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Finalement, je remercie à la Fondation CFM pour la recherche de m’avoir permis de
travailler dans ce projet dans des conditions excellentes grâce au généreux financement de
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Chapter 1

Introduction

Ma thèse a pour thème les formes quadratiques entières. Même si celles-ci ont été étudiées
pendant plusieurs décennies, elles sont toujours au cœur de divers sujets de recherche actuels.
Ma contribution consiste en deux nouveaux résultats. Le premier porte sur le problème de
déterminer si deux formes quadratiques données sont équivalentes, et le deuxième donne des
parties génératrices finies des groupes orthogonaux S-entiers. Une caractéristique importante
de ces théorèmes est qu’ils sont effectifs, c’est-à-dire quantitatifs, et complètement explicites.
Ces résultats, ainsi que les méthodes utilisées pour les prouver sont inspirés de l’article [LM16]
de Li et Margulis.

Cette introduction est divisée en quatre sections. Dans les deux premières on parle de
l’histoire des deux problèmes abordés, on présente les résultats originaux de Li et Margulis
ainsi que les généralisations que j’ai obtenues. Après avoir beaucoup travaillé sur ce sujet, je
me suis retrouvé avec moins de réponses que de questions. Certaines de ses questions sont
rassemblées dans la troisième partie. La structure de la thèse est esquissée dans la quatrième
section.

1.1 Équivalence de formes quadratiques

1.1.1 Classification des formes quadratiques entières

Pour motiver le premier problème qu’on traite, on va discuter maintenant de quelques con-
cepts qui ont été développés pour tenter de classifier les formes quadratiques entières. On dit
que les formes quadratiques Q1 et Q2 en d variables à coefficients dans un anneau commutatif
R avec unité sont R-équivalentes s’il existe g ∈ GL(d,R) tel que Q1 ◦g = Q2. À ce jour, per-
sonne n’a réussi à classifier à Z-équivalence près les formes quadratiques entières. L’histoire
de ce problème est longue, donc on se limitera à évoquer de quelques développements clés.

Le cas des formes quadratiques binaires a été résolu par C.F. Gauss dans les Disquisitiones
Arithmeticae [Gau65], où il décrit un algorithme qui, en partant d’une telle forme Q donne
une suite de formes quadratiques binaires Z-équivalentes à Q qui devient périodique. Le cycle
de Q est la période de sa suite. Gauss montre que Q1 et Q2 sont Z-équivalentes si et seulement
si elles ont le même cycle – c.f. [CS99, Theorem 1, p. 356]. De plus, il caractérise les formes
quadratiques qui peuvent apparâıtre dans un cycle en termes d’inégalités simples entre leurs
coefficients, ce qui amène au concept de forme quadratique binaire réduite. Concrètement,
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8 CHAPTER 1. INTRODUCTION

la forme quadratique entière ax2
1 + 2bx1x2 + cx2

2 est réduite -c.f. [CS99, p. 358-359] - si elle
est définie positive ou négative et vérifie |2b| < |a| < |c|, ou bien si elle est indéfinie et

0 < b <
√
b2 − ac < min{b+ |a|, b+ |c|}.

Inspirés par ces travaux de Gauss, C. Hermite puis H. Minkowski étendent la notion de forme
quadratique réduite à trois variables ou plus. Les propriétés souhaitées sont : toute forme
quadratique entière doit être Z-équivalente à une forme réduite et il doit y avoir une méthode
aussi simple que possible pour déterminer si deux formes réduites sont Z-équivalentes. C’est
ainsi que la Théorie de la réduction des formes quadratiques est née. Voici son principal
théorème de finitude. Dans l’énoncé on note δR le déterminant de la matrice d’une forme
quadratique entière R en d variables dans la base canonique de Zd.

Théorème 1.1.1. Soient d et N des entiers positifs. Il n’y a qu’un nombre fini de formes
quadratiques entières réduites R en d variables avec |δR| = N .

La théorie de la réduction de formes quadratiques joue un rôle important dans cette thèse.
On utilise la définition moderne de forme réduite en termes des sous-ensembles de Siegel de
GL(d,R).

Malgré les développements de la théorie de la réduction, la classification à Z-équivalence
près des formes quadratiques entières restait - et reste encore - inaccessible, donc les gens
travaillant sur le sujet ont introduit d’autres notions d’équivalence, en espérant que celles-ci
nous approchent de la Z-classification. On va discuter brièvement deux telles équivalences.

La première est le genre : deux formes quadratiques entières sont du même genre si elles
sont équivalentes sur R et sur Zp pour tout nombre premier p1. Évidemment deux formes
quadratiques Z-équivalentes sont du même genre, mais la réciproque est fausse. Par exemple,

Q1(x) = x2
1 + 82x2

2 et Q2(x) = 2x2
1 + 41x2

2

ne sont pas Z-équivalentes car x2
1 + 82x2

2 = 2 n’a pas de solution entière, mais Q1 et Q2

sont du même genre – c.f. [Cas78, p. 129]. Tout de même, le lien entre Z-équivalence et
genre est fort. Si Q1 et Q2 sont du même genre, alors elles sont presque Z-équivalentes au
sens suivante : elles sont Z(S)-équivalentes pour toute partie finie S de nombres premiers.
Ici, Z(S) est l’anneau des nombres rationnels dont le dénominateur n’est divisible par aucun
p ∈ S. En fait, cette condition est une caractérisation alternative de être du même genre –
c.f [Cas78, Theorem 1.4, p. 130].

Le genre spinoriel est une autre équivalence de formes quadratiques entières introduite
par M. Eichler, plus fine que le genre et (parfois) plus grossière que la Z-équivalence. Pour ne
pas couper le fil de la discussion on ne donne pas ici la définition - voir [Cas78, Lemma 1.4, p.
201]. Grâce à elle on peut trouver le nombre de Z-classes de formes quadratiques entières R-
isotropes en d ≥ 3 variables. En effet, on sait que pour celles-ci, être du même genre spinoriel
et être Z-équivalentes revient au même - c.f. [Cas78, Theorem 1.3, p. 202]. De plus, J.H.
Conway et N.A. Sloane décrivent dans [CS99, Chapter 15, Section 9, p. 388] une méthode

1Cette définition est sans doute motivée par le principe local-global pour des formes quadratiques ra-
tionnelles : deux telles formes sont Q-équivalentes si et seulement si elles sont équivalentes sur R et sur Qp
pour tout p.
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pratique pour calculer le nombre de genres spinoriels. Quant aux formes quadratiques R-
anisotropes, même s’il y a de bonnes méthodes pour les classer quand d est petit, Conway
et Sloane - c.f. [CS99, p. 353] - pensent qu’on n’arrivera jamais à une classification générale
car il y en a trop dès que d > 24.

