
Quantum Computing III Epiphany Problem Set page 1

1 Classical Computers

Q.1 Give a reversible circuit to add two single-bit numbers x and y, giving the output as a two-bit
number.

S.1 Note that there is never a unique circuit but in this case the obvious simple circuit is

|x〉 • •

|y〉 • •

|a1〉 = |0〉 ⊕

|a0〉 = |0〉 ⊕⊕

In this case the order of the gates doesn’t matter. The CCNOT get sets a1 = 1 if x = y = 1
while the two CNOT gates set a0 = 1 if precisely one of x = 1 or y = 1.

Q.2 List all possible single-bit functions of a two-bit input x (so f(x1x0) is 0 or 1 for each input).
Give reversible circuit representations using the universal gate set {NOT,CNOT,CCNOT}
for all such functions with f(00) = 0. State a simple modification of these circuits to produce
circuits for all such functions with f(00) = 1. Given that {NOT,CNOT} is not a universal
gate set, is it possible to construct all the functions without using CCNOT?

S.2 There are four possible values for x, and f(x) has two possible values for each choice, so
there are 24 = 16 functions which we can label f0, f1, . . . , f15. For the circuits we can take
3 bits in total, the two input bits and another bit initialised to 0 which will give the output
bit – it is not necessary to include any further (ancillary) bits. Taking x = x1x0, we can
write CCNOT to mean a CCNOT gate with the output bit as the target and the two input
bit as the controls, CNOT0 (CNOT1) to mean CNOT acting on the output bit controlled
by x0 (x1), and NOT to mean a NOT acting on the output. You can then easily draw the
circuits by placing these gates in the same order left to right. (Actually, if you use these gates
only the order does not matter – in general the order is important!) These are not unique
circuits so you may find different correct circuits. The following table summarises all the
details. Note that the list of all outputs for fN is just N written as a 4-digit binary in these
conventions. You could define the functions in other ways such as by using combinations of
logical operations, but this way it is manifest that we have included all possible functions

Quantum Computing III Epiphany Problem Set page 2

exactly once – the description in terms of logical operations is not unique.

x 00 01 10 11 Representation Logic output
f0 0 0 0 0 Trivial 0
f1 0 0 0 1 CCNOT x0 AND x1
f2 0 0 1 0 CCNOT CNOT1 (NOT x0) AND x1
f3 0 0 1 1 CNOT1 x1
f4 0 1 0 0 CCNOT CNOT0 x0 AND (NOT x1)
f5 0 1 0 1 CNOT0 x0
f6 0 1 1 0 CNOT0 CNOT1 x0 XOR x1
f7 0 1 1 1 CCNOT CNOT0 CNOT1 x0 OR x1
f8 1 0 0 0 CCNOT CNOT0 CNOT1 NOT x0 NOR x1
f9 1 0 0 1 CNOT0 CNOT1 NOT x0 NXOR x1
f10 1 0 1 0 CNOT0 NOT NOT x0
f11 1 0 1 1 CCNOT CNOT0 NOT x0 NAND (NOT x1)
f12 1 1 0 0 CNOT1 NOT NOT x1
f13 1 1 0 1 CCNOT CNOT1 NOT (NOT x0) NAND x1
f14 1 1 1 0 CCNOT NOT x0 NAND x1
f15 1 1 1 1 NOT 1

Note that the second half (those with f(00) = 1) are the NOT of a function from the first
half, specifically f15−N is related to fN in this way. So, if you have constructed circuits for
the functions with f(00) = 0, you can simply include a NOT gate at the end of the output
to produce the remaining circuits. If you have used the circuits described above, the NOT
gate can be placed anywhere on the output line – but note this is not true in general.

These realisations are not unique, but we cannot avoid using CCNOT for all of them.
In terms of the information given in the question, the simple argument is that f1 imple-
ments CCNOT . If we could construct it from just {NOT,CNOT} then we would be able
to use that circuit anywhere we wanted a CCNOT gate. Hence, we would have shown
that {NOT,CNOT} is a universal gate set, since we are told {NOT,CNOT,CCNOT} is.
Clearly this contradicts the statement in the question so it must not be possible to construct
a circuit for f1 without using any CCNOT gates.

