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Introduction

Homogeneous dynamics is the branch of mathematics that studies the actions of subgroups of a Lie group
on its homogeneous spaces. This theory gained greater popularity and attention in the 80’s due to the
fact that it was succesfully applied to solve old open problems in number theory. As an example, let us
mention the celebrated solution by G. Margulis of the Oppenheim conjecture.

The main aim of this “mémoire” is to present a small part of the results of the a recent article
in homogeneous dynamics entitled Dynamics on the space of 2-lattices of 3-space, by O. Sargent and U.
Shapira. Having as motivation an open question in diophantine approximation, which in loose terms is the
branch of number theory that studies how well real irrational numbers can be approximated by rational
numbers, the authors are led to study actions of sub(semi)groups Γ of SL(3,R) in the homogeneous space
X of homothety classes of 2-lattices of R3. A 2-lattice of R3 is just a discrete subgroup of R3 of rank
2. They focus in two cases: when the Zariski closure of Γ in SL(3,R) is SO(2, 1) (which is the relevant
case for the motivating problem), and when it is SL(3,R). Our exposition of their results deals only with
the second case. An interesting feature of this article (present also for example in [5] and [1]) is that
dynamical information, namely about the closures of the Γ-orbits in X, is deduced from the study of
random walks on X arising in the following way: we consider a Borel probability measure µΓ on SL(3,R)
whose support generates the semigroup Γ, and we choose independently a sequence of random elements
γ1, γ2, · · · of SL(3,R) with law µ, and a random point x0 in X with some law ν. By applying succesively
the γn’s to x0 we obtain a sequence of random points

x0, x1 = γ1x0, x2 = γ2x1, . . . .

The distribution ν of the initial point x0 is said to be µ-stationary if all the random points x1, x2, . . .
have also law ν. The main idea is that, by understanding the space of µΓ-stationary probability measures
on X (which is done using tools from ergodic theory and probability theory), we gain insight into the
dynamics of Γ on X, specially when there exists only one µ-stationary probability measure.

For the sake of completeness, let us present briefly the number theory problem that motivates [7]. A
real number is algebraic if it is the root of a non-nul polynomial p(x) with integer coefficients, and the
degree of an algebraic number is the minimal degree of such a p(x). For example, algebraic numbers of
degree 1 are precisely rational numbers. Algebraic numbers of degree 2 and 3 are also commonly called
quadratic and cubic numbers, respectively. Recall that any irrational number α > 1 can be expressed in
a unique way as a simple continued fraction, i.e. an expression of the form

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where the a′ns are positive integers. The number α is said to be well-approximable if the sequence (an) is
unbounded, otherwise it is badly-approximable. A classic theorem of Lagrange tells us that an irrational
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number is quadratic if and only if its continued fraction development is eventually periodic, in particular
all of these numbers are badly-approximable. The question is to determine whether algebraic real numbers
of degree 3 are well-approximable.

We close this introduction by describing the structure of this work. It has two chapters: The first
chapter is an exposition of the background material needed in order to follow the proofs of the results
from [7] that we present in Chapter 2. We begin Chapter 1 by introducing formally in Section 1.1
what is, for a topological group G, the random walk on a G-space Y associated to a Borel probability
measure µ on G. The central concept here is that of µ-stationary probability measure on Y , which plays
a similar role to that of invariant measures with respect to a continuous transformation Y → Y in basic
ergodic theory. We show that there are always µ-stationary measures when the space Y is compact, and
we present an example to show that this is no longer true for non-compact spaces. Then, we explain
how any µ-stationary probability measure on Y can be “desintegrated” into a family of probability
measures satisfying a certain equivariance property, the so-called limit probability measures. Converseley,
an equivariant family of probability measures on Y determines a unique µ-stationary probability measure,
so both objects are equivalent. In Section 1.2 we present the concept of recurrence of a random walk, and
we give a general criterion that allows us to detect this property. After this general introduction, in the
last three sections of the first chapter we specialize our discussion to linear random walks, that is, when
the group G is the general linear group of a finite dimensional real vector space V , and Y is either V or
the projective space P(V ). As a preparation for this, in Section 1.3 we discuss some general properties
of linear subsemigroups of GL(V ), such as irreducibility, strong irreducibility, and proximal dimension,
and we explain the relation between these properties for a given linear semigroup and the corresponding
ones of its Zariski closure. We also define the limit set of a linear semigroup. Afterwards, in Section
1.4 we prove a classic result of Furstenberg: if the action on V of semigroup generated by the support
of µ is strongly irreducible and proximal, there is only one µ-stationary probability measure on P(V ).
Finally, in Section 1.5 we give some conditions on the probability measure µ that allow us to control the
growth of vectors of the exterior powers of V under the random walk. This is the content of the Law of
Large Numbers, which is inspired by the classical result about sums of independent real valued random
variables sharing the same distribution. As oposed to the first four sections, in this last one we only quote
some theorems that we will need in the second part of this work.

Chapter 2 is divided into three sections: In Section 2.1, we present two statements about the dynamics
of a Zariski dense subsemigroup Γ of SL(3,R) on the space X of homothecy classes of 2-lattices of R3

(Theorems 2.1 and 2.3), and explain how these can be deduced from the following two facts about random
walks on X associated to a probability measure µΓ whose support generates Γ: there is a unique µΓ-
stationary probability measure νX on X (Theorem 2.4), and the random walk is recurrent (2.5). Finally,
in the last two sections we discuss the proofs of these random walk statements: Section 2.2 deals with we
deal with Theorem 2.4. Since its proof is quite long and requires a great deal of technical machinery, we
will limit ourselves to present the first part of it. First, we define probability measure νX , which will be
obtained by integrating with respect to the unique µΓ-stationary measure on the grassmanian P∗(R3) of
planes of R3 the uniform probability measures on the fibers of the natural projection X → P∗(R3). Then,
we show in Proposition 2.10 that the only µΓ-stationary measure whose limit measures are invariant with
respect to a certain equivariant family of 1-parameter unipotent subgroups that we will introduce, is νX .
It is worth remarking that the last part of the proof that we present of this fact is different from the one
in the article: the new feature is the use of Lemma 2.11 to conclude. Finally, in Section 2.3 we construct
a proper function X → R, that we show that satisfies the so-called contraction hypothesis with respect
to the averaging operator of µ. In this way, thanks to the general criterion of Section 1.2 we are able to
prove the recurrence of the random walk on X associated to µΓ (Theorem 2.5).



Chapter 1

Background material

1.1 Stationary measures

Let X be a topological space and let ν be a Borel measure on X. We will say that ν is regular if the
measure of any Borel subset A of X can be approximated by the measures of open subsets containing A
and closed subsets contained in A, which means that

ν(A) = inf{ν(U) | U is open,A ⊆ U} = sup{ν(C) | Cis closed,C ⊆ A}.

We define a Radon measure on X to be a regular Borel measure such that the compact subsets of X
have finite measure. Let M(X) be the set of Radon measures on X.

The main advantage of restricting ourselves to work with Radon measures is that they can be thought
as linear functionals in the following way. If ν is a Radon measure on X and f : X → R is a continuous
function with compact support K, then ν(f) <∞ because |f | is bounded by a multiple of 1K , which is
integrable because ν(K) is finite. Thus, ν defines a linear functional on the space of continuous functions
with compact support X → R, which we will denote by Cc(X). Notice that a functional on Cc(X) defined
by a Radon measure assigns non-negative values to non-negative functions. A functional satifying this
property is said to be a positive functional. Radon measures and positive linear functionals are
essentially the same thing for a fairly large class of spaces X, as the next theorem shows.

Theorem 1.1 (Riez representation theorem). Let Y be a locally compact Hausdorff space, and let I be
a positive linear functional on Cc(Y ). There exists a unique Radon measure ν on Y such that

I(f) =

∫
Y

fdν

for any f ∈ Cc(Y ).

A proof can be found in [3, Theorem 7.2.8] . From now on we require X to be locally compact, second-
countable and metrizable, so in particular it fullfils the hypotheses of the Riesz representation theorem.
We will identify M(X) with the set of positive linear functionals on Cc(X), and we endow it with the
weak-* topology, which by definition is the coarsest topology which makes continuous the evaluations
`→ `(f) for any f ∈ Cc(X). The metrizability of X ensures that any finite Borel measure on X is regular
(see [6, Lemma 8.4]). We ask X to be second-countable to guarantee that Cc(X) is separable, as we now
prove.

Lemma 1.2. If X is locally compact, Hausdorff, and second-countable, then the normed vector space
(Cc(X), || · ||∞) is separable.
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Proof. Since Cc(X) is a metric space, it is separable if and only if it is second-countabile. Notice that
the topology on Cc(X) induced by || · ||∞ is precisely the compact-open topology. Let U be a countable
basis of open subsets X with compact closure, and let V be a countable basis of R. Finite intersections
of sets of the form

CO(U, V ) := {f ∈ Cc(X) | f(U) ⊆ V ]},

with U ∈ U and V ∈ V form a countable basis for Cc(X).

Now we will consider a topological group G and a G-space X, both assumed to be locally compact,
second countable and metrizable. Given µ ∈ P(G) and ν ∈ P(X) the convolution µ ∗ ν is the Borel
probability measure on X obtained by pushing-forward the product measure µ⊗ν by the action G×X →
X. Applying Fubini’s theorem we see that we may write µ ∗ ν as the integral

µ ∗ ν =

∫
G

g∗νdµ(g).

Since G is a G-space itself (the left action is just the multiplication in G), we can consider convolutions
of probability measures on G. The convolution of µ with itself n-times µ ∗ · · · ∗µ will be denoted by µ∗n.

Lemma 1.3. For any Borel probability measure µ on G, the convolution map µ ∗ · : P(X) → P(X) is
continuous.

Proof. Consider a sequence (νn) in P(X) converging weakly to a probability measure ν∞. Fix some
ϕ ∈ Cc(X), and let Fn : G→ R be the map

Fn(g) = |ν∞(ϕ ◦ g)− νn(ϕ ◦ g)|

for any n ≥ 1. Since ϕ ◦ g in a continuous map with compact support for any g ∈ G, by the weak
convergence of (νn) we get that Fn → 0 point-wise as n→∞. Notice also that

Fn(g) ≤ |ν∞(ϕ ◦ g)|+ |νn(ϕ ◦ g)| ≤ ν∞(|ϕ ◦ g|) + νn(|ϕ ◦ g|) ≤ 2||ϕ||∞.

By Dominated convergence, µ(Fn)→ 0, and since

|µ ∗ ν∞(ϕ)− µ ∗ νn(ϕ)| =
∣∣∣∣∫
G

g∗ν∞(ϕ)− g∗νn(ϕ)

∣∣∣∣ dµ(g) ≤
∫
G

Fndµ,

we conclude that µ ∗ νn(ϕ)→ µ ∗ϕ∞(ϕ) as n→∞. The function ϕ is an arbitrary element of Cc(X), so
(µ ∗ νn)n converges weakly to µ ∗ ν∞.

We are interested in studying random walks on X arising in the following way: Let (gn)n≥1 be an
independent sequence of G-valued random variables with law µ, and let x0 be an X-valued random
variable with law ν, independent from the gn’s. By applying succesively g1, g2, . . . to x0 we obtain a
random orbit

x0, x1 = g1x0, . . . , xn+1 = gn+1xn, . . . .

The study of the random walk consists in describing the dynamical behaviour of a typical random orbit.
For example, in the next section we will present a criterion that allows us to conclude that a typical
random orbit does not escape to infinity, that is, there are compact subsets of X that the orbit visits
infinitely many times.

Notice that the law of xn is µ∗n ∗ ν. The study of the random walk will be simpler when all the xn
have the same law. We can think of this situation as a sort of equilibrium state of the random walk.
To formalize the previous discussion we make some definitions. Let G be the Borel σ-algebra of G. The
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one-sided Bernoulli shift with alphabet (G,G , µ) is (B,B, β, S), where B = GN, B is the product
σ-algebra G⊗N, β is the product measure µ⊗N and S : B → B is the continuous (with respect to the
product topology) mapping

S((b0, b1, b2, . . . )) = (b1, b2, b3, . . . ).

For any Borel subsets A1, · · · , An of G, the finite rectangle R = {b0 ∈ A0, · · · , bn ∈ An} and its preimage
S−1(R){b1 ∈ A0, · · · , bn+1 ∈ An} have the same measure µ(A0) · · ·µ(An). Since finite rectangles generate
B, the shift S preserves β, that is S∗β = β. Moreover, β is an S-ergodic measure, which means that any
Borel bounded function f : B → R satisfying f ◦ S = F β-almost anywhere is constant β-almost surely
(see [8, Theorem 1.2.1]).

A Borel probability measure ν on X is said to be µ-stationary if µ∗ν = ν. We start by addressing the
question of existence of µ-stationary measures for a fixed µ ∈ P(G). The following results are classical.

Lemma 1.4. Let µ and ν be Borel probability measures on the topological group G and on the G-space
X, respectively. Any Borel measure that is a cluster point of the sequence

νn =
1

n

n−1∑
j=0

µ∗j ∗ ν (1.1)

is µ-stationary.

Proof. Suppose that ν∞ is the limit of the subsequence (νnk). Since µ ∗ · is a continuous by Lemma 1.3,
then, for any ϕ ∈ Cc(X) we have

|µ ∗ ν∞(ϕ)− ν∞(ϕ)| = lim
k→∞

|µ ∗ νnk(ϕ)− νnk(ϕ)| = lim
k→∞

1

nk
|µ∗nk ∗ ν∞(ϕ)− ν∞(ϕ)| ≤ lim

k→∞

2

nk
||ϕ||∞ = 0.

In other words, ν∞ is µ-stationary.

Propositon 1.5. Let X be a compact metrizable G−space, and let µ be a Borel probability measure on
G. Then there exists at least one µ-stationary probability measure on X.

Proof. Since the space X is compact, space of Borel probability measures P(X) is weakly compact.
Consider any probability measure ν on X and the sequence (νn) defined in (1.1). Any cluster point of
(νn) is a probability measure by the weak compactness of P(X), and it is µ-stationary by Lemma 1.4.

