish. This
requires the component (U4)44 = 0, so for unitarity we need (Uy4)41 = (U14)14 = 1 and then
we see (U14)11 = 0. (Actually, we could have arbitrary phases for the 14 and 41 components,
but we fix the 14 component to 1 so that the 11 component of Uy4U is 1, and it doesn’t
matter what the other phase is so we choose it to be simply 1.) So, we have

U14 = ) U14U =

— o O O
o O = O
o = O O
o O O =
o O O
o = O O
O O = O
_ o O O

To continue we could choose Usz so that the 32 component of UsysU 14U vanishes. However,
we see that Uy,U is already a unitary matrix with only a 2 x 2 non-trivial block so we define
this to be Uj; and have Uy, U = Uj, leading to the result U = U, Ul,.
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The unitary matrices U4 and Usz do not act on single qubits so we need to use Gray codes
to convert the basis so that they do act on single qubits. Since Uy4 acts on the basis states
|00) and |11) we can use the Gray code 00 — 01 — 11. Similarly for Us; we can use
01 — 00 — 10. These are both the same transformation where we use CNOT on |gy) when
the control bit ¢ = 0 which we may write as C; NOTp. This is implemented in the circuit
by XlClNOTOXl.

In the new basis Uy is NOT on |¢;) when gy = 1 while Uys is also NOT on |g;) but when
go = 0. Therefore the overall effect is just NOT on |q), i.e. X;. Finally we must transform
back to the original basis, again using X;C1 NOTyX;.

SO, the final circuit is (chlNOToXl)Xl(XlolNOToXl) == Xl(clNOT()XlClNOT())Xl =
X1(X1X0) X1 = X1 Xo.

Q.10 Consider a two-qubit system. We wish to construct a circuit to realise the operation

1 0 0 0
o 1 1 1
2 2 V2
0 - —% 0
V2 V2

(a) First decompose this operator in terms of unitary operators Uy, Uy, Us which each act
non-trivially on a two-dimensional subspace of the Hilbert space, U = U UsUs.

(b) Use CNOTs to convert the operators which do not act on a subspace corresponding to
a single qubit into ones that do.

(¢) Draw the resulting quantum circuit.

S.10 (a) As in the previous question, choose unitaries U;; to transform U into the identity by
row reduction. In this example only the lower right 3 x 3 block is non-trivial so really
it is a 3 x 3 problem embedded into 4 x 4 matrices. The matrices we need are Usg,
Uy and Usy which in the notation of the question can be chosen to be (note this is
not unique so if you have 3 other matrices that are unitary, non-trivial only in 2 x 2
submatrices and multiply to give U, that is a valid alternative solution — you will end
up with a different but equivalent quantum circuit, and it may or may not be obvious
how to relate the different circuits)

1 0 0 0 1 0 0 0 1000

0 %= - 0 0 %= 0 =+ 0100

U = Of—ﬁ—O’ Uz = 0?1,?7’ Us=10 0 0 1
NGRRNG) " )

00 0 1 0 % 0 -2 0010

(b) U, is a controlled-Hadamard with target |¢;) and control |go). Us is a CNOT with
target |go) and control |¢;). So it is only U; we need to address: it acts on the subspace
spanned by |01) and [10). Acting with CNOT, this is |01) and |11), so it’s CNOT U,

CNOT.
a2 4@*@%

(c) lao) . .

Q.11 Defining the error E(U,V) = maxy |[(U — V)[¢)||, show that E(R(a), Ra(B)) = \/L§|1 -
ei(a76)|.
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S.11

Q.12

S.12

Q.13

Without loss of generality, change our basis so that n = (0,0, 1), so Ri(a) = R.(«). In the
Bloch sphere representation, this is represented as a rotation in the z — y plane, and the
error is maximised if we consider vectors in the x — y plane, that is, we take r orthogonal to
n. In terms of the state, this is

1

[¥(0)) 7

where 6 is the angle in the z — y plane. R, («) acts as § — 0 + «.

(B2 () = R-(B)[9 ()] = [[[¥(0+0a)) =40+ B = %Iei(9+a’—ei(9+5)l =

(10} +€]1)),

1 .
—|1—€eA),
7 |

Delayed measurement: In the discussion of quantum teleportation, observers were often
required to perform operations which depended on the result of a measurement. In a quantum
circuit, we would represent such actions by performing a measurement on one qubit and then
acting with a unitary on another if the result of the measurement was 1.