1.1.2 Critère de Z-équivalence

Après notre discussion de quelques outils pour classifier les formes quadratiques entières,
on présente maintenant le problème proche, mais bien moins ambitieux, qu’on va aborder
: Décider si deux formes quadratiques entières données Q1 et Q2 en d variables sont Z-
équivalentes. Voici une situation où ce problème de Z-équivalence a une réponse facile, qui en
plus motive notre approche du cas général. Si Q1 et Q2 sont toutes les deux définies positives
ou négatives – c’est-à-dire R-anisotropes –, l’ensemble des matrices g dans GL(d,R) pour
passer de Q1 à Q2 est compact, et on peut montrer facilement que pour toute telle g,

||g||∞ ≤ d · d!||Q1||
d−1
2
∞ ||Q2||

1
2
∞, (1.1)

où ||Qi||∞ est le maximum des valeurs absolues des coefficients de Qi. Donc Q1 et Q2 sont
Z-équivalentes si et seulement si Q1 ◦ γ = Q2 a une solution γ dans la partie finie de
GL(d,Z) déterminée par (1.1). Cette stratégie ne marche pas quand les Qi sont R-isotropes,
car l’ensemble de matrices dans GL(d,R) qui transforment Q1 en Q2 est non-borné. Il est
étonnant que même dans ce cas on peut déterminer quand même si les Qi sont Z-équivalentes
en cherchant γ tel que Q1 ◦ γ = Q2 dans une partie finie de GL(d,Z). Il s’agit d’un résultat
de Siegel dans [Sie72].

Théorème 1.1.2. Pour tout entier d ≥ 2 il y a une fonction explicite Md avec la propriété
suivante : si les formes quadratiques entières Q1 et Q2 en d variables sont Z-équivalentes,
alors il y a γ ∈ GL(d,Z) telle que

||γ||∞ ≤Md(Q1, Q2)

et Q1 ◦ γ = Q2.

Une fonction Md comme dans le théorème précédant s’appelle borne de Z-équivalence.
Siegel établit l’existence de bornes de Z-équivalence à l’aide de la théorie de la réduction de
Hermite et Minkowski. Outre l’article original [Sie72] (écrit en allemand), on peut trouver un
esquisse de la preuve du Théorème 1.1.2 dans le livre de Cassels [Cas78, Chapter 13, Section
12, p. 324]. Siegel ne donne pas Md de façon explicite, mais S. Straumann montre dans son
mémoire de master [Str99] que la méthode de Siegel donne

Md(Q1, Q2) = exp(Ad|δQ1|
d3+d2

2 ) ·max{||Q1||∞, ||Q2||∞}
d3−d2

2 ,

où δQ1 est comme dans le Théorème 1.1.1 et Ad est une constante qui ne dépend que de d 2.
Si l’on veut utiliser en pratique des bornes de Z-équivalence, il faut trouver une Md

explicite qui ne crôıt pas trop vite. Le travail de Straumann montré qu’on peut prendre Md

2Dans la suite on note Ad, Bd, Cd, . . . des constantes qui dépendent seulement de d.
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exponentielle en ||Q1||∞, ||Q2||∞. Dorénavant, on dira simplement que Md est exponentielle
ou polynomiale si elle a la propriété respective par rapport à ||Q1||∞, ||Q2||∞.

On va discuter maintenant des contributions majeures à ce sujet en ordre chronologique.
Pour les formes quadratiques binaires : on sait que M2 ne peut pas être polynomiale car
dans ce cas il y aurait une borne polynomiale de la norme de la plus petite solution d’une
équation type Pell

au2 − bv2 = ±1, (1.2)

avec a, b ∈ Z. En effet, si (u0, v0) ∈ Z2 est solution de (1.2), alors

γ =

(
u0 bv0

v0 au0

)
∈ GL(2,Z)

transforme Q1(x) = ax2
1− bx2

2 en Q2(x) = ±x2
1∓abx2

2. Soit γ0 ∈ GL(2,Z) telle que Q1 ◦γ0 =
Q2 et ||γ0||∞ ≤ M2(Q1, Q2). La première colonne de γ0 est une solution de 1.2 dont la taille
est bornée par un polynôme en a et b. Le lecteur peut trouver dans l’article de J. Lagarias
[Lag80, p. 486] une suite d’équations type Pell pour laquelle la plus petite solution crôıt plus
vite que n’importe quel polynôme en a et b.

Pour les formes quadratiques en 3 variables il y a des bornes de Z-équivalence polynomi-
ales. R. Dietmann montre dans [Die03] qu’on peut prendre

M3(Q1, Q2) = B3||Q1||510
∞ (||Q1||∞ + ||Q2||∞)207.

Étant donné ce résultat, D. Masser conjecture dans [Mas02] qu’il y a des bornes de Z-
équivalence polynomiales dès que d ≥ 3.

Conjecture 1.1.3. Pour tout entier d ≥ 3 il y a des constantes Cd, Ed avec la propriété
suivante : si les formes quadratiques entières non-dégénérées Q1 et Q2 en d variables sont
Z-équivalentes, alors il y a γ0 ∈ GL(d,Z) telle que

||γ0||∞ ≤ Cd(||Q1||∞ + ||Q2||∞)Ed

et Q1 ◦ γ0 = Q2.

La prochaine grande contribution à cette histoire est due aussi a Dietmann, qui démontre
dans [Die07, Theorem 3] la conjecture de Masser quitte à ajouter des hypothèses suplémentaires
sur Q1 et Q2

3 qui lui permettent de trouver Md en utilisant ses résultats pour les formes
quadratiques ternaires. Pour d ≥ 6 il obtient

Md(Q1, Q2) = Cd max{||Q1||∞, ||Q2||∞}Ed ,

où Ed est un polynôme en d de terme principal 5ddd+1. Cette borne de Z-équivalence est
améliorée par Li et Margulis dans [LM16, Theorem 1], où ils établissent la conjecture de
Masser en toute généralité. Voici une version simplifiée de son énoncé.