Now we give an alternate description of µ-stationary measures that will be very useful. Suppose that
ν is µ-stationary. Any b ∈ B gives rise to a sequence of probability measures

ν, (b0)∗ν, (b0b1)∗ν, (b0b1b2)∗ν, · · · .

The key observation is that this sequence converges towards a probability measure νb for β-almost any
b ∈ B We will call these νb the limit measures. Observe that if the limit measures are defined for some
b and Sb, then

(b0)∗νSb = νb,

which is a kind of equivariance property. To be more precise, let E′ be a Borel subset of B of full measure,
all of whose elements have well-defined limit measures. The subset

E =
⋂
n≥0

S−n(E′)
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still has full measure because S preserves β, and is forward-invariant under S. Thus, for any b ∈ E and
any positive integer n we have that

(b0 · · · bn−1)∗νSnb = νb.

We will say then that the family of limit measures (νb)b∈E is equivariant. We will now show the existence
of the limit measures, and that these determine the µ-stationary measure.

Propositon 1.6. Let ν be a µ-stationary Borel probability measure on X. For β-almost any b ∈ B,
the sequence (b0 · · · bn)∗ν converges towards a probability measure νb. Moreover, we can recover ν by
integrating the νb’s:

ν =

∫
B

νbdβ(b). (1.2)

Proof. We prove the existence of the νb’s using the Martingale Convergence Theorem. Fix some ϕ ∈
Cc(X) and for each n ∈ N define Fn : B → R by

Fn(b) = (b0 · · · bn)∗ν(ϕ).

Notice that Fn is continuous since multiplication in G and g 7→ ϕ◦g are continuous. Also, Fn depends only
on the coordinates b0, · · · , bn, thus it is measurable with respect to the σ-algebra generated by b0, · · · , bn,
which we will denote by Bn. The fact that ν is µ-stationary implies that (F•,B•) is a martingale. Indeed,
let A0, · · · , An−1 be measurable subsets of G. We have∫

{b0∈A0,...,bn−1∈An−1}
Fn(b)dβ(b) =

∫
A0

· · ·
∫
An−1

∫
G

(b0 · · · bn)∗ν(ϕ)dµ(bn) · · · dµ(b0)

=

∫
A0

· · ·
∫
An−1

∫
G

(bn)∗ν(ϕ ◦ b0 · · · bn−1)dµ(bn) · · · dµ(b0)

=

∫
A0

· · ·
∫
An−1

ν(ϕ ◦ b0 · · · bn−1)dµ(bn−1) · · · dµ(b0)

=

∫
{b0∈A0,...,bn−1∈An−1}

Fn−1(b)dβ(b),

which means that E(Fn | Bn−1) = Fn−1. Furthermore, the sequence (Fn) is uniformly bounded since

|Fn(b)| = |ν(ϕ ◦ b0 · · · bn)| ≤ ν(|ϕ ◦ b0 · · · bn|) ≤ ν(||ϕ||∞) = ||ϕ||∞, (1.3)

so in particular (F•,B•) is an L1-bounded martingale. By Doob’s theorem, there is a full-measure subset
Eϕ ⊆ B such that for each b ∈ Eϕ, Fn(b) converges towards some number νb(ϕ). Additionally, b 7→ νb(ϕ)
is measurable with respect to σ (∪n≥0Bn) = B and integrable. By (1.3) we may apply Lebesgue’s
dominated convergence theorem to deduce that∫

B

νb(ϕ)dβ(b) = lim
n→∞

∫
B

Fn(b)dβ(b) = µ∗(n+1) ∗ ν(ϕ) = ν(ϕ). (1.4)

Let D = {ϕ0, ϕ1, . . . } be a countable dense subset of Cc(X) and let E = ∩n≥0Eϕn . For any fixed b ∈ E,
and for any n,m ∈ N we have

|νb(ϕn)− νb(ϕm)| = lim
n→∞

|(b0 · · · bn)∗ν(ϕn − ϕm)| ≤ ||ϕn − ϕm||∞,

so νb : D → R is 1-Lipschitz, in particular continuous. Its unique continuous extension to Cc(X), is
easily seen to be a positive linear functional, so it determines a Radon measure νb. The equality (1.2) is
established essentially by (1.4).
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Notice that at this point we just know that 0 ≤ νb(X) ≤ 1, so in principle some of the νb’s may not
be probability measures. If X where compact, then 1X ∈ Cc(X), so it would be immediate that the
νb(X) = 1. Even if X is not compact, the same conclusion holds for β-almost any b ∈ E as is seen by
applying (1.2) to 1X . This argument needs to be improved

Moreover, any equivariant family of probability measures determines a µ-stationary probability of X,
hence both objects are essentially the same.

Propositon 1.7. Let b 7→ ν̃b be an equivariant measurable map B → P(X) defined β−almost everywhere.
Then, the probability measure

ν =

∫
B

ν̃bdβ(b)

is µ-stationary. Moreover, the limit measures νb of ν are equal to ν̃b for β−almost every b in B.

Proof. The fact that ν is µ−stationary follows from the equality β = µ ⊗ β and the equivariance of the
ν̃b’s as the following calculation shows:

µ ∗ ν =

∫
G

g∗νdµ(g) =

∫
G

∫
B

g∗ν̃bdβ(b)dµ(g) =

∫
G

∫
B

ν̃(g,b)dβ(b)dµ(g)

=

∫
G×B

ν̃(g,b)dβ ⊗ µ(g, b) =

∫
B

ν̃bdβ(b) = ν.

To show that νb = ν̃b for β−almost every b ∈ B, it suffices to prove that both maps have the same
integral in any measurable subset of B. Better still, it is enough to check this on finite rectangles
{b0 ∈ A0, . . . , bn ∈ An} for A0, . . . , An arbitrary measurable subsets of G, since these generate the
σ−algebra of B. We start by developing the integral for the ν̃b’s:∫

{b0∈A0,...,bn∈An}
ν̃bdβ(b) =

∫
A0

· · ·
∫
An

∫
B

ν̃(b0,...,bn,b′)dβ(b′)dµ(bn) . . . dµ(b0)

=

∫
A0

· · ·
∫
An

(b0 · · · bn)∗

∫
B

ν̃b′dβ(b′)dµ(bn) . . . dµ(b0)

=

∫
A0

· · ·
∫
An

(b0 · · · bn)∗νdµ(bn) . . . dµ(b0).

Observe the only thing that we used in the preceding calculation was the equivariance of the ν̃b’s. Since
the limit measures are also equivariant, we readily obtain that∫

{b0∈A0,...,bn∈An}
ν̃bdβ(b) =

∫
A0

· · ·
∫
An

(b0 · · · bn)∗νdµ(bn) . . . dµ(b0) =

∫
{b0∈A0,...,bn∈An}

νbdβ(b),

which concludes the proof.

When the space X is not compact, it can happen that there are no µ-stationary measures on X. We
present an example of Furstenberg (see [4, Theorem 1.1])

Propositon 1.8. Let G be a locally compact, metrizable, and second-countable topological group, and let
µ be a Borel probability measure on G. Consider the action of G on itself by left-multiplication. There
exists a µ−stationary probability measure ν on G if and only if the support of µ is contained in a compact
subgoup of G.
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Proof. Let us denote by A the support of µ. Suppose first that A is contained in a compact subgroup H
of G. Denote by µ the restriction of µ to H. By Proposition 1.5, there exists a µ stationary probability
measure on H. By extending it to G we obtain a µ−stationary probability measure.

Now suppose that ν is a µ−stationary. The main point of the proof consists in finding a compact
subset K of G containing any product of elements of A. Once we have this, it follows that the closed
semigroup generated by A is compact, but a compact semigroup contained in a group is a group, so the
conclusion follows.

The hypotheses on G imply that we may write it as a countable union of open subsets with compact
closure, so we may choose one of these, say U , such that µ(U) and ν(U) are greater than 1

2 . From∫
B

νb(U)dβ(b) = ν(U) >
1

2
,

it follows that the set EU consisting of those b ∈ B for which νb(U) is grater that 1
2 has positive β−

measure. From the characterization of weak convergenge in terms of the measure of open subsets REF
we get that, for any b ∈ EU , there exists a positive integer Nb such that

ν((b0 · · · bn)−1U) >
1

2

for any n ≥ Nb, in particular (b0 · · · bn)−1U and U have nonempty intersection. This means that

(b0 · · · bn)−1 belongs to UU−1, so b0 · · · bn is in the compact set L = UU
−1

. Let K be the compact
set L−1L

To show that g1 · · · gm is in K for g1 . . . gm ∈ A, it is enough to prove that we can find an m−tuple
(h1, . . . , hm) arbitrarily close to (g1, · · · , gm), such that h1 · · ·hm is in K. Let Vj be an open subset of G
to which gj belongs, and denote by V the product V1× · · ·×Vm. We call E the subset of B consisting of
those b ∈ B such that (bk+1, . . . , bk+m) is in V for infinitely many k’s. We claim that β(E) = 1. Write
B as Gm ×Gm × · · · , and let πj : B → Gm be the projection to the j−th factor Gm. If b is not in E, in
particular πj(b) is not in V for j large enough, and so

b ∈
⋃
s≥0

⋂
j≥s

π−1
j (Gm \ V )

 , (1.5)

and it is easy to see that each of the ∩j≥sπ−1
j (Gm \ V ) is β−null. Indeed, for any positive integer ` we

have the inequality

β

⋂
j≥s

π−1
j (Gm \ V )

 ≤ β
s+⋂̀
j=s

π−1
j (Gm \ V )

 = µ⊗m(Gm \ V )`+1,

and the conclusion follows as µ⊗(Gm \ V ) is strictly less that 1, since each µ(Vj) is positive because gj is
in the support of µ. We now know that E and EU have non-empty intersection.

We are ready to finish the proof. Consider any b in EU∩E, and let k ≥ Nb be such that (bk+1, . . . bk+m)
belongs to V . Both b0 · · · bk and b0 · · · bk+m are in L, so bk+1 · · · bk+m is in L−1L = K.

If µ is a Borel probability measure on the topological group G, we will denote by Γµ the closed
semigroup generated by the support of µ.

Lemma 1.9. Let G be a topological group and let X be a topological space, both locally compact, metrizable
and second-countable. Consider a Borel probability measure µ on G and a µ-stationary Borel probability
measure on X. The support of ν is Γµ-invariant.
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Proof. First we observe that
supp (µ⊗ ν) = suppµ× supp ν, (1.6)

because (g, x) is in supp (µ ⊗ ν) iff for any open subsets g ∈ U ⊆ G and x ∈ V ⊆ X, µ ⊗ ν(U × V ) =
µ(U)ν(V ) is positive, which happens iff g is in suppµ and x is in supp ν.

Let F be the action G ×X → X. By definition of the convolution, µ ∗ ν = F∗(µ ⊗ ν), so it readily
follows that

supp (µ⊗ ν) ⊆ F−1(suppµ ∗ ν). (1.7)

Notice that up to this point we have not used that ν is µ-stationary.
When µ ∗ ν = ν, from (1.6) and (1.7) we get that

F (suppµ× supp ν) ⊆ supp ν,

or in other words, supp ν is suppµ-invariant. This implies that supp ν is Γµ-invariant.

Propositon 1.10. Let G be a topological group acting continuously on a locally compact, metrizable
and second-countable space X. Suppose that µ is a Borel probability measure on G and that ν is a
µ−stationary probability measure on X. Then β-almost any b ∈ B such that the limit measure νb exists
verifies that

lim
n→∞

(b0 · · · bng)∗ν = νb, (1.8)

for any g ∈ Γµ. This statement needs to be changed, and the proof completed

Proof. We begin by showing that (1.8) holds for β ⊗ µ−almost any (b, g) ∈ B ×G. Let us fix a function
ϕ ∈ Cc(X) and define Fn : B ×G→ R by

Fn(b, g) = ((b0 · · · bn)∗ν(ϕ)− (b0 · · · bng)∗ν(ϕ))
2
.

To show that Fn → 0 almost surely it suffices to prove that
∑
n≥0 β ⊗ µ(Fn) is finite, because then the

series
∑
n≥0 Fn is finite almost surely because it is integrable, which in particular implies that Fn → 0

almost surely.
As we will see know, the Fn’s can be expressed in terms of the numbers

Ij = (

∫
G

h∗ν(ϕ))2dµ∗(j)(h)

Developing the square in the formula of Fn we get three terms whose integral we will calculate separately
to avoid handling with big formulas. All we need is Fubini’s theorem, to remember that ν is µ−stationary,
and that µ∗j is the push-forward of the product measure µ⊗j under the multiplication map Gj → G.∫
B×G

((b0 · · · bn)∗ν(ϕ))
2

dβ ⊗ µ(b, g) =

∫
B

((b0 · · · bn)∗ν(ϕ))
2

dβ(b) =

∫
G

(h∗ν(ϕ))2dµ∗(n+1)(h) = In+1∫
B×G

((b0 · · · bng)∗ν(ϕ))2dβ ⊗ µ(b, g) =

∫
G

∫
B

((b0 · · · bng)∗ν(ϕ))2dβ(b)dµ(g)

=

∫
G

∫
G

((hg)∗ν(ϕ))2dµ∗(n+1)(h)dµ(g) = In+2∫
B×G

(b0 · · · bn)∗ν(ϕ)(b0 · · · bng)∗ν(ϕ)dβ ⊗ µ(b, g) =

∫
B

(b0 · · · bn)∗ν(ϕ)

(∫
G

g∗ν(ϕ ◦ b0 · · · bn)dµ(g)

)
dβ(b)

=

∫
B

(b0 · · · bn)∗ν(ϕ)ν(ϕ ◦ b0 · · · bn)dβ(b) = In+1
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Combining refe we conclude that∫
B×G

Fn(b, g)dβ ⊗ µ(b, g) = In+2 − In+1,

so
N∑
n0

∫
B×G

Fndβ ⊗ µ(b, g) = IN+2 − I1 ≤ |IN+2|+ |I1| ≤ 2||ϕ||∞

1.2 Recurrence

In this section our standing assumptions are the following: G is a topological group, and X G-space, both
assumed to be locally compact, second-countable, and metrizable. Let µ be a Borel probability measure
on G. We will say that the action of G on X is µ-recurrent if the following condition is satisfied:

R(µ,X): For any x in X and any ε > 0, there exists a compact subset K = K(x, ε) of X such that

µ∗n ∗ δx(K) ≥ 1− ε (1.9)

for any natural number n.