Show that such an operation can always be replaced by a controlled-unitary gate, with the
measurement postponed to the end of the computation.

If the first qubit is initially in a state |¢;) = «|0)+/3|1), and the second qubit is in a state |g2),
acting with a controlled-unitary gate will put the system in the state «|0) ®|g2) +5|1) @U|ga).
Measuring the first qubit, we either measure 0, leaving the second qubit in the state |gs), or
we measure 1, leaving the second qubit in the state U|gy). Mathematically, this is equivalent
to measuring the first qubit and then acting on the second qubit with U if the measurement
result is 1. Also, in both cases the probabilities of these outcomes are |a|* and |5]%.

Actually, we should consider the more general case when the two qubits may be entangled.
In that case we can always write the initial state as a|0) ® |¢) + 3 |1) ® |¢) but by exactly
the same argument, either way we will measure 0 with probability |a|? and get final state
|0) @ |¢) or 1 with probability |3|*> and get final state |1) ® [1)).

Of course, if the two qubits are spatially separated, it is very difficult to perform the joint
quantum operation necessary to implement the controlled unitary. It is therefore often
advantageous to actually perform measurements first and communicate the classical infor-
mation instead. However, theoretically we can always do measurements at the end and this
simplifies our discussion of quantum circuits since we can always first implement a unitary
transformation and then at the end make measurements.

3 Error-correcting codes

Suppose three qubits were initially in some state |) = «|000) + B|111) in the usual code
subspace for single qubit bit-flip error correction, and have subsequently become entangled
with an environment, such that the joint state is |e1) ® |¢) + |ea) ® Xa|vp). Show that the
circuit below will return the qubits to their original state, transferring the entanglement with
the environment to the ancillary qubit |a).

ICI2>

IQ1>

|q0)
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S.13 After the first gate, the state is
le1) ® (a]000) @ [0) + B|111) @ [1)) + |ez) @ (|100) @ [1) + B|011) @ |0)).
After the second gate, the state is
le1) ® (|000) ® |0) 4+ B]111) ® |0)) + |e2) @ (|100) ® |1) + 5]011) ® |1)).
Finally, the state is
|€1)®(]000)®[0)+5[111)®@]0))+|e2)@(|000)@[1)+4[111)®[1)) = [e1)®[Y) @|0)+e2) R[)®]1),

so [¢) is an overall factor, and the state of the environment is entangled with the ancilla, as
desired.

Q.14 Construct a 3-qubit code subspace protecting against single phase errors, that is against the
random action of Z on any single qubit, by showing that the error syndromes XoX; and
XoXo will diagnose single phase errors, and finding their +1, +1 eigenspace.

S.14 The error Z, anticommutes with both error syndromes, mapping the +1, +1 eigenspace to
the —1, —1 eigenspace. Z; anticommutes with the first error syndrome, mapping the +1, +1
eigenspace to the —1,+1 eigenspace. Zy anticommutes with the second error syndrome,
mapping the +1,+1 eigenspace to the +1,—1 eigenspace. Thus if we take the +1,+1
eigenspace as the code subspace, the errors will each map to a distinct eigenspace, and the
errors can be distinguished by these syndromes.

The +1, +1 eigenspace is most easily constructed by using HZ = X H, so H®3 will map the
+1,+1 eigenspace of ZyZ; and ZyZs to the +1,+1 eigenspace of XyX; and XyX5. Thus,
suitable codewords are

_ 1

0) = H®3\OOO> = %OOOO} +1001) + |010) + |011) + |100) + [101) + |110) + |[111))
and

_ 1

1) = H®3|111> = —(|000) — |001) — |010) + [011) — |100) + |101) + |110) — |111).)

V8

Q.15 In classical codes, greater redundancy reduces the risk of errors; if we have five bits for
each logical bit, we are protected against two single bit errors. Consider the 5 qubit code
|0) = |00000), |1) = |11111). Does this protect against any two single bit flip errors? Justify
Your answer.

S.15 Yes; suitable error syndrome operators are My = Z1Zy7Z374, My = ZgZyZ3Zy, My =
ZoZhZsZy, Ms = ZyZ1ZsZ3 (note Z1Z57374 is not independent). These define 16 two-
dimensional eigenspaces which make up the five-qubit Hilbert space. There are 5 possible
single-qubit bit flip errors X;, and 10 possible double bit flip errors X;X;, which all map to
distinct eigenspaces of these error syndromes.