Théorème 1.1.4. Soient Q1 et Q2 des formes quadratiques entières non-dégénérées en d ≥ 3
variables. Si Q1 et Q2 sont Z-équivalentes, il y a γ0 ∈ GL(d,Z) telle que

||γ0||∞ ≤ Cd(||Q1||∞||Q2||∞)
13
40
d3

et Q1 ◦ γ0 = Q2.
3Les coefficients de la diagonale principale de bQi - la matrice de Qi dans la base canonique de Qd - ne

sont pas tous pairs et det bQi est sans facteurs cubiques et non divisible par 4.
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1.1.3 La méthode de Li et Margulis

Les stratégies de Dietmann et de Li-Margulis pour traiter le problème de Z-équivalence
sont très différentes. D’un côté, Dietmann a une approche plutôt Théorie Analytique des
Nombres, basé notamment sur la méthode du cercle de Hardy et Littlewood. Ceci est tout
à fait naturel, vu qu’il s’est intéressé aux bornes de Z-équivalence en raison de leur lien avec
les bornes de résolubilité de l’équation diophantienne quadratique générale. En fait, ceci est
le sujet principal de l’article [Mas02] où Masser énonce sa conjecture [Mas02].

Pour l’approche de Li et Margulis, il faut d’abord regarder le problème autrement, en
profitant d’une dualité simple et très utile. Pour fixer les idées on va supposer que Q1 et Q2

sont de signature 2,1. Soit P (x) = x2
1 +x2

2−x2
3; on considère les groupes G = GL(3,R), H =

O(P,R) et Γ = GL(3,Z). On écrit Qi = P ◦ gi avec gi ∈ G. Toute forme quadratique de
signature 2,1 s’exprime comme P ◦g avec g ∈ G, donc l’espace de toutes ces formes s’identifie
à H\G. Voici l’observation clé : une Z-classe d’équivalence de formes quadratiques entières
(de signature 2,1) est une Γ-orbite dans H\G, qui correspond à une H-orbite dans l’espace
X = G/Γ des réseaux de R3 4. Trouver γ0 ∈ Γ qui transforme Q1 en Q2 équivaut à trouver
h0 ∈ H qui envoie g2Z3 sur g1Z3. Il s’avère que la H-orbite Y de g2Z3 est fermée et qu’elle
admet une mesure H-invariante finie, ce qui permet à Li et Margulis de traiter le problème
avec de puissants outils de dynamique homogène effective. L’action de H sur Y est presque
mélangeante, et mieux encore, il y a une vitesse de mélange effective et uniforme, qui ne
dépend pas de la H-orbite fermée, grâce à laquelle ils bornent la norme d’une matrice h0 ∈ H
telle que h0g2Z3 = g1Z3 en fonction de ||g1||∞, ||g2||∞ et du volume de Y .

Pour finir la discussion du Théorème 1.1.4 on va signaler les deux outils techniques prin-
cipales de la preuve. Premièrement, la récurrence effective des flots unipotents – un résultat
de Kleinbock et Margulis [KM98] – qui donne une estimation du volume de la H-orbite Y
évoqué ci-dessus. Deuxièmement, la borne de Kim et Sarnak [Kim03, Appendix 2] pour la
conjecture de Ramanujan-Petersson pour SL(2) sur Q, un important résultat de la théorie
des représentations automorphes, qui prescrit la vitesse de mélange uniforme pour l’action
de H dans des H-orbites fermées dans X.

1.1.4 Critère de ZS-équivalence

Le premier objectif de ma thèse est d’obtenir un analogue du Théorème 1.1.4 pour le problème
de ZS-équivalence. Pour l’énoncer on a besoin des nouvelles définitions. Si Sf = {p1, . . . , pk}
est un ensemble fini de nombres premiers, on pose S = Sf ∪ {∞}. L’anneau des S-entiers
ZS est formé des nombres rationnels dont le dénominateur est un produit de puissances
d’éléments de Sf . On note pS le produit des nombres premiers dans Sf . Pour S = {∞}
on pose ZS = Z et pS = 1. Étant données des formes quadratiques entières Q1 et Q2 en
d variables, cette fois-ci on veut déterminer si elles sont ZS-équivalentes en cherchant une
solution γ de Q1 ◦ γ = Q2 dans une partie finie de GL(d,ZS). D’après le Théorème 1.1.4,
pour S = {∞} une telle partie est définie par une inégalité de la forme ||γ||∞ ≤ M . Elle
est finie car tout coefficient d’une solution γ ∈ GL(d,Z) est un entier dont la valeur absolue
est au plus M . Mais |x| ≤ M a une infinité de solutions dans ZS dès que Sf est non-vide,

4D’autres auteurs ont exploité la dualité entre Γ-orbites de formes quadratiques et H-orbites de réseaux
de Rd. Par exemple, Eichler l’utilise pour définir le genre spinoriel.
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donc l’inegalité ||γ||∞ ≤ M ne suffit pas. On contourne cette petite difficulté comme suit :
rappelons que chaque t ∈ ZS s’écrit

t =
n

pa11 · · · p
ak
k

,

avec n ∈ Z et a1, . . . , ak ∈ N. Si on impose des bornes supérieures pour |t| ainsi que pour
chaque ai, il n’y a qu’un nombre fini de solutions dans ZS du système résultant. Pour
γ ∈Md(Q), soient ||γ||p le maximum des valeurs absolues p-adiques des coefficients de γ et

||γ||S = max
ν∈S
||γ||ν .

Alors ||γ||S ≤ M définit une partie finie de GL(d,ZS). Voici la généralisation du Théorème
1.1.4 que j’ai obtenue.

Théorème 1.1.5. Soient Q1 et Q2 des formes quadratiques entières non-dégénérées en d ≥ 3
variables et soit Sf un ensemble fini de nombres premiers impairs. Si Q1 et Q2 sont ZS-
équivalentes, alors il y a γ0 ∈ GL(d,ZS) telle que

||γ0||S ≤ Fdp
19d6

S (||Q1||∞||Q2||∞)2d3

et Q1 ◦ γ0 = Q2.