Recall that a family A of Borel probability measures on X is weakly compact if any sequence with
values in A has a subsequence that converges weakly in P(X).

Propositon 1.11. Let µ be a Borel probability measure on X. For any x in X we consider the sequence

νx,n =
1

n

n∑
j=1

µ∗j ∗ δx.

If R(µ∗n0 , X) holds for some positive integer n0, then the family {νx,n}n≥1 of Borel probability measures
on X is weakly compact for any x in X.

Proof. Suppose first that R(µ,X) holds. We fix some x ∈ X. We will write simply νn instead of νx,n
to lighten the notation. Let X̂ = X ∪ {∞} be the one-point compactification of X. The space P(X̂) is

weakly-compact. Consider a cluster point ν∞ ∈ P(X̂) of {νn}n≥1. For any ε > 0, the compact subset
K = K(x, ε) of X given by R(µ,X) verifies

νn(K) ≥ 1− ε,

for any n > 0. Let 0 ≤ ϕK ≤ 1 be a non-negative function in Cc(X) that is constant equal to 1 on K.
Then

1− ε ≤ νn(K) ≤ νn(ϕK)→ ν∞(ϕK) ≤ ν∞(1X) = ν∞(X).

This implies that ν∞(X) = 1, so (νn) converges to ν∞ in P(X).
Suppose now that R(µ∗n0) holds for some n0 > 0. We define

ν̃n =

n∑
j=1

µ∗jn0 ∗ δx.
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By the previous paragraph, the family {ν̃n}n>0 is weakly compact. Let m be a positive integer and
express it as kn0 + r, with 0 ≤ r < n0. Then

νm =
1

m

m∑
j=1

µ∗j ∗ δx =
1

m

n0−1∑
i=1

µ∗i ∗ δx −
(k+1)n0−1∑
l=m+1

µ∗l ∗ δx +

n0−1∑
s=0

k∑
j=1

µ∗(jn0+s) ∗ δx


=

n0−1∑
s=0

k

m
µ∗s ∗ ν̃k +

1

m
ρm =, (1.10)

where ρm is the sum of last residual terms of νm. Since ρm is sum of at most 2n0 probability measures,
then ρm/m→ 0 as m→∞. Also notice that

k

(k + 1)n0
≤ k

m
≤ k

(k − 1)n0
,

so k/m→ 1/n0 as n→∞.
Consider now any subsequence (νnj ) of (νn). By taking a further subsequence if necessary, we may

suppose that all the nj ’s have the same residue r modulo n0, so that nj = qjn0 + r. We may suppose,
again extracting a subsequence if necessary, that the sequence (ν̃qj )j converges to a probability measure
ν∞. Then, by (1.10),

νnj →
1

n0

n0−1∑
s=0

µ∗s ∗ ν∞.

This shows that {νn}n≥0 is weakly compact.

Any Borel probability measure µ on G induces an averaging operator on the space of measurable
functions X → [0,∞], that we denote by Pµ. It is given by the formula

Pµf(x) =

∫
G

f(gx)dµ(g),

for any x ∈ X and any Borel function f : X → [0,∞]. Such an f is said to satisfy the contraction
hypothesis for µ if there exists constants a ∈ (0, 1) and b ≥ 0 such that

Pµf ≤ af + b. (1.11)

By induction we see that if f satisfies the contraction hypothesis for µ, then

(Pnµ f)(x) ≤ anf + (1 + a+ · · ·+ an−1)b, (1.12)

for any positive integer n. As we will see now, the existence of a proper function satisfying the contraction
hypothesis for µ implies property R(µ,X). Recall that a measurable function f : X → [0,∞] is proper
if {f ≤ T} is relatively compact in X for any T <∞.

Lemma 1.12. Suppose that a proper Borel function f : X → [0,∞] satisfies the contraction hypothesis
for µ. Then, for any x0 ∈ X such that f(x0) is finite, and for any ε > 0, there exists a compact subset
K = K(x0, ε) of X such that

µ∗n ∗ δx0
(K) ≥ 1− ε, (1.13)

for any integer n ≥ 0.
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Proof. Suppose that f(x0) is finite, and let ε be a positive number. Consider the compact set

K =

{
f ≤ 2b

ε(1− a)

}
.

Any point x in X that is not in K in particular satisfies that f(x) > 2b
ε(1−a) , so

1X\K ≤
ε(1− a)

2b
f.

We apply Pnµ to the previous inequality, evaluate at x0, and then use (1.12) to deduce that

µ∗n ∗ δx0
(X \K) ≤ ε(1− a)anf(x0)

2b
+
ε

2
.

Since an → 0, the term ε(1−a)anf(x0)
2b is smaller than ε/2 for n greater than a certain n0, so (1.13) holds.

By enlarging K if necessary we can ensure that (1.13) holds also for 0 ≤ n < n0.

It will be convenient to state separately the following direct consequence of Proposition 1.11 and
Lemma 1.12

Corollary 1.13. Let G be a topological group and let X be a G-space, both assumed to be locally compact,
second countable, and metrizable. Suppose that µ is a Borel probability measure on G and that there is
a Borel proper function f : X → [0,∞) satisfying the contraction hypothesis for some power µ∗n0 of µ.
Then, for any x ∈ X, the sequence of Borel probability measures

νx,n =
1

n

n∑
j=1

µ∗j ∗ δx

on X is weakly compact.

Proof. Since the proper function f that satisfies the contraction hypothesis for µ∗n0 takes only finite
values, property R(µ∗n0 , X) holds by Lemma 1.12. Then, by Proposition 1.11, the family {νx,n}n≥1 is
weakly compact.

1.3 Linear semigroups

In this work, the term linear semigroup will refer to a subsemigroup of GL(V ) for some finite-
dimensional vector space V . A linear semigroup Γ ⊂ GL(V ) is irreducible if the only Γ-stable linear
subspaces of V are {0} and V itself. An equivalent way to state this is that Γv spans V for any non-zero
vector v ∈ V . When Γ verifies the stronger property that no finite union of proper subspaces if Γ-stable,
we say that Γ is strongly irreducible.

Let us illustrate this concepts with a simple example in the plane R2, that we identify with C. We
think C∗ as subset of GL(R2) via the multiplication of complex numbers. Define ωθ = e2πθi, and let Γθ
be the semigroup generated by ωθ. We distinguish three cases:

• If θ is irrational and W is any 1-dimensional subspace of R2, the lines W,ωθW,ω
2
θW, . . . are pairwise

distinct. Thus Γθ is strongly irreducible in this case.

• Suppose now that θ is rational, say p
q for some relatively prime integers p and q with q > 2. On

the one hand, Γθ is irreducible because v and ωθv are not collinear for any non-zero v ∈ R2. On
the other hand, Γθ is not strongly irreducible since the union of the lines Rω2πk/q, for 0 ≤ k < q
integer, is Γθ-stable.



1.3. LINEAR SEMIGROUPS 13

• Finally, if θ is an integer multiple of 1
2 , any line through the origin is Γθ-stable. Hence, Γθ is not

irreducible.

Suppose now that (V, || · ||) is a finite-dimensional normed real vector space. We endow the ring of
endomorphisms End(V ) with the operator norm induced by || · ||, which we denote also by || · ||. The
proximal dimension of a linear semigroup Γ ⊆ GL(V ) is the minimal positive integer r for which
there exists a sequence γn ∈ Γ, and real numbers λn such that λnγn converges towards a rank-r linear
endomorphism of V . When r = 1 we say that Γ is a proximal semigroup. As we shall see later, the
linear semigroups that are strongly irreducible and proximal will be important when we discuss linear
random walks. The s-limit set of Γ is the set of the s−dimensional subspaces of V that are image of an
element of RΓ, and it is denoted by ΛsΓ.

Propositon 1.14. Let Γ ⊆ GL(V ) be an irreducible subsemigroup with proximal dimension r.

(i) The limit set ΛrΓ is Γ-invariant and minimal.

(ii) If Γ is proximal, the limit set Λ1
Γ is the only minimal Γ-invariant closed subset of P(V ).

Proof. Consider any two elements W and W ′ of ΛrΓ that are respectively image of the endomorphisms
h and h′ belonging to RΓ. In order to show that ΛrΓ is Γ-minimal it suffices to prove that we can move
W ′ arbitrarily close to W by applying elements of Γ. We claim that exists γ ∈ Γ ∪ {e} such that hγh′

is non-zero since Γ is irreducible. Variations of this simple fact will appear several times in this section,
so we detail the proof this first time: consider any non-null w′ ∈ W ′, and choose γ = e if h(w′) 6= 0.
Otherwise, w′ belongs to the proper subspace kerh, and by the irreducibility of Γ there exists some γ ∈ Γ
such that γw′ leaves kerh. Notice that hγh′ has rank at most r and belongs to RΓ, so by the minimality
of the proximal dimension, it has rank exactly r. If h = limn→∞ λnγn, then W = limn→∞ γnW

′, which
proves (i).

Now lets prove (ii). We must show that Λ1
Γ is contained in the closure of any Γ−orbit in P(V ).

Suppose that r = 1, and let W , h, and γn be as in the preceding paragraph. Let v be a non-zero vector in
V , and denote by x its corresponding point in P(V ). By the irreducibility of Γ, there is some γ ∈ Γ∪{e}
verifying hγv 6= 0. Then limn→∞ γnγx = W . Since W is an arbitrary element of the limit set, we
conclude that Λ1

Γ is contained in Γx.

Lemma 1.15. Let be a finite dimensional vector space over an infinite field. Any Zariski-dense subsemi-
group of GL(V ) or SL(V ) is strongly irreducible.

For the proof we need auxiliary observations that we gather in a separate lemma.

Lemma 1.16. Let V be a finite dimensional vector space over an infinite field F .

(i) V cannot be written as a finite union of proper subspaces.

(ii) If Z is a finite union of proper subspaces of V and g(Z) is contained in Z for some g ∈ GL(V ),
then g(Z) = Z.

Proof. We prove (i) by induction on the dimension d of V . It is enough to prove the result when Z is
a finite union of codimension 1 subspaces of V . The case d = 1 is immediate, since V has no proper
subspaces. Suppose that the result holds for a certain n ≥ 1 and consider some V with d = n+ 1. There
are infinitely many hyperplanes in V because they are in bijective correspondance with P(V ∗), and the
map x 7→ [x : 1 : · · · : 1] from F to P(F d) is injective. Write Z as ∪ri=1Wi, where each Wi is a hyperplane
of V . Consider a hyperplane H distinct from all the Wi’s. Since H ∩Wi is a proper subspace of H,
from the induction hypothesis we know that H is not covered by the H ∩Wi’s. In particular Z is strictly
contained in V .
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We pass to the proof of (ii). Write Z = ∪ri=1Wi where we suppose that there are no contentions
between distinct Wi’s. Let di be the dimension of Wi and suppose that d1 ≥ d2 ≥ · · · ≥ dr, and that
d1 = ds > ds+1. If g(Z) ⊆ Z for some g ∈ GL(V ), by (i) we get that g permutes the W1, . . . ,Ws, so
g(∪si=1Wi) = ∪si=1Wi. Then, since there are no contentions between different Wi’s, g sends ∪ri=s+1Wi to
itself, and thus the result is established by induction on d1.

Proof of Lemma 1.15. Suppose for simplicity that V = F d where F is an infinite field and we consider the
coordinates given by the standard basis e1, . . . , ed. With this choice we identify GL(V ) with GL(d, F ).
Any finite union Z = ∪ri=1Wi of proper subspaces of V is the zero-set of a family of polynomials p1, . . . , pk
in F [x1, . . . , xd]. Let {v1, · · · vs} be a finite subset of Z containing a base of each of the Wi’s. The subgroup
GZ consisting of those g ∈ GL(V ) for which g(Z) = Z is Zariski closed because by (ii) of Lemma 1.16 it
is the zero-set of the polynomials pi(Xvj) ∈ F [xij ]

d
i,j=1 for 1 ≤ i ≤ k and 1 ≤ j ≤ s. Moreover, by (i)

of Lemma 1.16 we may take a vector v ∈ V \ Z, so any element of GL(V ) sending a vector in Z to v is
not in GZ , so GZ 6= GL(V ). A subsemigroup Γ of GL(V ) that is not strongly irreducible is contained in
some GZ , so it cannot be Zariski-dense in GL(V ).

Let µ be a probability measure in G. Studying the random walk on X associated to µ amounts to
understand the dynamics in X when we apply succesively homeomorphisms b0, b1, b2, . . . chosen randomly
according to the law µ. It is then natural to believe that the semigroup generated the support of µ will
be relevant for this purpose. Having this in mind, it might seem a little bit odd that the authors of
the article [7] present their main results by dividing in cases that depend on the Zariski closure of the
group generated by the support of µ. Wouldn’t it be more natural to consider the Zariski closure of the
semigroup generated by the support of µ? Even more importantly, what does the Zariski has to do at all
with the subject at hand? The aim of this section is to provide answers these questions, which rely on
two facts whose precise statement and proof we present after the informal discussion that follows.

By linear group we refer to a subgroup of GL(V ), for some finite-dimensional vector space V . A
similiar remark applies to the term linear semigroup. The first fact is that the proximal dimensions of an
irreducible linear semigroup over R and of its Zariski closure coincide. Secondly, the Zariski closure of a
linear semigroup is always a linear group. This makes our life easier because it tells us that we can find
the proximal dimension of any linear irreducible semigroups if we know how to compute it for irreducible,
Zariski-closed linear groups (and conceivably there are much less groups of the latter type than of the
former).