Actually, this argument is not quite correct since we only require the circuit to behave
as CCNOT when the target is initialised to 0. This leaves the possibility that we could
construct such a circuit without a CCNOT gate and it would behave as a CCNOT gate if
the target was initially 0, but differently if the target was initially 1. However, it is easy to
see that if we could construct any such a circuit, we could construct a CCNOT gate. To do
this, take the circuit with the output bit initialised to 0. Then the output will be 0 unless
both inputs were 1. This means that the output indicates whether or not the CCNOT gate
with these two inputs as control bits should act trivially (if output is 0) or as a NOT gate
(if output is 1) on the target of the CCNOT gate. So we can now take this output and use
it as the control bit for a CNOT gate acting on another bit which is the target bit of the
CCNOT gate which we have then constructed.

Q.3 Give definitions of the complexity classes P, NP, PSPACE and EXP, and prove the inclusions
P ⊆ NP ⊆ PSPACE ⊆ EXP .

S.3 The definitions are bookwork. We interpret the inclusions in terms of problems. Any
problem in P is clearly in NP; we can check that a solution is correct in polynomial time
simply by solving the problem in polynomial time to see if the actual solution matches the

Quantum Computing III Epiphany Problem Set page 3

proposed solution. Any problem in NP is in PSPACE as we can simply check all the possible
solutions one after the other until one works. This may take a very long time, but it will
only require polynomial space since any algorithm in NP requires only polynomial resource.
And everything is in EXP.

2 Quantum Computers

Q.4 Show that
Rn̂(θ) = cos(θ/2)I − i sin(θ/2)(nxX + nyY + nzZ),

where n̂ = (nx, ny, nz) is a unit vector in R3, is a unitary operator. Show that if a single
qubit has the state

ρ̂ =
1

2
(I + r · σ) = 1

2
(I + xX + yY + zZ),

where r = (x, y, z) is a unit vector (that is, this is a pure state), then the effect of the unitary
operator Rn̂(θ) is to rotate r about the axis n̂ in the Bloch sphere by an angle θ.

S.4 To show it is unitary is just a calculation, but to show that we have a rotation can be done
in different ways. Note first that conceptually we know the result must be a rotation since
this is a unitary transformation of a single-qubit pure state – hence it must map the Bloch
sphere to itself and preserve inner products (which are determined by relative positions on
the Bloch sphere). The question is then, precisely what rotation is taking place.

There are several ways to approach this problem. A nice, but slightly abstract approach is
to construct an argument by showing that R(0,0,1)(θ) rotates by angle θ around the z-axis
(which is a straightforward calculation), and then use symmetry to argue for the result.
More precisely, we use the fact that we can always choose our coordinates or our basis
vectors in R3 so that any given vector, taking n̂ in this case, is pointing along the new z-axis
which we could label the z′-axis. Then, since the statement is not dependent on any specific
choice of coordinates or basis, we have the result provided the operators Rn̂ and ρ̂ take the
same form in any orthonormal basis. This is almost true. Under a change of basis we have
ni → n′

i = Mijnj and ri → r′i = Mijrj where M is an orthogonal matrix implementing the
rotation. Now, if we also define σ′

i =Mijσj then r ·σ = riσi = r′iσ
′
i so the operators take the

same form in any orthonormal basis provided we can interpret the σ′
i as Pauli σ-matrices.

It is straightforward to check that indeed we have σ′
iσ

′
j + σ′

jσ
′
i = 2δijI etc.

Below we outline a direct calculation.

We know X, Y , and Z are unitary, so

R†
n̂(θ) = cos(θ/2)I + i sin(θ/2)(nxX + nyY + nzZ) = Rn̂(−θ).