Q.16 Suppose we have a state 1)) which was encoded using the Steane code, and we want to check
whether a Yo error has acted on it. Identify an appropriate error syndrome to diagnose this
error, and draw a quantum circuit to measure this syndrome.

S.16 We could detect this by measuring either Ms or N,, which both anticommute with Y5.
Suppose we measure Ns; the circuit is
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Q.17

S.17

Q.18

S.18

How many distinct subspaces do we need to encode a single logical qubit to allow for recovery
from independent single qubit errors acting on up to two qubits in an n-qubit system? What
1s the smallest number of qubits where such an encoding could exist?

We need a code subspace, 3n subspaces for single errors, and %n(n — 1) subspaces for double
errors: n(n — 1) each for X;Y;, X;Z; and Y;Z;, and %n(n —1) each for X, X, VY, and Z,Z;.
So in total 1(9n? — 3n + 2) subspaces. 2" > 9n? — 3n + 2 for n > 10.

Demonstrate that if we have two logical qubits encoded using the Steane code, CNOT =
HZ:l CNOT;; implements the CNOT operation on the logical qubits, where CNOTy; is the
CNOT operation between the ith physical qubit of the first codeword and the ith physical qubit
of the second codeword.

Hint: This can be solved elegantly using the representation of the logical |0) and |1) in terms
of the M,.

Assume the state of the control qubit is

L Mo)(1 4 M) (1 + My)[0000000).

the CNOT flips every bit in the target where the bit in the control is 1. So if the control is
M,|0000000), the CNOT acts as M, on the target, etc.

Thus, when the control is |0), the CNOT acts as

10)|)) = 231/2(1+M0)(1+M1)(1+M2)|0000000>|¢> —(]0000000) )+ M,|0000000) Mo 1)+

3/2

But we assume the state |¢) is in the code subspace, which is the +1 eigenspace of all the
M,, so this state is just

(10000000) |16} + Mo |0000000)[¢0) + . . .)

o 0)).

Similarly, if the state of the control qubit is

o
1) = 55751+ Mo) (1 + M) (1 + M) X]0000000).

the CNOT flips every bit in the target where the bit in the control is 1. So if the control is
X'0000000), the CNOT acts as X on the target, and if the control is M,X|0000000), the
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CNOT acts as M, X on the target, etc. Acting on the code subspace, M, X = X. Thus,
when the control is |1), and the target |¢) is in the code subspace,

D) = #(1 b Mp)(1+ M) (1 + My) X [0000000)]45)

1 \ \ \ —
= 5372 (X10000000) X [¢)) + My X[0000000) Mo X)) +....)

= #()‘qooooooop‘(w) + Mo X[0000000)X [¢)) +...) = |1) X)),

as desired.
Q.19 We wish to construct a 5 qubit error correcting code.
(a) Show that
My =721 X3X372y, My = ZyZ:X3Xy, My=XoZ17Z3Xy, Ms3= X X1227,

are a good set of error syndromes, by showing that they all commute, and that the pos-
sible errors will map the (+1,4+1,+1,+1) eigenspace to distinct orthogonal subspaces.

(b) Find a basis for the (+1,+1,4+1,+1) eigenspace.

(c) Show that for an appropriate choice of encoding, 7 = ZyZ1Zy 752, acts as Pauli Z on
the logical qubit, and X = XoX1X2X3Xy acts as Pauli X on the logical qubit.

S.19 (a) Ineach case, there is a X; and Z; in M, with a corresponding Z; and X in M. The two
minus signs from the anticommutation of these two operators imply that M, commutes
with M,. Write +1 as 0 and —1 as 1; then the code subspace is 0000. X, anticommutes
only with the Zy in My, so it maps to 0010. Similarly X; maps to 0101, X, maps to
1010, X3 maps to 0100, X4 maps to 1001. Zy maps to 1100, Z; maps to 1000, Z, maps
to 0001, Z3 maps to 0011, Z, maps to 0110. Yy anticommutes with the Z; in M; and
the Xy in My, M3, so it maps to 1110. Similarly ¥} maps to 1101, Y5 maps to 1011,
and Y3 maps to 0111. These are all distinct, so there are good error syndromes.