What allows us to detect a natural candidate to be the unique stationary measure in the space X of
rank-2 discrete subgroups of R3 was the map

Propositon 1.17. If K is a field and Γ ⊂ GL(d,K) is a semigroup, the Zariski closure H of Γ in
GL(d,K) is a group.

Proof. Let p(X) ∈ K[Xij ]
d
i,j=1. Any A ∈ GL(d,K) defines new polynomials by the formulas

(LAp)(X) = p(AX), (RAp)(X) = p(XA).

The maps LA, RA : K[Xij ]
d
i,j=1 → K[Xij ]

d
i,j=1 are linear isomorphisms since their inverses are LA−1 and

RA−1 . They also preserve the degree of the polynomials. Indeed, it is clear that the degree of LAp is less
or equal that the degree of p, and since p = LA−1(LAp), the equality holds.

Denote by I ⊆ K[Xij ]
d
i,j=1 the ideal of polynomials vanishing at Γ. Then Γ consists of all the

A ∈ GL(d,K) such that p(A) = 0 for every p ∈ I.
We begin by proving that H is stable under composition. Consider A,B ∈ Γ and p ∈ I. Notice that

p(AB) = 0 since AB also belongs to Γ. Since B is an arbitrary element of Γ, this implies that LA(I) ⊆ I.
Moreover, the equality holds: if Im is the subset of polynomials in I of degree ≤ m, then LA : Im → Im
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is bijective since it is an injective linear map and Im is finite-dimensional. Suppose now that A ∈ Γ and
B ∈ H. Observe that p(AB) = (LAp)(B) = 0 for any p ∈ I since LAp ∈ I. Again, A ∈ Γ is arbitrary, so
RB(I) = I. Finally take A,B ∈ H and p ∈ I. From RBp ∈ I we get that

p(AB) = (RBp)(A) = 0,

which tells us that AB ∈ H, just as we wanted.
To finish we show that A ∈ H implies that A−1 ∈ H. We know that RA2(I) = I because A2 ∈ H, so

I = RA−2(I). For any p ∈ I,
p(A−1) = p(AA−2) = (RA−2p)(A) = 0,

so A−1 ∈ H.

Theorem 1.18. Let Γ be an irreducible subsemigroup of GL(d,R), and let H be its Zariski closure in
GL(d,R). Then Γ and H have the same proximal dimension.

Proof. Since Γ is contained in H, the inequality rH ≤ rΓ follows from the definition of proximal dimension.
We need some preparation to prove the reverse inequality.

Consider π ∈ RΓ with rank rΓ and such that π2 6= 0 (if π2 = 0, by the irreducibility of Γ there is some
γ ∈ Γ such that (γπ)2 6= 0). Denote kerπ by W0, and Imπ by W1. The rank of π2 is also rΓ because it
belongs to RΓ, and its rank is not greater than the rank of π. Thus we have a decomposition

Rd = W0 ⊕W1,

which allows us to identify End(W1) with the subset of End(Rd) consisting of the maps f that verify
W0 ⊆ kerf , and Imf ⊆ W1. Notice that End(W1) = πEnd(V )π. The map P : g 7→ πgπ is polynomial,
so it is continuous with respect to the Zariski topology and the topology of End(V ) coming from the
operator norm, which we will call metric topology. Denote πRΓπ by G′. It follows from the metric
continuity of P that G′ is contained in RΓ, which in turn implies that any non-zero element of πRΓπ is
in GL(W1). Notice that G′ is closed with respect to the metric topology because it is the image under
the linear map P of the closed cone RΓ. Let

G = {g ∈ G′|detW1
g = ±1},

so that G′ = RG. Observe that G is bounded, otherwise there would be a sequence (gn) in G such
that ||gn|| → ∞, but then any cluster point of (gn/||gn||) would be non-nul and would have determinant
0, contrary to the fact that G is contained in GL(W1). Thus G is a compact semigroup contained in
GL(W1), so it is a group by Lemma REF. Let Q0 be a scalar product in W1 such that G ⊆ O(Q0). Such
a Q0 can be obtained from an arbitrary scalar product Q in W1, by setting

Q0 =

∫
G

g∗Qdg,

where dg is the Haar probability measure of G. Hence G′ is contained in RO(Q0), which is Zariski closed
in End(V ). Since πΓπ ⊆ RO(Q0), by the Zariski-continuity of P we deduce that πHπ ⊆ RO(Q0), and
by the metric continuity of P we deduce that πRHπ is contained in RO(Q0). In particular any nonzero
element of πRHπ has rank dimW1 = rΓ.

We are ready to conclude. Suppose that τ ∈ RH has rank rH . Again, by the irreducibility of Γ, there
are γ1, γ2 ∈ Γ ∪ {e} such that πγ1τγ2π is non-zero. Then

rH = rank τ ≥ rankπγ1τγ2π = rΓ,

which is what we seeked.
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1.4 Linear random walks on projective spaces

Lemma 1.19. Let µ be a Borel probability measure on GL(V ) such that Γµ is strongly irreducible, and
let ν be µ-stationary measure on P(V ). Then

ν(P(W )) = 0,

for any proper subspace W of V .

Proof. Let d be the dimension of V and let d0 be the minimal dimension of a subspace W of V such that
ν(P(W )) is positive. We must show that d0 = d.

Observe that for any two distinct W1,W2 ∈ Gd0
(V ) we have

ν(P(W1) ∪ P(W2)) = ν(P(W1)) + ν(P(W2)),

due to the fact that ν(P(W1) ∩ P(W2)) = ν(P(W1 ∩W2)) = 0 because dimension of W1 ∩W2 is less that
d0. By induction we can prove that

ν

 n⋃
j=1

P(Wj)

 =

n∑
j=1

ν(P(Wj)), (1.14)

for any finite collectionW1, . . .Wn of parwise distinct d0-dimensional subspaces of V . Thus, the supremum
α of the values ν(P(W )) for W ∈ Gd0

(V ) is attained (otherwise there would be infinitely many W ’s such
that ν(P(W )) > 1

2α, which is impossible by (1.14)). Let M be the collection of all the W ’s for which α
is reached. From (1.14) we deduce that M is finite. We claim that ∪M is Γµ stable. Let W be in M.
Since ν is µ-stationary,

α = ν(W ) =

∫
GL(V )

g∗ν(P(W ))dµ(g) =

∫
GL(V )

ν(g−1P(W ))dµ(g) ≤
∫
GL(V )

αdµ(g) = α.

Hence g−1W ∈M for µ-almost any g ∈ γ. AsM is finite, we conclude that there exists some E ⊂ GL(V )
of full µ-measure such that

g−1(∪M) ⊆ ∪M

for any g ∈ E. The stabilizer H of ∪M in GL(V ) is a closed subgroup of GL(V ) that contains E−1, so
it also contains E and

suppµ ⊆ E ⊆ H,

which in turn implies that Γµ ⊆ H. By the strong irreducibility of Γµ we find thatM = {V }, and d0 = d.

Theorem 1.20. Let µ be a Borel probability measure of GL(V ) such that Γµ is strongly irreducible and
has proximal dimension r. Consider a µ-stationary probability measure ν on X. The following holds:

1. There exists a measurable map ξ : B → Gr(V ) such that, for β-almost any b in B, any non-zero
cluster point of a sequence of the form λnb0 · · · bn has image ξ(b).

2. For β-almost any b ∈ B, ξ(b) is the smallest subspace W of V such that νb(P(W )) = 1.

Proof. We begin by observing that f∗ν is a well-defined probability measure for any non-zero linear
map f : V → V , and that this measures depend continuously on f . The map f defines a continuous
application, that by abuse of notation we will still denote by f , from P(V ) \ P(kerf) to P(V ). We may
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extend it to a measurable function on defined on P(V ) by declaring it to have any constant value on the
ν-null set P(kerf). Now we prove that (fn)∗ν converges weakly to f∗ν if fn → f in End(V ). Let ϕ be
any continuous real-valued function on P(V ). The set of lines contained in the union of the kernels of
f and the fn’s is still ν-null, so its completement is an open subset U of full measure of P(V ) where all
the corresponding proyective maps f, fn are continuous. Hence fn → f ν−almost surely. By Egoroff’s
theorem, for any ε > 0 there is some measurable subset Eε of P(V ) where the convergence is uniform
and such that ν(Eε) > 1− ε. We have the following bound:

|f∗ν(ϕ)− (fn)∗ν(ϕ)| ≤ ν(|ϕ ◦ f − ϕ ◦ fn|) ≤
∫
Kε

|ϕ ◦ f(x)− ϕ ◦ fn(x)|dν(x) +

∫
P(V )\Kε

|ϕ ◦ f(x)− ϕ ◦ fn(x)|dν(x)

≤ ||(ϕ ◦ f − ϕ ◦ fn)1Kε |dν(x) + 2ε||ϕ||∞.

Notice that the last term can be made arbitrarily small by choosing ε small enough and n large enough
because ϕ is uniformly continuous and the convergence fn → f is uniform on Kε.

Now define ξ(b) to be the smallest subspace W of V such that νb(P(W )) = 1 for any b such that νb
is defined. As we will see, the definition of ξ does not depend on the stationary measure ν and ξ(b) has
dimension r almost-surely.

Suppose the νb is well-defined and that f = limk→∞ λnkb0 · · · bnk . Then

f∗ν = lim
k→∞

(λnkb0 · · · bnk)∗ν = lim
k→∞

(b0 · · · bnk)∗ν = νb.

From ν(P(f−1ξ(b))) = νb(P(ξ(b))) = 1 and the strong irreducibility of Γµ it follows that P(f−1ξ(b)) is
equal to V , and so Imf ⊆ ξ(b). Additionally, from

νb(P(Imf)) = f∗ν(P(Imf)) = ν(P(V )) = 1

and the definition of ξ(b) we conclude that ξ(b) is contained in Imf , establishing thus the equality. We
remark that this proves that ξ(b) does not depend on ν.

To conclude, let us show that the dimension of ξ(b) is r. Let h be a rank-r linear endomorphism of V
that is limit of some sequence (λ′mgm) with each gm belonging to Γµ. By Lemma REF for β-almost any
b, the measures (b0 · · · bng)∗ν converge weakly towards νb. We keep the same hypotheses for f as in the
previous paragraph. For each fixed m we get

(fgm)∗ν = lim
k→∞

(b0 · · · bnkgm))∗ν = νb,

which combined with fgm → fh yields that (fh)∗ν = νb. By the same argument as before we conclude
that ξ(b) = Imfh, so the dimension of ξ(b) is r. If fh = 0, by the irreducibility of Γµ there is some g ∈ Γµ
such that fgh is non-zero and the same argument proves what we wanted.

The map ξ : B → Gr(V ) in the previous theorem is known as the bounday map of µ. A direct
and important consequence of the existence and the definingand property of the boundary map is the
following.

Corollary 1.21. Let µ be a Borel probability measure on GL(V ) such that Γµ is strongly irreducible and
proximal. Then there is a unique µ-stationary measure on P(V ), and it is µ-proximal.

Proof. The boundary map ξ of µ is P-valued because the proximal dimension of Γµ is 1. Let ν be any
µ-stationary probability measure on P(V ). By (ii) of Theorem 1.20, for almost any b ∈ B, the support
of νb is P(ξ(b)) = ξ(b), hence νb = δξ(b). We recover ν by integrating the limit probability measures

ν =

∫
B

νbdβ(b) =

∫
B

δξ(b)dβ(b) = ξ∗β,

so ν is uniquely determined by µ.
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If we are interested more generally in studying linear random walks on grassmanians of any dimension,
it is often useful to keep in mind the linear duality : Let V be a d-dimensional real vector space, and let
V ∗ be the dual of V (i.e. the vector space of linear maps V → R). For any g ∈ GL(V ) we will denote by
g∗ the adjoint map defined for any ` ∈ V ∗ by

g∗(`) = ` ◦ g.

The duality between the grassmanians of V and V ∗ is given by the maps ⊥: Gs(V )→ Gd−s(V ∗) defined
by

W⊥ = {` ∈ V ∗ |W ⊆ ker `},

for W ∈ Gs(V ). From the definitions it follows that

g∗◦ ⊥ ◦g =⊥,

for any g ∈ GL(V ). It is then immediate that if D : g 7→ (g∗)−1, then

⊥ ◦g = D(g)◦ ⊥ (1.15)

In the following lemma we gather some statements that tell us how probability measures on GL(V )
and on the grassmanians of V interact with the maps ⊥. If ν is a Borel measure on Gs(V ), we denote
⊥∗ ν as ν⊥.

Lemma 1.22. Let µ and ν be Borel probability measures on GL(V ) and Gs(V ), respectively.

(i) The convolution satisfies: (µ ∗ ν)⊥ = (D∗µ) ∗ ν⊥.

(ii) The duality Gs(V )→ Gd−s(V ∗) induces a bijection between µ-stationary and D∗µ-stationary prob-
ability measures.

(iii) ΓD∗µ is equal to D(Γµ).

(iv) Γµ is irreducible if and only if ΓD∗µ is irreducible.

(v) Γµ is strongly irreducible if and only if ΓD∗µ is strongly irreducible.

Proof. For any g in GL(V ), by (1.15) we have

(g∗ν)⊥ = (⊥ ◦g)∗ν = (D(g)◦ ⊥)∗ν = D(g)∗ν
⊥.

Using this equality we get the identity in (i):

(µ ∗ ν)⊥ =

∫
GL(V )

(g∗ν)⊥dµ(g) =

∫
GL(V )

D(g)∗ν
⊥dµ(g) =

∫
GL(V ∗)

h∗ν
⊥dD∗µ(h) = (D∗µ) ∗ ν⊥.

The assertion in (ii) is a direct consequence of (i) applied to the dualities

Gs(V )→ Gd−s(V ∗)→ Gs(V ∗∗) ∼= Gs(V ).