Multiplying,

Rn̂(θ)Rn̂(−θ) = cos2(θ/2)I + sin2(θ/2)(n2
xX

2 + nxny(XY + Y X) + nxnz(XZ + ZX)

+n2
yY

2 + nynz(Y Z + ZY) + n2
zZ

2.

Now the Pauli matrices satisfy XY + Y X = XZ + ZX = Y Z + ZY = 0, and X2 = Y 2 =
Z2 = I, so

Rn̂(θ)Rn̂(−θ) = [cos2(θ/2) + sin2(θ/2)(n2
x + n2

y + n2
z)]I = I

as n̂ is a unit vector. Thus, R† = R−1, and this is a unitary operator.

Quantum Computing III Epiphany Problem Set page 4

Applying this transformation to ρ̂,

ρ̂′ = R†ρ̂R =
1

2
[cos(θ/2)I + i sin(θ/2)(nxX + nyY + nzZ)](I + xX + yY + zZ)

×[cos(θ/2)I − i sin(θ/2)(nxX + nyY + nzZ)]

=
1

2

{
cos2(θ/2)(I + xX + yY + zZ) + i cos(θ/2) sin(θ/2)[nxX + nyY + nzZ, xX + yY + zZ]

+ sin2(θ/2)[I + (nxX + nyY + nzZ)(xX + yY + zZ)(nxX + nyY + nzZ)]
}

=
1

2

{
I + cos2(θ/2)(xX + yY + zZ)

−2 cos(θ/2) sin(θ/2)[(nxy − nyx)Z + (nyz − nzy)X + (nzx− nxz)Y]

+ sin2(θ/2)(nxxI + inxyZ − inxzY − inyxZ + nyyI + inyzX + inzxY − inzyX + nzzI)

× (nxX + nyY + nzZ)]}
=

1

2

{
I + cos2(θ/2)(xX + yY + zZ)− sin(θ)[(nxy − nyx)Z + (nyz − nzy)X + (nzx− nxz)Y]

+ sin2(θ/2)[(2nxn̂ · r− x)X + (2nyn̂ · r− y)Y + (2nzn̂ · r− z)Z]
}

If we write r = (n̂ · r)n̂+ r⊥, where r⊥ is the component of r which is orthogonal to n̂, this
becomes

ρ̂′ =
1

2
[I + (n̂ · r)n̂ ·X+ cos θr⊥ ·X+ sin θ(r⊥ × n̂) ·X],

which indeed gives a rotation about n̂ by an angle θ.

Q.5 Compute the action of the circuits below on states in the computational basis. Give simpler
equivalent circuits where possible.

a)

|q1〉 H • H

|q0〉 H ⊕ H b)

|q1〉 X • X

|q0〉 ⊕

c)

|q1〉 H • H Z

|q0〉 ⊕ H • H d)

|q2〉 • • •

|q1〉 • ⊕ • ⊕

|q0〉 ⊕ ⊕ ⊕

S.5 (a) First, recall the states |±⟩ = 1√
2
(|0⟩ ± |1⟩). Then |00⟩ → | + +⟩ → | + +⟩ → |00⟩,

|01⟩ → | + −⟩ → | − −⟩ → |11⟩, |10⟩ → | − +⟩ → | − +⟩ → |10⟩, |11⟩ → | − −⟩ →
|+−⟩ → |01⟩. This is equivalent to CNOT with q0 as the control bit.

(b) This is very straightforward to calculate directly for each computational basis state.
|00⟩ → |10⟩ → |11⟩ → |01⟩. |01⟩ → |11⟩ → |10⟩ → |00⟩. |10⟩ → |00⟩ → |00⟩ → |10⟩.
|11⟩ → |01⟩ → |01⟩ → |11⟩.
Alternatively, note that two NOT gates act on q1 so it is unchanged. As it is used as
the control after the first NOT , q0 is changed precisely when initially q1 = 0.