On peut se passer de l’hypothèse 2 /∈ S. En fait, la même preuve fonctionne, mais il y
a des endroits avec plus de cas à considérer5. Dans le Théorème 1.1.4, où S = {∞}, le cas
facile est quand les Qi sont R-anisotropes – c.f. (1.1). Pour S géneral, le cas facile est quand
les Qi sont Qν-anisotropes6 pour chaque ν ∈ S, car tout g ∈ GL(d,Q) pour passer de Q1 à
Q2 vérifie

||g||S ≤ d · d!||Q1||
d−1
2
∞ ||Q2||

1
2
∞.

Le cas intéressant - quand Q1 et Q2 sont Qν-isotropes pour au moins un ν ∈ S - est traité
par le Théorème 5.1.1 et le Théorème 5.1.2 quand les Qi sont respectivement R-isotropes et
R-anisotropes.

Li et Margulis traitent le cas S = {∞} en étudiant l’action d’un groupe orthogonal réel
H sur l’espace X des réseaux de Rd. On adapte leur stratégie comme suit : supposons que
Q1 et Q2 sont ZS-équivalentes. On veut contrôler ||γ0||ν , ν ∈ S d’une γ0 ∈ GL(d,ZS) qui
transforme Q1 en Q2. Il est donc naturel de considérer les Qi comme forme quadratique
sur chaque Qν , ν ∈ S. Soit Pν le représentant standard de la Qν-classe d’équivalence des
Qi. Pour faire d’une pierre deux coups on considère Q1 et Q2 sur QS =

∏
ν∈S Qν grâce au

plongement diagonal Q→ QS, donc les Qi sont QS-équivalentes à P = (Pν)ν∈S. On considère
les groupes

GS = GL(d,QS) =
∏
ν∈S

GL(d,Qν), HS = O(P,QS) =
∏
ν∈S

O(Pν ,Qν),

5La différence entre 2 et p > 2 vient du fait que Q×2 /(Q
×
2 )2 est d’ordre 8, tandis que Q×p /(Q×p )2 est d’ordre

4. Ceci entrâıne qu’il y a plus de classes d’équivalence de formes quadratiques sur Q2 que sur Qp.
6Par convention Q∞ = R.
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et on prend g1, g2 ∈ GS telles que Qi = P ◦gi. Quel espace joue ici le rôle de X ? On remarque
que la copie diagonale de ZS dans QS est un réseau dans QS, donc ZdS est un réseau dans
Qd
S. L’action de GS sur l’espace XS des réseaux de Qd

S est transitive et le stabilisateur de ZdS
est le plongement diagonal ΓS de GL(d,ZS) dans GS, donc XS s’identifie à GS/ΓS. Trouver
une γ0 ∈ GL(d,ZS) qui transforme Q1 en Q2 équivaut à trouver h0 ∈ HS qui envoie g2ZdS
sur g1ZdS. Heureusement, le cadre dynamique est aussi bon que dans le cas S = {∞} :
l’orbite Y = HSg2ZdS est fermée dans XS, de volume HS-invariant fini et l’action de HS sur
Y est presque mélangeante. On peut donc traiter le problème avec des outils de dynamique
homogène. On donnera la borne de ||h0||S en fonction des ||gi||S et du volume de Y - c.f
Proposition 5.2.2 et Proposition 5.2.3.

Les deux ingrédients techniques principaux de la preuve du Théorème 1.1.5 ressemblent
à ceux utilisés par Li et Margulis pour S = {∞}. Pour estimer le volume de Y on applique
une version S-adique, due à Kleinbock et Tomanov [KT07], de la récurrence effective des
flots unipotents. Quant à la vitesse effective et uniforme de mélange pour l’action de HS sur
des HS-orbites fermées dans XS, elle est aussi déduite de la borne de Kim-Sarnak [Kim03,
Appendix 2] pour la conjecture de Ramanujan-Petersson pour SL(2) sur Q quand les Qi

sont R-isotropes, et quand elles sont R-anisotropes, d’une reformulation dans le langage
de la théorie de représentations [Lub94, Theorem 2.14, p. 158] d’un célèbre théorème de
Deligne [Lub94, Theorem 1.2, p. 148] sur les formes modulaires, et de la correspondance de
Jacquet-Langlands [Lub94, Theorem 3.4, p. 163].

1.2 Le groupe des unités d’une forme quadratique

1.2.1 Les résultats classiques de Siegel

Il est probable que la motivation de beaucoup de celles et ceux qui ont étudié les formes
quadratiques entières vienne des liens de celles-ci avec la théorie des nombres. Par exemple,
pour comprendre les corps de nombres quadratiques K = Q[

√
D] il faut étudier les formes

quadratiques Q(x) = x2
1–Dx2

2. Le groupe des unités O×K de l’anneau d’entiers de K est
fortement lié au groupe orthogonal entier O(Q,Z), c’est pour cela qu’on appelle parfois
O(Q,Z) le groupe des unités de Q. Dans l’article clé [Sie39] de 1939, Siegel étudie le groupe
des unités des formes quadratiques en d ≥ 3 variables. Deux de ses résultats sont extrêmement
importants pour cette thèse. Le premier est [Sie39, Satz 11, p. 230].

Théorème 1.2.1. Pour toute forme quadratique entière non-dégénérée Q en d ≥ 3 variables,
le groupe O(Q,Z) est de type fini.

Li et Margulis ont démontré dans [LM16] une version effective du Théorème 1.2.1, qu’on
généralise au groupe des S-unités O(Q,ZS) de Q, pour tout S. On va présenter ces résultats
dans la sous-section suivante. Le deuxième théorème de Siegel qui nous concerne est [Sie39,
Satz 12, p. 233].

Théorème 1.2.2. Soit Q une forme quadratique entière non-dégénérée en d ≥ 3 variables.
Le groupe O(Q,Z) des unités de Q est un réseau dans O(Q,R).

Le rôle du Théorème 1.2.2 dans ma thèse est le suivant : Soit H y X le système
dynamique utilisé par Li et Margulis pour le problème de Z-équivalence. Le fait crucial que
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les H-orbites fermées dans X sont de volume H-invariant fini vient7 du Théorème 1.2.2. Plus
généralement, la copie diagonale de O(Q,ZS) dans O(Q,QS) est un réseau dans O(Q,QS),
ce qui implique que les HS-orbites fermées dans XS sont de volume HS-invariant fini.