Another possibility is to notice that D is a group morphism since

D(g1g2) = ((g1g2)∗)−1 = (g∗2g
∗
1)−1 = D(g1)D(g2),

so GL(V ) acts in V ∗ via D. The equality (1.15) tells us that the duality map is a GL(V )-equivariant
homeomorphism, thus (i) and (ii) follow.
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As D is a continuous isomorphism GL(V ) → GL(V ∗), it sends the support of µ to the support of
D∗µ. This implies (iii).

Let Z be a finite union of subspaces of V , and denote by Z⊥ the union of the duals of the subspaces
forming Z. If gZ = Z, from (1.15) we deduce that

D(g)Z⊥ = (gZ)⊥ = Z⊥.

The duality sends proper subspaces of V to proper subspaces of V ∗ and viceversa, and since ΓD∗µ =
D(Γµ), the assertions (iv) and (v) follow.

We end this section remarking that proximal dimensions do not behave well in general with respect
to the map D. For example, if V = R3 and g1, g2 are the diagonal matrices

g1 = diag (3, 2, 1), g2 = diag (2, 1, 1),

the proximal dimension of the semigroups generated by g1, g2 and D(g1) is 1, since they have proximal
elements, but the proximal dimension of the semigroup generated by

D(g2) = diag (1/2, 1, 1)

is 2.

1.5 The Law of Large Numbers

Let V be a normed finite dimensional real vector space with a norm || · || induced from a scalar product.
This norm induces an operator norm on End(V ) that we will also denote by || · ||. The general linear
group GL(V ) will be denoted by G. The norm cocycle σ : G× P(V )→ R is defined as

σ(g, x) = log
||gv||
||v||

,

where v is any vector in x. For g ∈ G we define

N(g) = max{||g||, ||g−1||}.

A Borel probability measure µ on G has finite first moment if∫
G

logN(g)dµ(g) <∞.

This notion does not depend on the norm we choose for V . From the inequality logN(g1g2) ≤ logN(g1)+
logN(g2) we deduce that the family of Borel probability measures on G with finite first moment is stable
under convolutions.

Let us fix a probability measure µ on G with finite first moment, and let (B, β, S) be the one-sided
shift with alphabet (G,G , µ). The function g 7→ log ||g|| is integrable because | log ||g||| ≤ logN(g). The
sequence

an :=

∫
G

log ||g||dµ∗n(g)

is subadditive as the following calculation shows:

an+m =

∫
G

∫
G

log ||g1g2||dµ∗n(g1)dµ∗m(g2) ≤
∫
G

∫
G

log ||g1||+ log ||g2||dµ∗n(g1)dµ∗m(g2) = an + am.
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Thus an/n converges. Its limit is known as the first Lyapunov exponent of µ, and is denoted by
λ1,µ. As we will now see, the first Lyapunov exponent controls the asymptotic growth of the norm of the
vectors in V when we apply succesively independent random elements of G with law µ.

Theorem 1.23 (Law of Large Numbers V1). Let µ be a Borel probability measure on GL(V ) with finite
first moment, and such that Γµ is irreducible. Let ν be a µ-stationary Borel probability measure on P(V ).

(i) The norm cocycle σ is µ⊗ ν-integrable, i.e.∫
GL(V )

∫
P(V )

|σ|dνdµ <∞,

and its mean is the first Lyapunov exponent of µ:

λ1,µ =

∫
GL(V )

∫
P(V )

σdνdµ.

In particular, it does not depend on the µ-stationary measure ν.

(ii) For any x in P(V ), the equality

lim
n→∞

1

n
σ(bn−1 · · · b0, x) = λ1,µ

holds for β-almost any b in B. The sequence also converges in L1(B, β) uniformly for x ∈ P(V ).

(iii) For any x in P(V ), we have

lim
n→∞

1

n

∫
GL(V )

σ(g, x)dµ∗n(g) = λ1,µ,

and the convergence is uniform for x ∈ P(V ).

The proof can be found in [2, Theorem 4.28] . The uniform convergence in (iii) will play an important
role in Chapter 2.

Our next objective is to define all the Lyapunov exponents of a Borel probability measure µ on GL(V ).
This will control the growth of vectors in the random walk associated to µ on exterior powers ∧sV . The
technical conditions we will require µ to fullfill will be those that allow us to apply Theorem 1.23 to the
probability measures (∧s)∗µ on GL(∧sV ).

Let d be the dimension of V , and consider an integer 1 ≤ s ≤ d. Occasionally we will use the
multi-index notation: A multi-index of size s is a finite sequence

I = (n1, · · · , ns) (1.16)

such that the terms are strictly increasing integers between 1 and d. We denote by Is the set of multi-
indices of size s.

Consider some I ∈ Is like in (1.16). For any fixed choice of real numbers λ1, . . . , λd and of vectors
v1, . . . , vd in V , we denote

λI = λn1 · · ·λns , and vI = vn1 ∧ · · · ∧ vns . (1.17)

If q is the scalar product on V , we endow the s-th exterior power ∧sV with the scalar product:

qs(v1 ∧ · · · ∧ vs, v′1 ∧ · · · ∧ v′s) = |det (q(vi, v
′
j))1≤i,j≤s| (1.18)
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In other words, if {v1, . . . , vd} is an orthonormal basis of V , then

{vI | I ∈ Is} (1.19)

is a orthonormal basis of ∧sV .

For any g ∈ GL(V ) we will denote by ∧sg the linear endomorphism of ∧sV such that

∧sg(v1 ∧ · · · ∧ vs) = (gv1) ∧ · · · ∧ (gvs), (1.20)

for any v1, . . . , vs ∈ V . This defines a continuous homomorphism

∧s : GL(V )→ GL(∧sV ).

We will define the higher order Lyapunov exponents for Borel probability measures on GL(V ) by
using the first Lyapunov exponents of the measures ∧s∗µ. We will need that this exponents are finite,
which we can guarantee using (i) of Theorem 1.23, so the probability measures we consider are those who
satisfy the hypothesis of this theorem. The next lemma takes care of the finite moment condition.

Lemma 1.24. Let µ be a Borel probability measure on GL(V ). If µ has finite first moment, then
∧s∗µ ∈ P(∧sV ) also has finite first moment for any 1 ≤ s ≤ d.

Proof. To simplify the notation we will suppose that V is Rd with the standard scalar product. We
identify any g ∈ GL(Rd) with its matrix with respect to the canonical basis {e1, . . . , ed} of Rd. According
to the Cartan Decomposition REF, for any g ∈ GL(d,R), there exists a unique diagonal matrix

a(g) = diag (κ1(g), . . . , κd(g)),

where

κ1(g) ≥ · · · ≥ κd(g), (1.21)

and such that g ∈ O(d)a(g)O(g). Here O(d) is the group of orthogonal matrices of size d× d. Lets write
g = h1a(g)h2 for some h1, h2 ∈ O(d). From the definition of the scalar product in the exterior powers it
easily follows that ∧sh1 and ∧sh2 are isometries, so

|| ∧s g|| = || ∧s a(g)|| = κ1(g) · · ·κs(g).

The last step of the inequality comes from the observation that for vectors w ∈ ∧sRd of unit length,
|| ∧s a(g)w|| attains its maximum value for w = e1 ∧ · · · ∧ es because of (1.21). Notice that for s = 1 we
get that

κ1(g) = ||g||,

hence from (1.21) it follows that

|| ∧s g|| = κ1(g) · · ·κs(g) ≤ κ1(g)s

for any g ∈ GL(V ). This tells us that

logN(∧sg) ≤ s logN(g),

from where the desired result follows.
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Now we take care of the irreducibility condition. Let µ be a Borel probability measure on GL(V ).
Consider the following property:

Irr(µ): For any 1 ≤ s ≤ d, the subsemigroup ∧s(Γµ) of GL(∧sV ) is irreducible.

Notice that property Irr(µ) implies that Γ∧s∗µ is irreducible because it contains ∧s(Γµ).
Suppose that µ has finite first moment and that it satisfies property Irr(µ). Part (i) of Theorem 1.23

guarantees that the first Lyapunov exponent of ∧sµ is finite, so we can define the Lyapunov exponents
λ1,µ, . . . , λd,µ of µ inductively by the formula

λ1,µ + · · ·+ λs,µ = λ1,∧s∗µ. (1.22)

In other words,

λ1,µ + · · ·+ λs,µ = lim
n→∞

1

n

∫
GL(V )

log || ∧s g||dµ∗n(g). (1.23)

For convenience for later reference, we will restate part of Theorem 1.23 for this kind of probability
measures. We denote by σs : GL(V ) × P(∧sV ) → R the norm cocycle in the natural representation of
GL(V ) in ∧sV , in other words

σs(g, xs) = log
||(∧sg)w

||w||
,

for any non-zero vector w in the line xs.

Theorem 1.25. Let µ be a Borel probability measure on GL(V ) with finite first moment satisfying
property Irr(µ). For any 1 ≤ s ≤ d, let νs be a µ-stationary Borel probability measure on P(∧sV ).

(i) The norm cocycle σs is µ⊗ νs-integrable and its mean is the sum of the first s Lyapunov exponents
of µ:

λ1,µ + · · ·+ λs,µ =

∫
GL(V )

∫
P(∧sV )

σsdνsdµ.

(ii) For any non-zero vector w in ∧sV , the equality

lim
n→∞

log

(
1

n

|| ∧s (bn−1 · · · b0)w||
||w||

)
= λ1,µ + · · ·+ λs, µ

holds for β-almost any b in B. The sequence also converges in L1(B, β) uniformly in w.

(iii) For any non-zero vector w in ∧sV , we have

lim
n→∞

1

n

∫
GL(V )

log

(
|| ∧s gw||
||w||

)
dµ∗n(g) = λ1,µ + · · ·+ λs, µ,

and moreover, the convergence is uniform in w.

We will now prove that a Zariski dense Borel probability measure µ on SL(V ) satisfies property Irr(µ).

Lemma 1.26. Any Zariski dense Borel probability measure of SL(V ) satisfies property Irr(µ).

This is a consequence of the fact that the action of SL(V ) on the exterior powers of V is irreducible.

Lemma 1.27. Let V be a d-dimensional vector space. The linear action of ∧sSL(V ) on ∧sV is irre-
ducible.
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Proof. Let us fix an integer 1 ≤ s ≤ d. Suppose that W is a non-zero ∧sSL(V )-invariant linear subspace
of ∧sV . Consider a sequence of real numbers a1, . . . , ad such that a1 · · · ad = 1 and aI 6= aJ for any two
distinct multi-indices I, J ∈ Is. For any I ∈ Is, let pI(x) be a polynomial with real coefficients such that
pI(λI) = 1 and pI(λJ) = 0 for any J ∈ Is \ {I}.

Let {v1, . . . vd} be a basis of V and consider the linear endomorphism g of V sending vi to aivi. The
eigenvalues of ∧sg are the numbers aI , I ∈ Is, all distinct by construction. Any non-zero vector w ∈ W
can be written as

w = wI1 + · · ·+ wIl ,

where the wIj are non-zero and ∧sgwIj = aIjwIj . Since wIj = pIj (∧sg)(w) and W is pIj (∧sg)-stable, we
conclude that W is a direct sum of some of the lines RvI . We can always interchange any two lines RvI
and RvJ with a map in SL(V ) that permutes the base {v1, . . . vd}, so necessarily W = ∧sV .

Proof of Lemma 1.26. Let µ be a Zariski dense Borel probability measure on SL(V ). Suppose that W
is a ∧s(Γµ)-stable linear subspace of ∧sV . The stabilizer S(W ) of W in GL(∧sV ) is Zariski closed in
GL(∧sV ), and the map ∧s : GL(V )→ GL(∧sV ) is continuous (it is polynomial), so W is ∧sSL(V )-stable:

∧sSL(V ) = ∧scl ZΓµ ⊆ cl Z(∧sΓµ) ⊆ S(W )

By Lemma 1.26, W = ∧sV , as we wanted.

The Lyapunov exponents of a Borel probability measure µ are always decreasing

λ1,µ ≥ · · · ≥ λd,µ.

To show this we use the notation of the proof of Lemma ??. Observe that for any g ∈ GL(V ) and any
1 < s < d we have

|| ∧s+1 g||
|| ∧s g||

= κs+1(g) ≤ κs(g) ≤ || ∧s g||
|| ∧s−1 g||

thus
log || ∧s−1 g||+ log || ∧s+1 g|| ≤ 2 log || ∧s g|| (1.24)

If we integrate (1.24) with respect to 1
nµ
∗n and then take the limit as n → ∞, from (1.23) we deduce

that
(λ1,µ + · · ·λs−1,µ) + (λ1,µ + · · ·λs+1,µ) ≤ 2(λ1,µ + · · ·λs,µ),

so λs,µ ≤ λs+1,µ.
We say that the Lyapunov exponents of µ are simple if they are all distinct, that is

λ1,µ > · · · > λd,µ.

We cite following theorem that gives sufficient conditions to guarantee the simplicity of the Lyapunov
exponents of µ. It is part of [2, Corollary 10.15].

Theorem 1.28. Let V = Rd and let µ be a Borel probability measure on GL(V ) with finite first moment,
that is Zariski dense in GL(V ) or in SL(V ). Then the Lyapunov exponents of µ satisfy

λ1,µ > · · · > λd,µ.
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Chapter 2

The space of 2-lattices in R3

2.1 Presentation of the main results

In the discussion that follows we equip R2 and R3 with their standard scalar product. The space G2(R3)
of 2-dimensional subspaces of R3 will be denoted by P∗(R3), because by duality it is in correspondance
with P((R3)∗). We say that two lattices ∆1 and ∆2 of R2 have the same shape if there is a linear isometry
T : R2 → R2 and a positive number λ such that λT∆1 = ∆2, which is an equivalence relation. The
shape of a lattice ∆ is its equivalence class with respect to this relation. Let us denote by S the set
shapes of lattices of R2, which we endow with its topology of SL±(2,R)-homogeneous space.