(c) This is easier to do if we use the result in part (a), together with the fact that H2 = I
which allow us to add two Hadamard gates to q0 to the left of the CNOT gate, to write
it as

|q1〉 ⊕ Z

|q0〉 H • • H

Quantum Computing III Epiphany Problem Set page 5

Then

|00⟩ → |0+⟩ → 1√
2
(|00⟩+ |11⟩) → 1√

2
(|00⟩ − |11⟩) → 1√

2
(|0+⟩ − |1−⟩)

|01⟩ → |0−⟩ → 1√
2
(|00⟩ − |11⟩) → 1√

2
(|00⟩+ |11⟩) → 1√

2
(|0+⟩+ |1−⟩)

|10⟩ → |1+⟩ → 1√
2
(|10⟩+ |01⟩) → 1√

2
(|10⟩+ |01⟩) → 1√

2
(|1+⟩+ |0−⟩)

|11⟩ → |1−⟩ → 1√
2
(|10⟩ − |01⟩) → 1√

2
(|10⟩ − |01⟩) → 1√

2
(|1+⟩ − |0−⟩)

(d) If q2 is zero, the circuit simplifies to just two CNOTs (control q1, target q0), which is
trivial. For q2 = 1 you can directly calculate |10q0⟩ → |10q0⟩ → |11q0⟩ → |11(q0 ⊕
1)⟩ → |10(q0 ⊕ 1)⟩ → |10q0⟩. |11q0⟩ → |11(q0 ⊕ 1)⟩ → |10(q0 ⊕ 1)⟩ → |10(q0 ⊕ 1)⟩ →
|11(q0 ⊕ 1)⟩ → |11q0⟩.
Alternatively, for q2 = 1 note that q2 and q1 are not changes, since for q1 we have two
NOT s which gives the identity. For q0 since q1 has a NOT between the two CNOT s
where q1 is the control, exactly one of them will act as NOT on q0. However, the final
CNOT with control q2 = 1 acts as another NOT on q0, so it is also unchanged.

Thus, the action in the computational basis is completely trivial. This is a trivial
unitary. The circuit can then be simplified to simply 3 horizontal lines.

Q.6 Show that S = 1
2
(1 +XiXj + YiYj + ZiZj) defines a swap operator, interchanging the state

of qubits i and j.

S.6 Consider the action on computational basis states:

• XiXj|00⟩ = |11⟩, YiYj|00⟩ = −|11⟩, ZiZj|00⟩ = |00⟩, so S|00⟩ = |00⟩.
• XiXj|01⟩ = |10⟩, YiYj|01⟩ = |10⟩, ZiZj|01⟩ = −|01⟩, so S|01⟩ = |10⟩.
• XiXj|10⟩ = |01⟩, YiYj|10⟩ = |01⟩, ZiZj|10⟩ = −|10⟩, so S|10⟩ = |01⟩.
• XiXj|11⟩ = |00⟩, YiYj|11⟩ = −|00⟩, ZiZj|11⟩ = |11⟩, so S|11⟩ = |11⟩.

Alternatively, you could multiply out the matrices.

Q.7 By considering the action on computational basis states, show that the circuit given in lectures
(and reproduced below) does implement the Toffoli gate (CCNOT).

|q2〉 • • • • T

|q1〉 • • T † ⊕ T † ⊕ S

|q0〉 H ⊕ T † ⊕ T ⊕ T † ⊕ T H

S.7 For q2 = 0 T does nothing to |q2⟩ while the phase gates on q1 are ST †T † = I. For q1 = 0,
the action on q0 is HTT †TT †H = I. For q1 = 1, the action on q0 is HTT †XTT †XH = I.

For q2 = 1, the action on q1 is SXT †XT †; for q1 = 0 this is an e−iπ/4 phase which cancels
the phase from the T acting on q0. For q1 = 1 it is an eiπ/4 phase, so the upper two qubits
contribute a eiπ/2 phase. For q2 = 1, q1 = 0 the action on q0 is HTXT †TXT †H = I.
For q2 = 1, q1 = 1, the action on q0 is HTXT †XTXT †XH. It seems easiest at this stage

Quantum Computing III Epiphany Problem Set page 6

to multiply out explicitly: TX =

(
0 1

eiπ/4 0

)
and T †X =

(
0 1

e−iπ/4 0

)
so TXT †X =(

e−iπ/4 0
0 eiπ/4

)
, hence TXT †XTXT †X =

(
e−iπ/2 0
0 eiπ/2

)
= −iZ. So, the action on q0

is −iHZH = −iX.