(b) This can be constructed by starting with two convenient states and projecting to the
eigenspace. Let’s take

0) = L1 Mo)(1 4+ My)(1+ My)(1+ Ms)[00000)

—

1) = Z(1+ Mo)(1+ My)(1+ My)(1 + My)[11111)

(c) Z and X commute with all the M,, so their action on a vector in the code subspace
will give a vector in the code subspace. The commutation also implies

Z|0)y = }1(1 + Mo)(1 + My)(1 + Ms)(1 4 M;)Z|00000) = |0),
Z|1) = %(1 + Mo)(1+ M) (1 + My)(1 + Ms) Z|11111) = —|1),
X|0) = }1(1 + Mo)(1 4+ My)(1 4+ My)(1 + M3)X]00000) = |1),
X[1) = i(l b Mo)(1+ My)(1+ My)(1+ My)X[11111) = |0)

as desired.
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Q.20

S.20

Q.21

S.21

4 Quantum Algorithms

A general state of an n-qubit system can be written as

2" —1

) =" v(y)ly).

Find the condition on (y) for this to be a product state, so that

n

() = [ Jla(@)]0) + b(3)|1)]

=0

for some functions a,b.

For a product state, the functions ¢ (y) must be a product of functions of the individual
bit values, ¢(y) = [, ¥ (y;). The functions ¢(y;) are defined by ¥(y;) = a(i) if y; = 0
and ¥(y;) = b(i) if y; = 1. Note that not all functions take this form; to specify a general

function ¥ (y) we must give 2" function values, while a product function is determined by
only 2n values a(i) and b(37).

Consider the Bernstein-Vazirani problem: Given a unitary operator Uy acting on n input
bits x and one output bit m such that

Uylz)[m) = |z)lm © f(x)),

where f(x) = a-x, we want to find the value of a. Here a - x is the bitwise multiplication
introduced in lectures, with © -y = Tp_1Yn_1 D ... D ToYo, where & denotes addition mod 2
(or equivalently X OR when acting on single bit values).

(a) Describe how to construct a quantum circuit realising Uy for specific values of n and a.
Hlustrate this explicitly for n =5 and a = (10010)s.

(b) Using this quantum circuit and the result of question 5 a), or otherwise, show that
HEOUHED0), (1)1 = [a),|1)1.
Hence, using this quantum operation, we can learn the value of a with a single applica-
tion of Uy.

(a) Uy adds to m every bit of x where the corresponding bit of @ is 1, so a quantum circuit
can be constructed by taking a CNOT with control x; and target m for each bit ¢ with
a; = 1. For example, if n =5 and a = 10010, the circuit is

‘q4> ———

) —
-
|q1)
)
)




Quantum Computing I1I Epiphany Problem Set page 13

(b) Insert an H? = I in between each pair of CNOT operations. Then we can use the
result of 5 a) to replace the circuit with CNOTs with control |m) and target z; where
a; = 1, giving the indicated result.

Q.22 Determine the action of Uzp. Hence show that Upp = 1.

S.22
2n 1

1 o Jon
Urrl) = g 2 ™" [u),
y=0

SO

2" -1

1 Tixy /2™
Uprlz) = on/2 Z ePriy/? Urrly)
y=0

2" —1 2" -1

_ 2% Z e27riscy/2" Z 627riyz/2”|z>

y=0 z=0
1 2n—12n~1
y n
- 627r7,(ac—i-z)y/2 |Z>
2n
z=0 y=0

The sum over y is a geometric series,

2n! (1 _ e27ri(:v+z))

Z 627ri(a:+z)y/2" _
(1 _ 627ri(m+z)/2”)’

y=0

which gives zero unless z 4+ 2z = 0 mod 2", in which case the sum is 2". So
Upglz) = 2" — 2).
Hence Upy = 1.

Q.23 Guve the inverse for Upr, and give the explicit quantum circuit for the inverse for three
qubits.

S.23 Upr is a unitary operator, so U;% = U}T, SO

2"—1

- 1 —2mix n
UF%|‘T> ~ on/2 Z ety ly).

y=0

The circuit is given by taking the circuit for Upr given in lectures and conjugating all the
operators and reversing the order, giving

la2) 7] % ]

1) ﬁ@ (H]

|q0) (H]|
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Q.24 Consider the Quantum Fourier Transform, defined as the linear operator Upr on an n qubit
Hilbert space whose action on basis states |x), x =0,...2" — 1 is

S.24

2n—1
1 )
UFT|5U> — e § :€2mxy/N|y> 7
y=0

where N = 2",

(a)

(b)
(¢)

(a)

Show that we can rewrite the transform as a product of states for the individual qubits,
1
Uprle) = 5.7 ®% [10) + cul1)],
where you should give a formula for the phases q;.