A 2-lattice of R3 is by definition a rank 2 discrete subgroup of R3. The covolume of a 2-lattice Λ is
defined as ||v1 ∧ v2||, where v1, v2 is an arbitrary basis of Λ. From this point onwards X will denote the
space of 2-lattices of R3 modulo homothecies. If Λ is a 2-lattice of R3, we will denote by [Λ] its respective
class in X. From now on G will denote the group SL(3,R). The natural action of G on R3 induces a
transitive action on X, for which the stabilizer of x0 = [Z2 × {0}] is

S(x0) =


a b ∗
c d ∗
0 0 e−1

 : e ∈ R×,
(
a b
c d

)
∈ eSL(2,Z)

 . (2.1)

so we may identify X with the homogeneous space G/S(x0). Let π : X → P∗(R3) be the map that sends
any point in X to the plane it spans. Consider some x = [Λ] ∈ X. We equip the plane spanned by Λ
with the restriction of the scalar product of R3, and consider some linear isometry I : π(x) → R2. The
shape of IΛ does not depend on I, nor on the representative Λ of x, so we can denote it by s(x). This
defines the shape map s : X → S.

The goal of the article [7] is to study the dynamics of G and its subgroups on the space X, having
as motivation a conjecture related to the open problem of determining if any cubic irrational number
α is well-approximable (which means that the sequence of integers appearing in the continued fraction
development of α is unbounded). This leads the authors to study the dynamics of subgroups of G in X
whose Zariski closure is either G or SO(2, 1). Here we will treat only the first case, studying the dynamics
of Zariski dense subsemigroups of G. The reason for choosing to work with semigroups, and not just
groups, is that the technical tools used to prove the theorems come from the study of random walks in X
associated to Borel probability measures µ on G, and the natural object that appears here is the closed
semigroup generated by the support of µ.

After having introduced the objects we are interested in studying, we now present the main results
of this work. We begin with dynamical statements (Theorems 2.1 and 2.3), which will be established
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by random walk results (Theorems 2.4 and 2.5). Our goal is to make the link between the two kinds of
results, and showing various implications between them.

The first theorem is inspired by the conjecture that motivates [7].

Theorem 2.1. Let Γ be a Zariski-dense subsemigroup of G = SL(3,R). Then, for any x in X, the set
s(Γx) is dense in S.

The following Lemma implies that it enough to prove Theorem 2.1 for finitely-generated Zariski dense
semigroups of G.

Lemma 2.2. Any Zariski dense semigroup of G contains a finitely generated Zariski dense semigroup.

Proof. Let Γ be a Zariski dense semigroup of G and consider a countable dense subset of Γ with respect
to the topology inherited from the manifold topology of G,

D = {γn | n ∈ N}.

Notice that D is Zariski dense in G because clZ D contains D, and D contains Γ, so

G = clZ Γ ⊆ clZ D.

Let Γn be the semigroup generated by γ0, . . . , γn, and let Gn = clZ Γn, which is a group by Proposition
1.17. We will show that Gn = G for n >> 0.

Let us denote by Gon the Zariski connected component of e in Gn, which is a finite index normal
subgroup, and in fact is equal to the irreducible component of e in Gn (see [2], Lemma 6.21). The
increasing sequence of Zariski irreducible, Zariski closed subsets (Gon)n must become eventually constant,
say equal to a Zariski closed subgroup H of G. The normalizer of H in G is a Zariski closed subgroup
containing D (because it contains Gn for n >> 0), so necessarily H is normal in G. We can conclude then
that H = G or H is discrete, because the Lie algebra of H is an ideal of the simple Lie algebra g = LieG.
If H = G, then Gn = G for n >> 0, so Γn is Zariski dense in G for n >> 0. If this were not the case,
the groups Gn would be finite because they are discrete and Zariski closed. A Theorem of Jordan (see
[?, Theorem 36.14]) tells us that there is a positive integer r = r(m) such that any finite subgroup of
GL(m,C) has an abelian normal subgroup of index at most r. Any two elements g, h of D are in some
Gn, so their N -th powers are in the abelian normal subgroup of Gn given by Jordan’s Theorem, where
N = r(3)!. They satisfy then the polynomial equation

gNhN = hNgN . (2.2)

Since (2.2) is verified for any two elements of the Zariski dense subset D of G, it must be satisfied for any
two elements in G. This is impossible because any element of G that is in the image of the exponential
map g → G is an N -th power, in particular a neighborhood of the e ∈ G would be abelian, which is
absurd.

The second dynamical result gives us information about the orbit closures Γx, but before we present
it we need a definition. Recall that D : GL(R3)→ GL((R3)∗) is the map

D(g) = (g∗)−1

Let Γ be a Zariski dense semigroup of G. The semigroup D(Γ) of GL((R3)∗) is irreducible because Γ
is. Also, D(Γ) is Zariski dense in SL((R3)∗) because D : SL(R3) → SL((R3)∗) is a homeomorphism
with respect to the Zariski topology (the transposition and inversion of matrices with determinant 1 are
polynomial maps). Since D(Γ) is irreducible and SL((R3)∗) is proximal, then D(Γ) is also proximal by
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Theorem 1.18. Then, by (ii) of Proposition 1.14, the limit set Λ1
D(Γ) is the only D(Γ)-invariant minimal

closed subset of P((R3)∗). Let
Λ⊥Γ = (Λ1

D(Γ))
⊥

be the corresponding dual set in P∗(R3). Since the dual map ⊥: P((R3)∗)→ P∗(R3) is GL(R3)-equivariant
homeomorphism (GL(R3) acting on (R3)∗ via D), then Λ⊥Γ is the only Γ-invariant minimal closed subset
of P∗(R3).

Theorem 2.3. If Γ is a Zariski dense subsemigroup of G, the only Γ-invariant minimal closed subset of
X is π−1(Λ⊥Γ ).

Theorem 2.3 ⇒ Theorem 2.1. We fix some x ∈ X and consider any shape s0 ∈ S. We take any plane
W ∈ Λ⊥Γ . There is some 2-lattice Λ ⊆W such that s([Λ]) = s0. Let (γn)n≥1 be a sequence in Γ such that
γn(x) → [Λ] as n → ∞. By the continuity of the shape map we get that s(γn(x)) → s([Λ]) = s0. Since
s0 is an arbitrary element of S, then s(Γx) is dense in S.

Now we present the random walk statements that we will use to prove Theorem 2.3.

Theorem 2.4. Let µ be a Zariski dense Borel probability measure on SL(3,R) with compact support.
There exist a unique µ-stationary probability measure νX on X.

Theorem 2.4 is implied by points (a) and (b) of the Theorem 2.1 of [7]. The proof is quite long, and
requires a lot of technical machinery. Here we will admit it, contenting ourselves with sketching the first
steps of the proof.

The next theorem is related to the recurrence of the random walk on X associated to a Zariski dense
Borel probability measure on G.

Theorem 2.5. Let µ be a Zariski dense Borel probability measure on G with compact support. For any
x in X, the sequence

νx,n =
1

n

n∑
j=1

µ∗j ∗ δx

is weakly compact, and any cluster point is a µ-stationary Borel probability measure on X.

To be more concrete, will define explicitely the natural candidate νX to be the unique µ-stationary
measure in the situation of Theorem 2.4. We begin by recalling that the set L1

2 of covolume 1 lattices of R2

is identified with SL(2,R)/SL(2,Z) as follows: the natural action of SL(2,R) on R2 induces a transitive
action on L1

2 for which the stabilizer of Z2 ∈ L1
2 is SL(2,Z). The identification SL(2,R)/SL(2,Z)→ L1

2

is given by the orbital map of Z2.
gSL(2,Z) 7→ gZ2.

Consider now the space Y of lattices of R2 modulo homothecies. Any lattice of R2 is homothetic to
a unique lattice of covolume 1, so we can identify Y with SL(2,R)/SL(2,Z). Let α be the unique
SL(2,R)-invariant Borel probability measure on SL(2,R)/SL(2,Z).

Let W be a plane of R3. Any linear isomorphism L : R2 → W determines a bijection ϑL :
SL(2,R)/SL(2,Z)→ π−1(W ) given by

ϑL : gSL(2,Z) 7→ [LgZ2]. (2.3)

We claim that the probability measure (ϑL)∗α does not depend on the choice of L. Indeed, if L′ : R2 →W
is another linear isomorphism, the map (ϑL′)

−1 ◦ ϑL is given by

gSL(2,Z) 7→ g0gSL(2,Z),
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where g0 is the matrix of |det((L′)−1L)|−1/2(L′)−1L with respect to the basis e1, e2, so

((ϑL′)
−1 ◦ ϑL)∗α = (g0)∗α = α,

which tells us that
(ϑL)∗α = (ϑL′)∗α.

Now we have the right to denote by mW the probability measure (ϑL)∗α. We remark that the same
considerations prove that

g∗mW1
= mW2

(2.4)

if g ∈ GL(3,R) sends the plane W1 to W2.
We are ready to define νX . Let (B,B, S) be the one-sided shift with alphabet (G,G , µ). We will prove

in Proposition 2.7 that if µ is a Zariski dense Borel probability measure on G = SL(3,R), there is only one
µ-stationary Borel probability measure νP∗ on P∗(R3), and that it is µ-proximal. Let ξ∗ : B → P ∗ (R3)
be the unique measurable map (up to β-null sets) that satysfies

(νP∗)b = δξ∗(b),

and let νb be mξ∗(b) considered as a probability measure on X. Since b0ξ
∗(Sb) = ξ∗(b) holds β-almost

surely, then by ?? we have

(b0)∗νSb = (b0)∗mξ∗(Sb) = mb0ξ∗(Sb) = mξ∗(b) = νb,

and hence (νb) is a equivariant family of probability measures on X. We define νX as the integral

νX =

∫
B

νbdβ(b).

By Proposition 1.7, νX is µ-stationary and its limit measures are the νb that we used to define it. We
can describe also νX as an integral with respect to νP∗ . Recall that νP∗ =

∫
B
δξ∗(b)dβ(b) = (ξ∗)∗β, so by

the change of variables formula we get that

νX =

∫
B

mξ(b)dβ(b) =

∫
P∗(R3)

mWdξ∗β(W ) =

∫
P∗(R3)

mWdνP∗(W ).

We can think then νX as a sort of natural lift to X of νP∗ because we are giving to each π−1(W ) the
natural uniform probability measure mW .

Let us show how the random walk statements imply Theorem 2.3 for finitely generated Zariski dense
semigroups of G (which is enough to prove Theorem 2.1 by Lemma 2.2). First, we combine Theorem 2.4
and Theorem 2.5 to get the following corollary, which in turn will imply Theorem 2.1.

Corollary 2.6. Let µ be a Zariski dense Borel probability measure on SL(3,R) with compact support.
The only Γµ-invariant minimal closed subset of X is supp νX .

Theorem 2.4 and Theorem 2.5 ⇒ Corollary 2.6. We need to show that for any x ∈ X, suppµ is contained
in Γµx. Let y be any point in the support of νX , and condider an open neighborhood U of y. There is
a non-negative function ϕU ∈ Cc(X) taking a positive value on y (so νX(ϕU ) > 0) and vanishing outside
of U . Notice that the sequence (νx,n)n converges weakly to νX since there are no other µ-stationary
measures on X. Since νx,n(ϕU )→ νX(ϕU ), in particular

νx,m(ϕU ) =
1

m

n∑
j=1

∫
G

ϕU (gx)dµ∗j(g) > 0

for some n, so Γµx intersects U . This is valid for any open neighborhood U of any y in supp νX , hence
supp νX is contained in Γµx.
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Corollary 2.6 ⇒ (Theorem 2.3 when Γ is finitely generated). Suppose that Γ is a Zariski dense subsemi-
group of G generated by γ1, · · · , γn. Consider the Borel probability measure

µ =
1

n
(δγ1

+ · · ·+ δγn).

The closed subsemigroup Γµ of G generated by the support of µ is precisely Γ. Then Γµ and Γ have

the same invariant closed subsets of X, and Γx = Γx, so supp νX is the only Γ-invariant minimal closed
subset of X. But we know by Lemma 2.9 that

supp νX = π−1(supp νP∗) = π−1(Λ⊥Γµ),

and from the definition of limit set we easily get that Λ1
D(Γµ) = Λ1

D(Γ)
= Λ1

D(Γ), and by duality Λ⊥Γµ =

Λ⊥Γ .

To end this section we discuss how the rest of the work is organized. In Section 2.2 we present the start
of the proof of Theorem 2.4, which consists in showing that the µ-stationary Borel probability measure νX
is characterized by the invariance of its limit measures with respect to an equivariant family 1-parameter
unipotent groups (Ub)b∈B . In section 2.3 we give a complete proof of Theorem 2.3 using the results of
recurrence of random walks that we introduced in the last section of Chapter 1. More precisely, we will
show that the random walk on X associated to a Zariski dense Borel probability measure µ is recurrent
by constructing a proper continuous function u : X → [0,∞) satisfying the contraction hypothesis for a
power µ∗n0 of µ.

2.2 First steps of the proof Theorem 2.4

We will now introduce notation that we will use in this chapter. Let P be the subgroup of upper-triangular
matrices of G,

P =


a ∗ ∗

0 b ∗
0 0 c

 : abc = 1

 . (2.5)

The homogeneous space G/P is called the flag variety of G, and it is denoted by P. Let us explain the
terminology. A flag F on a vector space V is nested sequence of subspaces of V :

V0 ( V1 ( · · · ( Vl. (2.6)

We say that F is a maximal flag if l = dimV . The action of G on R3 gives rise to a transitive action on
the set Fm of maximal flags of R3, and the stabilizer of the flag

F0 : {0} (W1 (W2 ( R3, (2.7)

where W1 = 〈e1〉 and W2 = 〈e1, e2〉, is precisely P . Thus the orbital map of F induces a bijection between
P and Fm. In the sequel we identify both spaces. Since a maximal flag of R3 like in (2.6) is determined
by V1 and V2, tha flag variety P can also be thought as a subset of the product P(R3)× P∗(R3).