The overall phase cancels with the phase from the gates on q2, q1. So this circuit acts as the
identity on the states with q2 = 0 or q1 = 0, and when q2 = q1 = 1, it acts as NOT on q0,
realising the Toffoli gate.

Q.8 Consider a two-qubit system. Construct a circuit to realise the operation U =

(
T 0
0 X

)
,

where T , X are the standard 2× 2 matrices.

S.8 Acting on 2-qubit computational basis states |q1q0⟩, this is T on |q0⟩ if the q1 = 0, and X
on |q0⟩ if the q1 = 1. Hence we want

|q1〉 X • X •

|q0〉 T ⊕

It is also correct to have the CNOT gate on the left.

Q.9 Consider a two-qubit system. Construct a circuit to realise the operation U =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


S.9 This is just a NOT on both bits which you can see from the action of U on the computational

basis states.

If you don’t spot the simple solution above, the methodical approach is to write U as a
product of unitary matrices which are each 2×2 unitary matrices U †

ij embedded in the 4×4
identity matrix, where Uij = Uji has non-trivial entries in the ii, ij, ji and jj components
only. We do this by multiplying U by suitable Uij so that, working left to right and up to
down, we set the off-diagonal components of U to 0, essentially by doing row reduction (but
constrained since we can only use unitary matrices).

So, we start by choosing U14 to make the 4th element in the 1st row of U14U vanish. This
requires the component (U14)44 = 0, so for unitarity we need (U14)41 = (U14)14 = 1 and then
we see (U14)11 = 0. (Actually, we could have arbitrary phases for the 14 and 41 components,
but we fix the 14 component to 1 so that the 11 component of U14U is 1, and it doesn’t
matter what the other phase is so we choose it to be simply 1.) So, we have

U14 =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 , U14U =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

To continue we could choose U23 so that the 32 component of U23U14U vanishes. However,
we see that U14U is already a unitary matrix with only a 2× 2 non-trivial block so we define
this to be U †

23 and have U14U = U †
23 leading to the result U = U †

14U
†
23.

Quantum Computing III Epiphany Problem Set page 7

The unitary matrices U14 and U23 do not act on single qubits so we need to use Gray codes
to convert the basis so that they do act on single qubits. Since U14 acts on the basis states
|00⟩ and |11⟩ we can use the Gray code 00 → 01 → 11. Similarly for U23 we can use
01 → 00 → 10. These are both the same transformation where we use CNOT on |q0⟩ when
the control bit q1 = 0 which we may write as C1NOT0. This is implemented in the circuit
by X1C1NOT0X1.

In the new basis U14 is NOT on |q1⟩ when q0 = 1 while U23 is also NOT on |q1⟩ but when
q0 = 0. Therefore the overall effect is just NOT on |q1⟩, i.e. X1. Finally we must transform
back to the original basis, again using X1C1NOT0X1.

So, the final circuit is (X1C1NOT0X1)X1(X1C1NOT0X1) = X1(C1NOT0X1C1NOT0)X1 =
X1(X1X0)X1 = X1X0.

Q.10 Consider a two-qubit system. We wish to construct a circuit to realise the operation

U =


1 0 0 0
0 1

2
1
2

1√
2

0 1
2

1
2

− 1√
2

0 1√
2

− 1√
2

0


(a) First decompose this operator in terms of unitary operators U1, U2, U3 which each act

non-trivially on a two-dimensional subspace of the Hilbert space, U = U1U2U3.

(b) Use CNOTs to convert the operators which do not act on a subspace corresponding to
a single qubit into ones that do.

(c) Draw the resulting quantum circuit.