Show directly (that is, without assuming the unitarity of Upr) that for x # z, Upr|x)
is orthogonal to Upp|z).

Consider a 3-qubit system, and consider the unitary transform U}TSOZIUFT, repre-
sented by the quantum circuit below.

lg2) —
lq1) 7 Urr “Z‘* Ul
o)< HsH

Show that this circuit implements the operation x — x + 2 mod 8.

Writing v as a bit string, vy = yn,_12"" ' + ... + yo, e2™7/2" = H?:—Ol e2mien /2 Thus

1 n— iz /27t
Urrlz) = 5275 @iy (10) + €7 ).

If ‘O&> = UFT‘Z> and ‘5) = UFT‘iL‘>,

n—1

1 y n—
H(1+62m(m—z)/2 l)'

= 2_n
=0

{aB)

If x — 2 is odd, that is, if they differ in the least significant bit, the term with [ =n —1
vanishes. If x — z is even, but (x — z)/2 is odd, the term with [ = n — 2 vanishes,
and so on. So long as they differ in some bit, one of the terms in the product will
vanish. Hence the states are orthogonal for x # z. It is also clear that if x = 2z we have
(a|B) =1 so the states Upr|x) are orthonormal, showing that Ugr is unitary.
An alternative derivation is to calculate

on—1

1 2mi(zu—2zv) 1 2mi(x—2)u/2m
(@18) = o 3 ) = L

u,v u=0
and note that this is a geometric series. If x # 2z the sum gives

1 1-— 627ri(x—z)

(a]B) = on ] _ ezmie—z)/2" 0

since x — z is an integer. However, if x = 2z we have

2" —1

1
@lp) = ¥ 1-1.
u=0
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Q.25

S.25

()

1
V8
Applying Sy and Z; gives

1 ) . ) )
SoZ1Uprlz) = %(Im +e™[1))(]0) — ™2[1))1(|0) + € e 2|1) )

= (10) + ™D [1))2(]0) + eTH(1))1(|0) + DAL

Uprla) = —=(10) + ™ [1))2(10) + e™2[1))1(]0) + e™/*|1))q -

where for qubit 2 we note that exp(27i) = 1, so
Ul Z Upp|z) = |z + 2 (mod 8))
with the mod 8 being due to exp(27i) = 1 again.

Suppose we have a unitary operator U on a one-qubit Hilbert space, with an eigenvector |¢)
such that Ul) = e*™#|y)), and we want to find the phase .

(a) Show that if the qubit qq is initially set to 0, the measurement

0

) (U]

produces a result 0 with probability p = cos*(wyp).

(b) Find the probability for a 0 result when U is replaced by U*. Hence give a procedure for
estimating ©.

(a) After the first two steps, the state is \/ii(|0> + e*™?|1)) @ |¢), so the further H gives
$[(14€?™9)[0) + (1 — e*™#)|1)] @ |1)), so the probability of measuring 0 is as given (and
the probability of measuring 1 is sin®(7yp)).

(b) If we use U*, p(0) = cos?(mkep). We could just measure cos?(wp) by repeatedly mea-
suring U, obtaining better estimates of cos?(m), but the accuracy of the estimate
improves slowly. Instead we can speed up the process by using circuits with increasing
values of k.

First, note that due to periodicity we can take ¢ € (—1/2,1/2] but we cannot distin-
guish between ¢ and —¢ since all the probabilities are even functions of ¢. So, up
to this ambiguity, let’s determine ¢ with the assumption that ¢ € [0,1/2]. Note that
such values can be written in binary as ¢ = 0.0bgbsby -+ = >°22, b;/27. (The value 1/2
would normally be written in binary as 0.1 but this is also equal to 0.01111---.)

Now, to determine the value of by we just need to determine of ¢ is less than 1/4 (so
by = 0) or not (so by = 1). Hence, starting with k = 1, we only need to determine p to
sufficient accuracy to determine if p < cos?(w/4) = 1/2 or not.