Les preuves des théorèmes 1.2.1 et 1.2.2 se basent sur la théorie de la réduction de Hermite
et Minkowski, qui a été affinée par Siegel lui même. A. Borel et Harish-Chandra ont poussé
ces idées plus encore dans son papier [BH62] de 1962 où, inspirés par les exemples classiques
SL(d,Z) ⊂ SL(d,R) et O(Q,Z) ⊂ O(Q,R) de réseaux dans groupes de Lie réels semisimples,
ils introduisent la notion de sous-groupe arithmétique d’un groupe algébrique linéaire G défini
sur Q. Par analogie avec les formes quadratiques, ils développent une théorie de la réduction
par rapport à un sous-groupe arithmétique, grâce à laquelle ils généralisent le Théorème 1.2.1
– tout sous-groupe arithmétique est de type fini – ainsi que le Théorème 1.2.2 en explicitant la
condition sur G qui garantit que le volume de GR/GZ est fini. Ils démontrent aussi – presque
au même temps que G.D. Mostow et T. Tamagawa [MT62] – la conjecture de Godement, qui
donne une condition nécessaire et suffisante sur G pour que GR/GZ soit compact. Peu après,
Borel étend ces résultats aux groupes S-arithmétiques dans [Bor63].

1.2.2 Petits générateurs des groupes orthogonaux S-entiers

Dans le papier [LM16], Li et Margulis déduisent du Théorème 1.1.4 plusieurs résultats
intéressants sur les formes quadratiques entières. L’un d’entre eux, que je trouve partic-
ulièrement joli est une version effective [LM16, Theorem 2] du fait que O(Q,Z) est de type
fini.

Théorème 1.2.3. Soit Q une forme quadratique entière non-dégénérée en d ≥ 3 variables.
Le groupe O(Q,Z) est engendré par la famille de ses éléments γ tels que

||γ||∞ ≤ Jd||Q||d
7+3d4

∞ .

La preuve repose sur le Théorème 1.1.4 ainsi que des améliorations effectives de résultats
classiques de la théorie de la réduction de formes quadratiques entières.

J’obtiens par analogie une version effective du fait que O(Q,ZS) est de type fini, pour
tout partie finie Sf de nombres premiers. Pour ce faire j’utilise la théorie de la réduction
effective des formes quadratiques sur QS et le Théorème 1.1.5.

Théorème 1.2.4. Soit Q une forme quadratique entière non-dégénérée en d ≥ 3 variables.
Pour toute partie finie Sf de nombres premiers, le groupe O(Q,ZS) est engendré par ses
éléments γ dont

||γ||S ≤ Ldp
20d7

S ||Q||4d6∞ .

1.3 Quelques problèmes ouverts

Comme on a vu, le problème qui motive cette thèse est celui de déterminer si deux formes
quadratiques entières en d variables données Q1 et Q2 sont Z-équivalentes. On peut le
reformuler de façon plus géométrique comme suit : les espaces quadratiques (Zd, Q1) et

7Car les H-orbites fermées sont obtenues à partir de formes quadratiques entières – c.f. Lemme 6.1.2
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(Zd, Q2) sont-ils isométriques ? Mais que fait-on si Q1 est en d1 variables et Q2 en d2 < d1 ?
Décider si Q1 représente Q2 - c’est-à-dire qu’il y a un plongement isométrique (Zd2 , Q2) ↪→
(Zd1 , Q1) - est aussi intéressant. Li et Margulis donnent une borne [LM16, Theorem 4] pour
ce problème de Z-représentation de formes quadratiques, encore une autre application de
leur Théorème 1.1.4. Par manque de temps je n’ai pas mis dans la thèse la généralisation
S-adique naturelle.

On sait que les groupes O(Q,ZS) sont de présentation finie - c.f. [PR94, Théorème 5.11,
p. 272] -, et maintenant qu’on a des parties génératrices finies G Q

S de ces groupes grâce aux
théorèmes 1.2.3 et 1.2.4, il serait souhaitable de donner explicitement des relations sur G Q

S

définissant O(Q,ZS).

Le programme de rendre effectifs des résultats classiques sur les groupes orthogonaux S-
entiers peut aussi s’étendre aux sous-groupes S-arithmétiques d’autres Q-groupes classiques,
tels que les groupes unitaires. Quelques auteurs ont déjà exploré cette voie. Par exemple,
T. Chinburg et M. Stover trouvent dans le papier récent [CS14] des petits générateurs du
groupe de S-unités de Q-algèbres centrales simples. Voir aussi - même si ses résultats ne sont
pas effectifs – l’approche algorithmique au sujet proposé par F. Grunewald et D. Segal dans
[GS80] pour les groupes arithmétiques et dans [GS85] pour les groupes S-arithmétiques.

1.4 Structure de la thèse

La première partie est formée de deux chapitres préliminaires. Au Chapitre 3 on rappelle la
classification des formes quadratiques à coefficients dans R et Qp, et on fixe un représentant
de chaque classe d’équivalence, qu’on appellera forme quadratique standard. Ceci est un
concept important auquel on fera référence dans tous les chapitres. Puis, on révise la théorie
de représentations unitaires de SL(2,Qν) au Chapitre 4. Ici, le résultat important est la
décroissance effective des coefficients des représentations unitaires presque Lk, qui plus loin
nous permet d’établir la vitesse de mélange effective pour le système dynamique sous-jacent
au problème de ZS-équivalence.

La deuxième partie est dédiée à la preuve de la borne pour le problème de ZS-équivalence,
qui s’étale du Chapitre 5 au Chapitre 8. Au Chapitre 5 on traduit le problème arithmétique
de ZS-équivalence à un problème dynamique sur l’action d’un groupe orthogonal S-adique
HS sur l’espace XS des réseaux de Qd

S : étant donnés des points y2, y1 dans une HS-orbite
fermée Y dans XS, on borne la S-norme ||h0||S de la plus petite h0 ∈ HS qui envoie y2 sur
y1. Ceci est accompli dans la Proposition 5.2.2 au Chapitre 6 quand H∞ est non-compact,
et dans la Proposition 5.2.3 au Chapitre 7 quand H∞ est compact. La borne pour ||h0||S fait
intervenir le volume de Y , c’est pourquoi on donne au Chapitre 8 une borne supérieure de
ce volume en fonction du déterminant de Q quand l’orbite Y vient d’une forme quadratique
entière Q.