S.10 (a) As in the previous question, choose unitaries Uij to transform U into the identity by
row reduction. In this example only the lower right 3× 3 block is non-trivial so really
it is a 3 × 3 problem embedded into 4 × 4 matrices. The matrices we need are U23,
U24 and U34 which in the notation of the question can be chosen to be (note this is
not unique so if you have 3 other matrices that are unitary, non-trivial only in 2 × 2
submatrices and multiply to give U , that is a valid alternative solution – you will end
up with a different but equivalent quantum circuit, and it may or may not be obvious
how to relate the different circuits)

U1 =


1 0 0 0
0 1√

2
1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

 , U2 =


1 0 0 0
0 1√

2
0 1√

2

0 0 1 0
0 1√

2
0 − 1√

2

 , U3 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

(b) U2 is a controlled-Hadamard with target |q1⟩ and control |q0⟩. U3 is a CNOT with
target |q0⟩ and control |q1⟩. So it is only U1 we need to address: it acts on the subspace
spanned by |01⟩ and |10⟩. Acting with CNOT, this is |01⟩ and |11⟩, so it’s CNOT U2

CNOT.

(c)

|q1〉 • H • H •

|q0〉 ⊕ • ⊕ • ⊕

Q.11 Defining the error E(U, V) ≡ maxψ ||(U − V)|ψ⟩||, show that E(Rn̂(α), Rn̂(β)) = 1√
2
|1 −

ei(α−β)|.

Quantum Computing III Epiphany Problem Set page 8

S.11 Without loss of generality, change our basis so that n̂ = (0, 0, 1), so Rn̂(α) = Rz(α). In the
Bloch sphere representation, this is represented as a rotation in the x − y plane, and the
error is maximised if we consider vectors in the x− y plane, that is, we take r orthogonal to
n. In terms of the state, this is

|ψ(θ)⟩ = 1√
2
(|0⟩+ eiθ|1⟩),

where θ is the angle in the x− y plane. Rz(α) acts as θ → θ + α.

||(Rz(α)−Rz(β)|ψ(θ)⟩|| = |||ψ(θ+α)⟩−|ψ(θ+β)⟩|| = 1√
2
|ei(θ+α)−ei(θ+β)| = 1√

2
|1−ei(α−β)|.

Q.12 Delayed measurement: In the discussion of quantum teleportation, observers were often
required to perform operations which depended on the result of a measurement. In a quantum
circuit, we would represent such actions by performing a measurement on one qubit and then
acting with a unitary on another if the result of the measurement was 1.

Show that such an operation can always be replaced by a controlled-unitary gate, with the
measurement postponed to the end of the computation.

S.12 If the first qubit is initially in a state |q1⟩ = α|0⟩+β|1⟩, and the second qubit is in a state |q2⟩,
acting with a controlled-unitary gate will put the system in the state α|0⟩⊗|q2⟩+β|1⟩⊗U |q2⟩.
Measuring the first qubit, we either measure 0, leaving the second qubit in the state |q2⟩, or
we measure 1, leaving the second qubit in the state U |q2⟩. Mathematically, this is equivalent
to measuring the first qubit and then acting on the second qubit with U if the measurement
result is 1. Also, in both cases the probabilities of these outcomes are |α|2 and |β|2.
Actually, we should consider the more general case when the two qubits may be entangled.
In that case we can always write the initial state as α|0⟩ ⊗ |ϕ⟩+ β |1⟩ ⊗ |ψ⟩ but by exactly
the same argument, either way we will measure 0 with probability |α|2 and get final state
|0⟩ ⊗ |ϕ⟩ or 1 with probability |β|2 and get final state |1⟩ ⊗ |ψ⟩.
Of course, if the two qubits are spatially separated, it is very difficult to perform the joint
quantum operation necessary to implement the controlled unitary. It is therefore often
advantageous to actually perform measurements first and communicate the classical infor-
mation instead. However, theoretically we can always do measurements at the end and this
simplifies our discussion of quantum circuits since we can always first implement a unitary
transformation and then at the end make measurements.