Once we have done that we can set £ = 2 and measure to estimate the probability
p = cos?(m2p) which is equivalent to the previous case of k = 1 but replacing o with
2¢p. If we had determined b, = 0 then we have exactly the same process to determine bs.
If instead we had found by, = 1 we would want to distinguish between 2¢ € [1/2,3/4)
giving b3 = 0 for p < 1/2 and 2¢ € [3/4,1] giving b3 =1 for p > 1/2.

We can then continue the process by taking & = 22 = 4 to determine by, with the
details depending on the value of b3, as for b3 and b, above. Note that the value of by is
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irrelevant here since by will affect the integer part of 4¢ and that does not matter due
to periodicity. In general taking k = 27 will determine b;,» with the details depending
on the value of b;,.

Q.26 Find the period of the function f(a) =y® mod N for N =713, for some y of your choosing
(if the period is odd, choose again). Use the result to find a prime factor of N.

S.26 If we take y = 3 for example, 7 = 330. ged(3'%° —1,713) = 23, which gives us 713 = 23 x 31.
Q.27 The diffusion operator is defined by

D =2[)] -1,

where 1)) = Qn% Zzigl ly) is the uniform superposition of all the computational basis states.

(a) Show that D is a unitary operator.
(b) Show that the action of this operator on an arbitrary state |x) = > Xz|x) s

Dlx) =) (2% — xa)l),

xT

where Y = 2% > » Xz 18 the average value of the coefficients. It is for this reason that D
is also referred to as inversion about the mean.

(c) Construct a quantum circuit to realise this operator.

S.27 (a) Since D = H®"(2|0)(0| — I)H®™, it suffices to show that U = 2|0)(0| — I is a unitary
operator. But this is immediate, as UT = U and U? = I.

(b) DIx) = 2v)(¥]x) — [x), and (¢|x) = 577 >, X = 2"/2X, giving

DIx) = 2060 g Do 1) — b = S22~ xa)le)

T

as required.

(¢) The unitary U = 2|0)(0] — [ is +1 on |0) and —1 on all other basis states. We don’t
care about the overall phase, so we could also take —1 on |0) and +1 on all other basis
states. Taking the NOT of all bits, this is —1 on |1...1) and +1 on all other basis
states. This is C" 17 acting on one of the qubits conditioned on all the other ones.
Thus D = H®"X®(C"1Z)X®"H®". The C"'Z can be reduced to simpler gates
using the general procedure for controlled unitaries.

Q.28 Suppose we have a quantum circuit implementing a unitary operator U such that U|0) = |v).
Using this, give a circuit implementing the operator

Uy =T =2[¢){].

S.28
Uy = U = 200){0])U",
so using the results of the previous question, Uy = UX®"(C" 1 Z)X®"UT.

Q.29 Consider a function f(x), where x is a 3-bit number, which has two values ay,as such that

fla1) = flaz) =1, and f(x) =0 for all other values.
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S.29

(a)

(b)

(c)

(d)
(a)

The state

) = H0) = —= 3 )

can be decomposed into a component |1), in the subspace H, spanned by |a1), |as), and
a component |1) | in the orthogonal subspace H, . Give explicit expressions for the unit
normalised vectors

[)a N

9= T e

Given a unitary Uy such that
Usle) @ [m) = [x) @ [m & f(x)),

where |m) is the state of a single ancillary qubit, construct an operation V which reflects
vectors in the Hilbert space about the subspace Hy. That is, if |x) = |X)a + |X)L with
[X)a € Ha and [x)1 € Ho,

VIxX) = =Ix)a + X)L

Show that if we have a vector in the two-dimensional subspace spanned by |a) and | L),
applying V' and

D =2y =1
rotates the state in this subspace, and find the rotation angle.

Give an algorithm to use this rotation to find one of the special values ay,as.
The component [¢), is just the part of 1)) in the subspace spanned by {|a1), |a2)},

1

[¥)a = = (la1) + [az).