Ayant établi notre borne de ZS-équivalence, on en déduit au Chapitre 9 le Théorème
1.2.4 sur la partie génératrice explicite de O(Q,ZS). On traite le cas des formes quadratiques
R-isotropes et R-anisotropes respectivement au Théorème 9.0.2 et Théorème 9.0.3.

Les calculs qui donnent les constantes explicites dans nos énoncés sont rassemblées dans
deux appendices à la fin de la thèse. À l’Appendice B on donne des estimés du volume de
petites boules dans un groupe orthogonal réel, ainsi qu’une formule du volume dans le cas
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p-adique. Puis, on démontre des améliorations effectives, avec des constantes explicites, de
résultats de la théorie de la réduction de formes quadratiques réels à l’Appendice B. Enfin
on liste les constantes de nos énoncés à l’Appendice C.



Chapter 2

Introduction

The topic of my thesis is integral quadratic forms. Even though they have been studied
for centuries, they are still at the heart of diverse subjects of contemporary research. The
highlight is two new results, one concerning the problem of deciding if two given quadratic
forms are equivalent, and the other on the finite generation of S-integral orthogonal groups.
An important feature of this new theorems is that they are effective—i.e. quantitative—
and completely explicit. The results of my thesis, as well as the methods used to establish
them are inspired by the article [LM16] of Li and Margulis. In fact my two main theorems
generalize two of their theorems in that paper.

This introduction is divided into four sections. The first two present some history of
the problems addressed, the original results of Li and Margulis, and the generalizations I
obtained. After spending a long time working on this topic I ended up with less answers
than questions, some of which are discussed in the third section. Finally, the structure of the
thesis is sketched in the fourth section.

2.1 Equivalence of quadratic forms

2.1.1 Classification of integral quadratic forms

To motivate the first problem we address let’s discuss some ideas and concepts developed to
attempt to classify integral quadratic forms. We say that two quadratic forms Q1 and Q2 in d
variables with coefficients in a commutative ring R with unit are R-equivalent if Q1 = Q2 ◦ g
for some g ∈ GL(d,R). The classification of integral quadratic forms is an unsolved hard
problem with a long history.

C.F. Gauss treats the binary case in Disquisitiones Arithmeticae [Gau65], where he comes
up with a procedure that, starting from a binary integral quadratic form Q, produces a
sequence of them equivalent to the original one that is eventually periodic. He associates to
Q its period or cycle of quadratic forms, and shows that Q1 and Q2 are Z-equivalent1 if and
only if they have the same cycle—see [CS99, Theorem 1, p. 356]. He also characterizes the
quadratic forms of the cycle in terms of simple inequalities between the coefficients, which
leads to the notion of reduced binary quadratic form. We say that the integral quadratic

1In fact properly equivalent, which a matrix in SL(2,Z) takes Q1 to Q2.

17
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form ax2
1 + 2bx1x2 + cx2

2 is reduced—see [CS99, p. 358-359]—if it is positive definite and
|2b| ≤ a ≤ c, or if it is indefinite and

0 < b <
√
b2 − ac < min{b+ |a|, b+ |c|}.

Inspired by the work of Gauss for the binary case, C. Hermite and later H. Minkowski,
generalize the notion of reduced to quadratic forms to 3 or more variables. The leading
principles are: every integral quadratic form should be Z-equivalent to a reduced one, and
there should be a way to figure out if two reduced quadratic forms are Z-equivalent. That is
how the Reduction Theory of quadratic forms was born. Here is the main finiteness result of
the theory. In the statement, δR is the determinant of the matrix of the integral quadratic
form R in d variables in the canonical basis of Zd.

Theorem 2.1.1. Let d and N be positive integers. There are only finitely many reduced
integral quadratic forms R in d variables with |δR| = N .

Reduction theory will play an important role in this work. I use the modern definition in
terms of Siegel subsets of GL(d,R).

Even with the advances in reduction theory, a complete classification of integral quadratic
forms was—and still is—out of reach, so mathematicians started to search for new ideas,
introducing new notions of equivalence of integral quadratic forms, hoping they would shed
some light on the hard problem of Z-classification. Let’s discuss briefly two of them.

The first is the genus : we say that two integral quadratic forms in d variables are in the
same genus if they are R and Zp-equivalent for any prime p2. Two Z-equivalent integral
quadratic forms are in the same genus, but the converse is false. For example,

Q1(x) = x2
1 + 82x2

2 and Q2(x) = 2x2
1 + 41x2

2

are not Z-equivalent because x2
1 + 82x2

2 = 2 has no integral solutions, but they are in the
same genus—see [Cas78, p. 129]. Nonetheless, quadratic forms in the same genus are almost
Z-equivalent in the following sense: they are Z(S)-equivalent for any a finite set S of primes,
where Z(S) is the subring of Q of rational numbers whose denominator is not divisible by any
p ∈ S. In fact, this last condition is an alternative definition of genus—see [Cas78, Theorem
1.4, p. 130].

The second equivalence of quadratic forms we’ll discuss is the spinor genus, introduced by
M. Eichler. It is finer than the genus but (sometimes) coarser than Z-equivalence. To avoid
a big detour we won’t define it here—see [Cas78, Lemma 1.4, p. 201]—, but to emphasize
its importance we mention two facts: for R-isotropic integral quadratic forms in at least 3
variables, a spinor genera is the same as a Z-equivalence class—see [Cas78, Theorem 1.3, p.
202]. Second, J.H. Conway and N.A. Sloane describe in [CS99, Chapter 15, Section 9, p. 388]
a practical way to compute the number of spinor genera. It is then possible to determine the
number of Z-equivalence classes of R-isotropic integral quadratic forms in d ≥ 3 variables.
As for R-anisotropic integral quadratic forms, even though there are reasonable methods to
classify them for small d, Conway and Sloane [CS99, p. 353] believe there is no hope of an
explicit classification since there are too many Z-equivalence classes as soon as d > 24.