Propositon 2.7. Let µ be a Zariski dense Borel probability measure on G. There is only one µ-stationary
probability measure on each of the spaces P(R3),P∗(R3), and P = G/P . Moreover, each of these measures
is µ-proximal.
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Proof. The semigroup Γµ is srongly irreducible by Lemma 1.15, and it is proximal by Theorem 1.18
because SL(3,R) is proximal. Corollary 1.21 then implies that there is only one µ-stationary probability
measure νP on P(R3), and that it is µ-proximal. We will denote by ξ : B → P(R3) its boundary map.

Recall that D : GL(R3) → GL((R3)∗) is the map g 7→ (g∗)−1. By Lemma 1.22 (iv), D(Γµ) = ΓD∗µ
is strongly irreducible. Also, ΓD∗µ is Zariski dense in SL((R3)∗) because the restriction D : SL(R3) →
SL((R3)∗) is an homeomorphism with respect to the Zariski topology (matrix inversion is a polynomial
map for matrices with determinant 1). So, ΓD∗µ is proximal by Theorem 1.18. Applying once more
Corollary 1.21 and using the duality to come back to R3, we conclude that there is a unique µ-stationary
probability measure νP∗ on P∗(R3), and additionaly it is µ-proximal. Let ξ∗ : B → P(R3) be the boundary
map of νP∗ .

Finally we will prove the statement on the flag variety P with the help of ξ and ξ∗. Since P is
compact, by Proposition 1.5 we can consider a µ-stationary probability measure on P. The projections

P(R3)
p1←−P

p2−→ P∗(R3)

are G-equivariant, hence the image of ν under these is µ-stationary, and the only possibility is

(p1)∗ν = νP, and (p2)∗ν = νP∗ .

Looking at the limit measures we deduce that β-almost surely we have the equalities

(p1)∗νb = (νP)b = δξ(b), and (p2)∗νb = (νP∗)b = δξ∗(b).

This means that νb = δ(ξ(b),ξ∗(b)) because the sets p−1
1 (ξ(b)) and p−1

2 (ξ(b)) have full νb-measure and the
only possible point in its intersection is (ξ(b), ξ∗(b)) (in particular ξ(b) is contained in ξ∗(b) β-almost
surely). Let us denote by ζ the map (ξ, ξ∗) : B →P. We have shown that the only µ-stationary measure
on P is ζ∗β

Corollary 2.8. Let µ be a Zariski dense Borel probability measure on G, and let ν be a µ-stationary
probability measure on X. For β-almost any b ∈ B, the limit measures νb are supported in π−1(ξ∗(b)).

Proof. The map π : X → P∗(R3) is G-equivariant, hence for β-almost any b we have

π∗(νb) = (νP∗)b = δξ∗(b),

which implies that

νb(π
−1(ξ∗(b))) = δξ∗(b))({ξ∗(b)}) = 1.

We prove here the auxiliary lemma that we used to see that Corollary 2.6⇒ Theorem 2.3.

Lemma 2.9. Let µ be a Zariski dense Borel probability measure of G. We have the following equalities:

(i) supp νP∗ = Λ⊥Γµ ,

(ii) supp νX = π−1(supp νP∗).

Proof. First we prove (i). Since D(Γµ) is proximal and irreducible, the limit set Λ1
D(Γµ) is the unique

D(Γµ)-invariant minimal closed subset of P((R3)∗), so Λ⊥Γµ = (Λ1
D(Γµ))

⊥ is the unique Γµ invariant

minimal closed subset of P∗(R3). The support of νP∗ is Γµ invariant by Lemma 1.9, hence it contains
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Λ⊥Γµ . To prove that supp νP∗ is contained in Λ⊥Γµ , we consider a point x ∈ Λ⊥Γµ . The sequence of probability
measures

νn =
1

n

n∑
j=1

µ∗j ∗ δx

is weakly compact because P∗(R3) is compact, and any cluster point is µ-stationary by Lemma 1.4.
Then (νn) converges weakly to νP∗ , the unique µ-stationary Borel probability measure. This implies that
supp νX is contained in Γµx = Λ⊥Γµ .

Now we prove (ii). Since π∗(νX) = νP∗ , we have

νX(π−1(supp νP∗)) = νP∗(supp νP∗) = 1,

which implies that supp νX ⊆ π−1(supp νP∗). Now we take x ∈ π−1(supp νP∗) and denote W0 = π(x).
To prove that x is in supp νX is the same as showing that νX(ϕ) > 0 for any non-negative function
ϕ ∈ Cc(X) taking a positive value on x. For any such ϕ, mW0(ϕ|π−1(W0)) > 0. The map ϕ : P∗(R3)→ R
given by

ϕ(W ) = mW (ϕ|π−1(W ))

is non-negative and continuous, and takes a positive value at W0 ∈ supp νP∗ , hence νP∗(ϕ) > 0. By
definition of νX we have that νX(ϕ) = νP∗(ϕ), which concludes the proof.

We will now define the equivariant family of 1-parameter unipotent subgroups (Ub)b∈B .
Let G0 be the stabilizer in G of the plane W0 = 〈e1, e2〉.

G0 =


a b ∗
c d ∗
0 0 e

 :

(
a b
c d

)
∈ GL(2,R), e ∈ R×

 (2.8)

Let L : R2 → W0 the inclusion of R2 in the first two coordinates of R3 and consider the homeomor-
phism ϑL : SL(2,R)/SL(2,Z) → π−1(W0) defined in (2.3). The action of G0 on π−1(W0) read through
ϑL is the following: Let p : G0 → GL(2,R) be the projectiona b ∗

c d ∗
0 0 e

 7→ (
a b
c d

)
. (2.9)

The diagram

π−1(W0) π−1(W0)

SL(2,R)/SL(2,Z) SL(2,R)/SL(2,Z)

φ

ϑL

q(g)

ϑL (2.10)

is commutative, where q(g) = p(g)
|det p(g)|1/2 . For example, the action of the group

L0 =


a ∗ ∗

0 a ∗
0 0 a−2

 : a ∈ R×
 (2.11)

on π−1(W0) corresponds to the action on SL(2,R)/SL(2,Z) of the group of unipotent matrices

U =

{(
1 t
0 1

)
: t ∈ R

}
. (2.12)
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Notice that the group L0 is 4-dimensional, way bigger than U . This difference is due to the fact that L0

contains a lot of elements that act trivially on π−1(W0), they form the normal subgroup of L0:

R0 =


a 0 ∗

0 a ∗
0 0 a−2

 : a ∈ R×
 . (2.13)

Then, the action of the 1-dimensional quotient group U0 := L0/R0 on π−1(W0) corresponds to the action
of U on SL(2,R)/SL(2,Z). Observe that both L0 and R0 are normalized by P , so any flag F = gP
defines a pair of subgroups of G

LgP = gL0g
−1, and RgP = gR0g

−1

We define also UgP = LgP /RgP . Since  L0 fixes F0 (the canonical flag (2.7)), then LF fixes the flag F ,
in particular LF and UF act on π−1(p2(F)). We will write Ub instead of Uζ(b), where ζ is the boundary
map B →P. The groups Ub are defined for β-almost surely and they satisfy

Ub = b0USbb
−1
0

for β-almost any b ∈ B. We remark (once more) that the action of Ub on the fiber π−1(ξ∗(b)) corresponds
to the action of U on SL(2,R)/SL(2,Z).

Propositon 2.10. Let µ be a Zariski dense Borel probability measure of SL(3,R) with finite first moment
and let ν be a µ-stationary, µ-ergodic Borel probability measure on X. If νb is Ub-invariant for β-almost
any b ∈ B, then ν = νX .

For the proof we need a lemma which is very interesting in its own right. Recall that ξ : B → P(R3)
and ξ∗ : B → P∗(R3) are defined for β-almost any b ∈ B as:

ξ(b) = (νP)b and ξ∗(b) = (νP∗)b,

where νP and νP∗ are the unique µ-stationary Borel probability measures on P(R3) and P∗(R3), respec-
tively (which are also µ-proximal according to Proposition 2.7).

Lemma 2.11. Let µ be a Zariski dense Borel probability measure of G with finite first moment.

(i) For β-almost any b ∈ B we have that, for any non-zero v ∈ ξ(b),

lim
n→∞

1

n
log
||b−1
n−1 · · · b

−1
0 v||

||v||
= −λ1,µ.

(ii) For β-almost any b ∈ B we have that, for any non-zero w ∈ ∧2ξ∗(b),

lim
n→∞

1

n
log
|| ∧2 (b−1

n−1 · · · b
−1
0 )w||

||w||
= −λ1,µ − λ2,µ.

Proof. We begin by proving (i). The idea of the proof is to interpret the quantities

1

n
log
||b−1
n−1 · · · b

−1
0 v||

||v||

as the Birkhoff sums of a suitable map B → R.
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Consider a measurable subset E of B such that β(E) = 1, and such that, for any b ∈ E and any
n ≥ 1, we have

ξ(b) = b0 · · · bn−1ξ(S
nb).

Let σ : G× P(R3)→ R be the norm cocycle, that is

σ(g, x) = log
||gv||
||v||

,

for any non-zero v ∈ x. If b ∈ E and we take a non-zero v ∈ ξ(b), then

log
||b−1
n−1 · · · b

−1
0 v||

||v||
= − log

||b0 · · · bn−1(b−1
n−1 · · · b

−1
0 v)||

||b−1
n−1 · · · b

−1
0 v||

= −σ(b0 · · · bn−1, ξ(S
nb)). (2.14)

We define the map Θ : B → R by
Θ(b) = σ(b0, ξ(Sb)).

If we take b ∈ E, then

Θ(b) + Θ(Sb) = σ(b0, ξ(Sb)) + σ(b1, ξ(S
2b)) = σ(b0, b1ξ(S

2b)) + σ(b1, ξ(S
2b)) = σ(b0b1, ξ(S

2b)),

and by an inductive argument we get that

Θ(b) + · · ·+ Θ(Sn−1b) = σ(b0 · · · bn−1, ξ(S
nb)). (2.15)

Now we calculate the integral of Θ. Observe that Γµ is irreducible because it is Zariski dense in G and
G is irreducible, and by assumption µ has finite first moment, so Theorem 1.23 applies. We use it to
deduce: ∫

B

Θdβ =

∫
G

∫
B

σ(g, ξ(b′))dβ(b′)dµ(g) =

∫
G

∫
P(R3)

σ(g, x)dξ∗β(x)dµ(g)

=

∫
G

∫
P(R3)

σ(g, x)dνP(x)dµ(g) = λ1,µ. (2.16)

Since the shift S is β-ergodic, by Birkhoff’s Theorem we know that for β-almost any b ∈ E we have

lim
n→∞

1

n
(Θ(b) + · · ·+ Θ(Sn−1b)) =

∫
B

Θdβ = λ1,µ. (2.17)

Combining 2.14, 2.15 and 2.17 we get that for β-almost any b ∈ E, we have

lim
n→∞

1

n
log
||b−1
n−1 · · · b

−1
0 v||

||v||
= lim
n→∞

− 1

n
σ(b0 · · · bn−1, ξ(S

nb)) = lim
n→∞

− 1

n
(Θ(b) + · · ·+ Θ(Sn−1b)) = −λ1,µ,

for any v ∈ ξ(b), which concludes the proof of (i).
The proof of (ii) follows the same lines. As usual, we let G act on ∧2R3 via the map ∧2. Consider

the norm cocycle σ′ : G× P(∧2R3)→ R. The natural map α : P∗(R3)→ P(∧2R3) given by

W = 〈v1, v2〉 7→ R(v1 ∧ v2)

is a G-equivariant homeomorphism, so ζ ′ = α ◦ ξ∗ : B → P(∧2R3) is an almost sure G-equivariant map,
and hence the probability measure ν′ = (ζ ′)∗β is µ-stationary. This time we consider the (β-almost surely
defined) map Θ′ : B → R given by

Θ′(b) = σ′(b0, ζ
′(Sb)).
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Let E′ be a measurable subset of B such that β(E′) = 1, and such that, for any b ∈ E′ and any n ≥ 1,
we have

ξ∗(b) = b0 · · · bn−1ξ
∗(Snb).

If b ∈ E′ and w is a non-zero element of ∧2ξ∗(b), then

1

n
log
|| ∧2 (b−1

n−1 · · · b
−1
0 )w||

||w||
= − 1

n
(Θ′(b) + · · ·+ Θ′(Sn−1b)). (2.18)

Now we calculate
∫
B

Θ′dβ using Theorem 1.25, which applies because µ satisfies property Irr(µ) by
Lemma 1.26 and it has finite first moment.∫

B

Θ′dβ =

∫
G

∫
B

σ′(g, ζ ′(b′))dβ(b′)dµ(g) =

∫
G

∫
P(∧2R3)

σ′(g, x′)dν′(x′)dµ(g′) = λ1,µ + λ2,µ.

Using 2.18 and Birkhoff’s Theorem we conclude that almost any b ∈ E′ satisfies that, for any non-zero
w ∈ ∧2ξ∗(b),

lim
n→∞

1

n
log
|| ∧2 (b−1

n−1 · · · b
−1
0 )w||

||w||
= −

∫
B

Θ′dβ = −λ1,µ − λ2,µ.