The orthogonal component is then
1 .
W) =—= > i)
8.
1#a1,a2

Note that by definition [¢)) = |[¢), + |[¢) 1.
Since |[|¢)q|* = 1/4 and |||¢) 1 ||* = 3/4, the unit normalised vectors are

1 1 ,
ja) = E(M) +lag)), [ L) = %2: [i)-

Note

) = o+ 22 1)

We take the ancillary qubit in the superposition |—) = \/LE(|O> — |1)). Then
Upla) @ |=) = —la;) @ |=),

while
Ugli) @ |=) = [i) ® [-)



Quantum Computing I1I Epiphany Problem Set page 18

Q.30

for ¢ # aq, ay. This realises the required operation V since it acts as —I in H, while as
I in HJ_:

Urlx) @ =) = (=Ix)a + IX)1) @ [=).
Since the state of the ancillary qubit is unchanged, we can think of this as a transfor-
mation in the 3-qubit Hilbert space.
Comments: Recalling the description of Grover’s algorithm, in that case we had in
the 2d subspace V' =2| L)(L | — I = I — 2|a)(a|. Now the operator V' we constructed
above also acts in this way in the 2d subspace. However, in the full Hilbert space it
is given by V' = I — 2|a;){a;| — 2|ag)(as|, not V"= I — 2|a)(a|. Now, it would be fine
to construct any operator which reduced to the required form on the 2d subspace, but
given Uy our options are limited. Indeed, ignoring the ancillary qubit, we see that Uy
is proportional to I when acting in either H, or H, so it cannot act as say I — 2|a)(a
which clearly involves a specific state |a) € H, so does not act proportional to I in
H.. However since in H, |a1)(a1| + |az)(az| is the identity operator, we can use Uy is
implement V' = I — 2|ay)(a1| — 2|az)(as|.
Note also that for a generic state |x), |x)q is a linear combination of |a;) and |as) but
not proportional to |a). Similarly |y). is generically not proportional to | L).

(c) If |x) = cosala) +sinal L), V]x) = —cosala) +sina| L), and

1 3
DV|x) = 2|1/)>(—§ cos o + gsin «) + cos ala) — sina| L)

1 3 3 1
= (—COSO&—F £sina) la) + <—£c08a+§sina> | L)

2 2 2
= cos(a —7/3)|a) +sin(a —7/3)| L) .

This is a rotation through an angle § with cos = 1/2, that is 6 = 7/3.

Comments: It is not sufficient to just calculate DV'|¢)) as that is just a single example

so does not show that in general DV acts as a rotation in the 2d subspace.

In general we should also include phases in the coefficients of y but that doesn’t alter

anything in this question.

(d) i Start with |000)|0).

ii. Act with H®3® HX to produce the state |¢))|—). This is at an angle of 7/3 to |a)
so we have a = /3 above.

iii. So, applying DV once, we will obtain precisely |a).

iv. Measuring the state in the computational basis will then give us one of the special
values ay, ag, each with probability 1/2, so the probability of a wrong answer is 0
(assuming no errors).

Comments: To find both values a; and as we have to repeat the algorithm. Each time we
get a random one of a; or aq, so after ¢ tries the probability that we have not found both
values is 217

Note that giving a generic description of Grover’s algorithm (or a generalisation of it) does
not answer this question. In particular, using estimates which are valid for large N = 2",
where n is the number of qubits, to estimate the number of applications of DV or the
probabilities of finding a; or asy is not sufficient.

Generalise the Grover search algorithm to the case where the function f(x) has more than
one value where f(x) = 1; that is, to find one of a number of special items. If x has n digits
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S.30

and there are r special values, how many times should we apply the Grover iteration? How
many searches will it typically take to find all the special values? [You can give estimations
with the assumptions N =2" > r > 1.]

There are now r special values a;, i = 1,...7 such that f(a;) = 1, with f(z) = 0 otherwise.
The |a;) span an r-dimensional subspace A of the Hilbert space. The uniform superposition
|1)) can be written as

N-1 _\/7 JN =T
> la) = gl + X

|aL>7

where

If we apply the operators D and V as before, they will generate a rotation in the two-
dimensional space spanned by |a) and |a, ), and the algorithm proceeds in the same way as
for a single special item. The only difference is the value of the angle 6 between [¢)) and

|aJ->7
VN —r

If we assume r < N, 0 = \/i%, so we want to run the algorithm @ times where (2Q + 1) ~
/2, that is

cos = (Ylay) =

After iterating, the state is nearly along |a, ). Measuring the state will give at random one
of the special values a;.

For moderate values of r, we will need to take roughly 2r to 4r samples to typically get one
instance of each value. The precise answer to this problem (known as the Coupon collector’s
problem — how many coupons do you need to collect to get one of each type, assuming equal
probability of getting each type?) is r Z;zl 1/j and for very large r this is approximately
rlogr.