2This definition is undoubtedly motivated by the local-global principle for rational quadratic forms: two
such quadratic forms are Q-equivalent if and only if they are R-equivalent and Qp-equivalent for any prime
p.
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2.1.2 Criterion of Z-equivalence

After our brief discussion concerning the classification of integral quadratic forms, we present
the less ambitious related problem we’ll treat: Given integral quadratic forms Q1 and Q2 in d
variables, decide if they are Z-equivalent. We’ll refer to this as the problem of Z-equivalence.
Here is a situation for which there is an easy solution to this problem, and which motivates
our approach to the general case: When Q1 and Q2 are positive or negative definite—R-
anisotropic for short—, one can show with elementary arguments that any g ∈ GL(d,R)
taking Q1 to Q2 verifies

||g||∞ ≤ d · d!||Q1||
d−1
2
∞ ||Q2||

1
2
∞, (2.1)

where ||Qi||∞ is the maximum of the absolute values of the coefficients of Qi. So, Q1 and Q2

are Z-equivalent if and only if Q1 ◦ γ = Q2 has a solution γ in the finite subset of GL(d,Z)
determined by (2.1).

This naive strategy doesn’t work for R-isotropic quadratic forms because the subset of
matrices in GL(d,R) taking Q1 to Q2 is unbounded. Surprisingly, C.L. Siegel shows in
[Sie72] that even when the quadratic forms are R-isotropic, one can restrict the search of a
γ ∈ GL(d,Z) that takes Q1 to Q2 to a finite subset of GL(d,Z).

Theorem 2.1.2. For any d ≥ 2 there is an explicit real-valued function Md with the following
property: if the integral quadratic forms Q1 and Q2 in d variables are Z-equivalent, there is
γ ∈ GL(d,Z) with

||γ||∞ ≤Md(Q1, Q2)

such that Q1 ◦ γ = Q2.

A function Md as in Theorem 2.1.2 is a search bound for the problem of Z-equivalence.
Siegel uses the reduction theory of Hermite and Minkowski to prove the existence of search
bounds for the problem of Z-equivalence. Apart from the original article [Sie72] (written in
german), one can find a sketch of the proof of Theorem 2.1.2 in the book of Cassels [Cas78,
Chapter 13, Section 12, p. 324]. Siegel doesn’t give an explicit formula for Md, but S.
Straumann shows in his master dissertation [Str99] that Siegel’s ideas yield3

Md(Q1, Q2) = exp(Ad|δQ1|
d3+d2

2 ) ·max{||Q1||∞, ||Q2||∞}
d3−d2

2 ,

where δQ1 is as in Theorem 2.1.1 and Ad is a constant depending only on d. 4

Once we know there are search bounds for the problem of Z-equivalence, it is natural
to look for an Md that grows as slow as possible. Straumann’s work shows that the search
bound of Siegel is exponential in ||Q1||∞, ||Q2||∞. In the sequel we’ll simply say that Md is
exponential or polynomial when it has the respective property with respect to ||Q1||∞, ||Q2||∞.

Now we’ll discuss the main contribution to this problem in chronological order. It is
known that M2 can’t be polynomial, because that would imply a polynomial bound for the
smallest solution for Pell-like equations

au2 − bv2 = ±1, (2.2)

3Recall that δQ1 is the determinant of the matrix of Q1 in the canonical basis of Zd
4In the sequel we’ll use Ad, Bd, Cd, . . . to denote constants that depend only on d.
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with a, b ∈ Z. Indeed, if (u0, v0) ∈ Z2 a solution of (2.2), then

γ0 =

(
u0 bv0

v0 au0

)
∈ GL(2,Z)

takes Q1(x) = ax2
1 − bx2

2 to Q2(x) = ±x2
1 ∓ abx2

2. If M2 is polynomial, the first column
of a γ0 ∈ GL(2,Z) taking Q1 to Q2 would be a solution of (2.2) with norm bounded by a
polynomial in a, b. An example of a family of Pell-like equations where the minimal solution
grows faster than any polynomial in a, b can be found in the article [Lag80, p. 486] de J.
Lagarias.

The situation is quite different for quadratic forms in 3 variables. R. Dietmann proves in
[Die03] that one can take

M3(Q1, Q2) = B3||Q1||510
∞ (||Q1||∞ + ||Q2||∞)207,

a polynomial search bound. D. Masser conjectures in his survey article [Mas02] this phe-
nomenon is valid more generally for quadratic forms in 3 or more variables.

Conjecture 2.1.3. For any integer d ≥ 3 there are constants Cd, Ed with the following
property: If the non-degenerate integral quadratic forms in d variables Q1 and Q2 are Z-
equivalent, there is γ0 ∈ GL(d,Z) with

||γ0||∞ ≤ Cd(||Q1||∞ + ||Q2||∞)Ed ,

such that Q2 = Q1 ◦ γ0.

The next major advance in this story is also made by Dietmann, who establishes Masser’s
Conjecture when δQ1—the determinant of the matrix of Q1 in the standard basis of Qd—is
cube-free, not divisible by 4 and that not all entries in the main diagonal of the matrix of
Q1 are even [Die07, Theorem 3]. These assumptions allow him to extend his methods for
ternary quadratic forms. When d ≥ 6 he obtains

Md(Q1, Q2) = Cd max{||Q1||∞, ||Q2||∞}Ed ,

where Ed is polynomial in d with leading term 5ddd+1.

Li and Margulis establish Masser’s Conjecture in full generality in [LM16, Theorem 1],
improving the search bounds of Dietmann. Here is a simplified version of their result.

Theorem 2.1.4. Let Q1 and Q2 be non-degenerate integral quadratic forms in d ≥ 3 vari-
ables. If Q1 and Q2 are Z-equivalent, there is γ0 ∈ GL(d,Z) with

||γ0||∞ ≤ Cd(||Q1||∞||Q2||∞)
13
40
d3

such that Q1 ◦ γ0 = Q2.
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2.1.3 The methods of Li and Margulis

The strategies of Dietmann and Li-Margulis to tackle the problem of Z-equivalence are very
different. On the one hand, Dietmann relies mostly on tools from analytic number theory,
such as the Circle Method of Hardy and Littlewood. This approach is natural considering that
his interest on search bounds for the Z-equivalence of integral quadratic forms comes from
its connection to search bounds to decide the solvability of the general quadratic diophantine
equation. In fact, this is the central topic of the survey [Mas02] where Masser formulates its
conjecture.