Proof of Proposition 2.10. By Corollary 2.8 we know that β-almost surely, νb is supported on π−1(ξ∗(b)).
By Ratner’s Theorem REF, the Ub-invariant and Ub-ergodic measures on π−1(ξ∗(b)) are either mξ∗(b), or
supported in a closed Ub-orbit. Hence, if νb is Ub-invariant, we can express it as a convex combination

νb = tbmξ∗(b) + (1− tb)ν̃b,

where (1 − tb)ν̃b is supported in a (possibly infinite) union of closed Ub-orbits. By the definition of the
Ub’s, we have that β-almost surely,

Ub = b0USbb
−1
0 ,

so b0 : π−1(ξ∗(Sb)) → π−1(ξ∗(b)) sends closed USb-orbits to closed Ub-orbits, and then (b0)∗ν̃Sb is also
supported in a union of closed Ub-orbits. When (b0)∗νSb = νb, we obtain

tbmξ∗(b) + (1− tb)ν̃b = νb = (b0)∗νSb = tSb(b0)∗mξ∗(Sb) + (1− tSb)(b0)∗ν̃Sb

= tSbmξ∗(b) + (1− tSb)(b0)∗ν̃Sb,

and hence tb = tSb for β-almost any b ∈ B. Since the shift S is β-ergodic, then tb is equal to a constant
a β-almost surely, thus

ν =

∫
B

νbdβ(b) = a

∫
B

mξ∗(b)dβ(b) + (1− a)

∫
B

ν̃bdβ(b) = aνX + (1− a)ν̃. (2.19)

We need to show that a = 1. If this is not the case, then

ν̃b =
1

1− a
(νb − amξ∗(b))

for β-almost any b ∈ B, and since the measures νb and mξ∗(b) are β-almost surely equivariant, the ν̃b’s
are as well. In turn, this implies that ν̃ is µ-stationary. Since ν is µ-stationary and µ-ergodic, from 2.19
we conclude that a = 0, so for β-almost any b ∈ B, the support of νb is contained the union of Ub-periodic
orbits of π−1(ξ∗(b)), which can also be written as

Db = {[Λ] ∈ X | Λ ⊆ ξ∗(b),Λ ∩ ξ(b) 6= {0}}.
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Suppose that E is a measurable subset of B such that β(E) = 1, ξ and ξ∗ are defined in E, for any b ∈ E
the equalities

b0 · · · bn−1ξ(S
nb) = ξ(b) and b0 · · · bn−1ξ

∗(Snb) = ξ∗(b)

hold for any n ≥ 1, and such that both conclutions of Lemma 2.11 hold for any b ∈ E. Let us consider
the backwards dynamical system (B ×X,βX , T ), where βX is the Borel probability measure∫

B

δb ⊗ νbdβ(b),

and T (b, x) = (Sb, b−1
0 x). The map T preserves the probability measure βX (see BQ Proposition 2.23).

The subset of B ×X defined by
C = {(b, x) | b ∈ E, x ∈ Db}

has full βX -measure. For any z = (b, [Λ]) ∈ C, let vz(Λ) be a generator of Λ ∩ ξ(b) and let wz(Λ) be the
wedge product of a basis of Λ. The map f : C → R given by

f(z) = log ||vz(Λ)|| − 1

2
log |Λ| = log ||vz(Λ)|| − 1

2
log ||wz(Λ)||

is well defined (it does not depend on the 2-lattice Λ, just in its homothecy class). If z = (b, [Λ]) ∈ C, the
linear map b−1

0 sends ξ∗ to ξ∗(Sb), and ξ(b) to ξ(Sb), so b−1
0 vz(Λ) generates b−1

0 Λ ∩ ξ(Sb). This implies
that

f(Tz) = f((Sb, [b−1
0 Λ])) = log ||b−1

0 vz(Λ)|| − 1

2
log || ∧2 (b−1

0 )wz(Λ)||,

and by induction

f(Tnz) = log ||b−1
n−1 · · · b

−1
0 vz(Λ)|| − 1

2
log || ∧2 (b−1

n−1 · · · b
−1
0 )wz(Λ)||,

for any z ∈ C and for any n ≥ 1. Lemma 2.11 tells us that

lim
n→∞

1

n
f(Tnz) = lim

n→∞

(
1

n
log ||b−1

n−1 · · · b
−1
0 vz(Λ)|| − 1

2
· 1

n
log || ∧2 (b−1

n−1 · · · b
−1
0 )wz(Λ)||

)
= −λ1,µ +

1

2
(λ1,µ + λ2,µ) =

1

2
(λ2,µ − λ1,µ),

but λ2,µ − λ1,µ < 0 by Theorem 1.28, thus

lim
n→∞

f(Tnz) = −∞ (2.20)

for any z ∈ C. Let us show that this is not possible: we can pick a constant R > −∞ such that
βX(FR) > 0, where

FR = {z ∈ C | f(z) ≥ R}.
Since the Borel map T : B ×X → B ×X preserves βX , by Poincare’s Recurrence Theorem, the T -orbit
of almost any z ∈ FR returns to FR infinitely many often, which contradicts (2.20).

2.3 Proof of Theorem 2.5

If Λ is a 2-lattice of R3, its systole α1(Λ) is the norm of the shortest non-zero vector of Λ. Observe that

the quantity |Λ|
1/2

α1(Λ) does not change if we multiply Λ by a non-zero real number. Then the map u : X → R
given by

u([Λ]) =
|Λ|1/2

α1(Λ)
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is well-defined. It is also continuous because the covolume and the systole depend continuoulsy on the
2-lattice. Our objective in this section is to show that, for δ small enough, uδ is a proper function that
satisfies the contraction hypothesis for a power µn0 of µ. We begin by proving that u is proper.

Lemma 2.12. The map u : X → [0,∞) is proper.

Proof. Let L1
2 be the space of covolume 1 lattices of R2. By Mahler’s Compactness Criterion, the map

α−1
1 : L1

2 → [0,∞) is proper. Consider a plane W in R3, a linear isomorphism L : R2 → W and the
homeomorphism ϑL : L1

2 → π−1(W ) given by

∆ 7→ [L∆].

The diagram

L1
2 L1

2

π−1(W ) π−1(W )

ϑL

α−1
1

ϑL

u

(2.21)

commutes, so
{u ≤M} ∩ π−1(W )

is compact for any M > 0.
The spaceX is a fiber bundle with fiber L1

2 and projection π : X → P∗(R3). Then, for anyW ∈ P∗(R3),
there exists a compact neighborhood K of W in P∗(R3) and a local trivialization of X in which we see
π−1(K) ∩ {u ≤M} as

K × {∆ ∈ L1
2 | α−1

1 (∆) ≤M}, (2.22)

which is a compact set. Since P∗(R3) is also compact, we may express {u ≤ M} as a finite union of
subsets of the form (2.22). This implies that {u ≤M} is compact.

Lemma 2.13. Let µ be a Zariski dense probability measure on G with finite first moment. For any
M > 0, there exists a natural number n0 = n0(M) such that any non-zero vectors v ∈ R3 and w ∈ ∧2R3

verify the inequality ∫
G

log

(
||gv||
||v||

· ||w||1/2

|| ∧2 gw||1/2

)
dµ∗n0 > M. (2.23)

Proof. The probability measure µ has finite first moment and it satisfies property Irr(µ) by Lemma 1.26.
The seconf version of the Law of Large Numbers (Theorem 1.25) guarantees that, uniformly for v and w,

1

n

∫
G

log
||gv||
||v||

dµ∗n(g)→ λ1,µ and
1

n

∫
G

log
|| ∧2 gw||
||w||

dµ∗n(g)→ λ1,µ + λ2,µ (2.24)

Combining (2.24) and (??) we obtain that, uniformly for v and w,

1

n

∫
G

log

(
||gv||
||v||

· ||w||1/2

|| ∧2 gw||1/2

)
dµ∗n → λ1,µ −

1

2
(λ1,µ − λ2,µ).

Since λ1,µ − λ2,µ is positive by Theorem 1.28, the conclusion follows.

Propositon 2.14. Let µ be a Zariski dense probability measure on G with compact support. There exists
a positive integer n0 and a real number δ0 > 0 verifying the following property: For any δ ∈ (0, δ0), there
is a constant a = a(δ, n0) in the interval (0, 1) such that, for any non-zero vectors v ∈ R3 and w ∈ ∧2R3,
one has ∫

G

(
|| ∧2 gw||1/2

||gv||

)δ
dµ∗n0(g) ≤ a

(
||w||1/2

||v||

)δ
(2.25)
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Proof. The result will be obtained by looking at the expansion of order 2 of the map

δ 7→
(
|| ∧2 gw||1/2

||w||1/2
· ||v||
||gv||

)δ
.

The main ingredient of the proof is Lemma 2.13. We begin by introducing some notation and establishing
some auxiliary inequalities.

Denote by σ1 : G× (R3 \ {0})→ R and σ2 : G× (∧2R3 \ {0})→ R the cocycles

σ1(g, v) = log
||gv||
||v||

, σ2(g, w) = log
|| ∧2 gw||
||w||

,

and consider the map τ : G× (R3 \ {0})× (∧2R3 \ {0})→ R given by

τ = σ1 −
1

2
σ2.

Let n0 be a positive integer such that ∫
G

τ(g, v, w)dµ∗n0(g) ≥ 1 (2.26)

for any non-zero v ∈ R3 and w ∈ ∧2R3, whose existence is guaranteed by Lemma 2.13. Recall that we
use the notation

N(h) = max{||h||, ||h−1||}

for any h ∈ GL(V ), where V is a normed vector space. Observe that

|σ1(g, v)| = max

{
log
||gv||
||v||

, log
||v||
||gv||

= log
||g−1gv||
||gv||

}
≤ max{||g||, ||g−1||} = logN(g), (2.27)

and similarly
|σ2(g, w)| ≤ logN(∧2g). (2.28)

We obtain an upper bound for τ2 using (2.27) and (2.28):

τ(g, v, w)2 ≤ |σ1(g, v)|2 + |σ1(g, v)| · |σ2(g, w)|+ 1

4
|σ2(g, w)|2

≤ (logN(g))2 + logN(g) logN(∧2g) +
1

4
logN(∧2g))2 =: ρ(g) (2.29)

This inequality will be useful because the upper bound ρ(g) of τ(g, v, w)2 depends only on g. Since µ has
compact support and ρ is continuous, the integral

Cn0 :=

∫
G

eρ(g)dµ∗n0(g)

is finite.
Now consider

δ0 = min

{
1,

(
2

Cn0

)1/2
}
, (2.30)
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and take any δ ∈ (0, δ0). We use the inequalities

ex ≤ 1 + x+
1

2
x2e|x|, and x2 ≤ e|x|,

that are valid for any real number x, to obtain(
|| ∧2 gw||1/2

||w||1/2
· ||v||
||gv||

)δ
= exp(−δτ(g, v, w)) ≤ 1− δτ(g, v, w) +

1

2
δ2τ(g, v, w)2 exp(δ|τ(g, v, w)|)

≤ 1− δτ(g, v, w) +
1

2
δ2 exp(δ0τ(g, v, w)2)

≤ 1− δτ(g, v, w) +
1

2
δ2 exp(ρ(g)), (2.31)

where we applied (2.29) in the last step. Integrating (2.31) with respect to µ∗n0 and applying (2.26) we
obtain ∫

G

(
|| ∧2 gw||1/2

||w||1/2
· ||v||
||gv||

)δ
dµ∗n0(g) ≤ 1− δ +

1

2
δ2Cn0

= 1− δ
(

1− 1

2
δ2Cn0

)
,

but
1

2
δ2Cn0

<
1

2
δ2
0Cn0

≤ 1

2
· 2

Cn0

· Cn0
= 1,

so a(δ, n0) = 1− δ(1− 1
2δ

2Cn0) is strictly smaller that 1.

Propositon 2.15. Let µ be a Zariski dense probability measure on G with compact support. There exists
a positive integer n0 such that, for any sufficiently small δ > 0, the proper map uδ verifies the contraction
hypothesis for µ∗n0 .

Proof. Let n0 and δ0 be as in the conclusion of Proposition 2.14 We rename µ∗n0 as µ̃. Let M be a positive
number, and consider the following partition of X in two pieces: the compact set X≤M = {u ≤M} and
X>M = {u > M}. The map u is bounded in X≤M , so the additive constant b in the contraction
hypothesis will take care of it. We have only to worry abour X>M . The main idea of the proof is to
realize that we can choose M large enough so that uδ is contracted on X>M by Pµ for any δ < δ0 (i.e.
Pµ(uδ) ≤ auδ for some a ∈ (0, 1)).

Denote by A the support of µ̃ (which is compact because the support of µ is compact). Let us fix

M = max{(||g|| · ||g−1||)1/2 | g ∈ A}. (2.32)

For any 2-lattice Λ of R3, let {vΛ, wΛ} be a basis of Λ such that ||vΛ|| = α1(Λ). Any w ∈ Λ that is not a
multiple of vΛ verifies the inequality

|Λ| ≤ ||vΛ ∧ w|| ≤ ||vΛ|| · ||w||,
which we rewrite as

||w|| ≥ |Λ|
α1(Λ)

. (2.33)

We claim that if u([Λ]) > M , then gvΛ realizes α1(gΛ) for any g in A. If w ∈ Λ is not multiple of vΛ,
using (2.33) and then (2.32) we deduce that

||gw|| = ||g
−1|| · ||gw||
||g−1||

≥ ||w||
||g−1||

≥ |Λ|
α1(Λ)

· 1

||g−1||
=

|Λ|
α1(Λ)2

· ||vΛ||
||g−1||

≥ M2

||g|| · ||g−1||
||g|| · ||vΛ|| ≥ ||g|| · ||vΛ|| ≥ ||gvΛ||.



2.3. PROOF OF THEOREM ?? 39

In addition, by the choice of vΛ, we know that gΛ ∩ RgvΛ = ZgvΛ, hence there are no non-zero vectors
in gΛ shorter than gvΛ. Consider any δ ∈ (0, δ0), and let a = a(δ, n0) be as in Proposition 2.14. It
u([Λ]) > M , then

(Pµ̃u
δ)([Λ]) =

∫
A

u(g[Λ])δdµ̃(g) =

∫
A

|| ∧2 g(vΛ ∧ wΛ)||δ/2

||gvΛ||δ
dµ∗n0(g) ≤ a ||vΛ ∧ wΛ||δ/2

||vΛ||δ
= auδ([Λ]).

We are ready to conclude. Let b be the maximum value attained by the continuous function Pµ̃(uδ) on
the compact set X≤M . By the choice of b, and since any [Λ] ∈ X>M verifies (2.34), we get that

Pµ̃(uδ) ≤ auδ + b.

Proof of Theorem 2.5. Proposition 2.15 guarantees the existence of a (continuous) proper Borel map
X → (0,∞) verifying the contraction hypothesis for a power µ∗n0 of µ, so Theorem 2.5 follows from
Corollary 1.13.
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