Now we’ll motivate the approach of Li and Margulis. To start, one has to change the
point of view of the problem by taking advantage of a simple, yet extremely important duality
phenomenon. Suppose we are dealing with quadratic forms Q1 and Q2 of signature 2, 1. Let
P (x) = x2

1 +x2
2−x2

3 and consider the groups G = GL(3,R), H = O(P,R) and Γ = GL(3,Z).
We write Qi as P ◦ gi for g1, g2 ∈ G. Since any quadratic form of signature 2,1 is of the form
P ◦g with g ∈ G, the space of all such quadratic forms is naturally identified with H\G. Here
is the important observation: a Z-equivalence class of integral quadratic forms (of signature
2,1) is a Γ-orbit in H\G, which corresponds naturally to an H-orbit on the space X = G/Γ5,
which identifies with the space of lattices of R3. Finding γ0 ∈ GL(3,Z) transforming Q1 to
Q2 is equivalent to finding an h0 ∈ H moving the lattice g2Z3 to g1Z3. It turns out that the
H-orbit Y of g2Z3 is closed in X and admits a finite H-invariant measure, which enables Li
and Margulis to tackle the problem with the powerful machinery of homogeneous dynamics,
more specifically, effective homogeneous dynamics. The action of H on Y is nearly mixing,
and moreover, there is an effective mixing speed that Li and Margulis use to show there is
an h0 moving g2Z3 to g1Z3 of norm bounded by a function of ||g1||∞, ||g2||∞ and the volume
of Y .

To close the discussion of Theorem 2.1.4, let us mention the two main technical ingredients
of its proof. First, an estimation of the volume of Y that is deduced from the effective
recurrence of unipotent flows of Kleinbock and Margulis [KM98]. Secondly, the Kim-Sarnak
bound [Kim03, Appendix 2] for the Ramanujan-Petersson Conjecture for SL(2) over Q, a
profound result on the theory of automorphic representations, which yields a uniform effective
mixing speed for the action of H on closed H-orbits in X.

2.1.4 Criterion of ZS-equivalence

The first objective of my thesis is to obtain a result analogous to Theorem 2.1.4 for the slightly
more general problem of ZS-equivalence of integral quadratic forms. If Sf = {p1, . . . , pk} is a
finite set of primes, we set S = {∞} ∪ Sf . The ring of S-integers ZS consists of the rational
numbers with denominator a product of powers of the primes in Sf . The product of the
elements of Sf will be denoted by pS. By convention ZS = Z and pS = 1 when S = {∞}.
Given two integral quadratic forms in d variables Q1 and Q2, this time we want to decide if
Q1 and Q2 are ZS-equivalent by searching a solution γ of Q1 ◦ γ = Q2 in an explicit finite
subset of GL(d,ZS). In Theorem 2.1.4, an inequality of the form ||γ||∞ ≤ M determines a
search subset of GL(d,Z), which is finite because an entry of any such γ is an integer with

5Before Li and Margulis, other authors have exploited the duality between Γ-orbits of quadratic forms
and H-orbits of lattices of Rd. For example, Eichler uses it to define spinor genera.
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absolute value at most M . But |x| ≤ M has infinite solutions in ZS when Sf is non-empty,
hence the inequality ||γ||∞ ≤ M is not enough. We’ll proceed as follows: Recall that any
t ∈ ZS is of the form

t =
n

pa11 · · · p
ak
k

with n ∈ Z and a1, . . . , ak ∈ N. If in addition to an upper bound for |t| we impose an upper
bound on each ai, the resulting system has finitely many solutions in ZS. For γ ∈ Md(Q),
let ||γ||p be the maximum of the p-adic absolute values of the entries of γ, and let

||γ||S = max
ν∈S
||γ||ν .

Then ||γ||S ≤M defines a finite subset of GL(d,ZS). Here is our result.

Theorem 2.1.5. Let Q1 and Q2 be non-degenerate integral quadratic forms in d ≥ 3 variables
and let Sf be a finite set of odd primes. If Q1 and Q2 are ZS-equivalent, there is γ0 ∈
GL(d,ZS) with

||γ0||S ≤ Fdp
19d6

S (||Q1||∞||Q2||∞)2d3

such that Q1 ◦ γ0 = Q2.

The assumption 2 /∈ S is not essential. In fact the proof we give works also, but at certain
points there are more cases to consider6. Recall that the easy case of Theorem 2.1.4, where
S = {∞}, is when Q1 and Q2 are R-anisotropic. For general S, the easy case is when Q1 and
Q2 are Qν-anisotropic7 for every ν ∈ S, because any g ∈ GL(d,Q) taking Q1 to Q2 verifies

||g||S ≤ d · d!||Q1||
d−1
2
∞ ||Q2||

1
2
∞.

The interesting case is when Q1 and Q2 are isotropic over Qν for some ν ∈ S, which is covered
by Theorem 5.1.1 and Theorem 5.1.2 when Q1 and Q2 are R-isotropic and R-anisotropic,
respectively.

Li and Margulis address the case S = {∞} by studying the action of a real orthogonal
group H on the space X of lattices of Rd. We adapt their strategy for general S in the
following way: Suppose that Q1 and Q2 are ZS-equivalent. We need to control ||γ||ν for any
ν ∈ S of some γ ∈ GL(d,ZS) taking Q1 to Q2, so we’ll consider the quadratic forms Q1 and
Q2 over every Qν . Let Pν be a standard representative of the Qν-equivalence class of Q1 and
Q2. To do the job in one shot, we’ll think the Qi’s as quadratic forms over QS =

∏
ν∈S Qν

via the diagonal embedding Q → QS, so they are QS-equivalent to P = (Pν)ν∈S. Consider
the groups

GS = GL(d,QS) =
∏
ν∈S

GL(d,Qν), HS = O(P,QS) =
∏
ν∈S

O(Pν ,Qν),

and take g1, g2 ∈ GS such that Qi = P ◦ gi. What replaces X in this context? Note that
diagonal copy of ZS in QS is a lattice in QS, hence ZdS is a lattice in Qd

S. The group GS

6The difference between 2 and p > 2 comes from the fact that Q×2 /(Q
×
2 )2 has order 8 while Q×p /(Q×p )2

has order 4. As a result, there are more equivalence classes of quadratic forms over Q2 than over Qp.
7Where Q∞ stands for R.
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acts transitively on the space XS of lattices of Qd
S, and the stabilizer of ZdS is the diagonal

copy ΓS of GL(d,ZS) in GS. Finding γ0 ∈ GL(d,ZS) taking Q1 to Q2 amounts to finding
h0 ∈ HS moving g2ZdS to g1ZdS. Happily for us, the dynamical setting is as good as in the case
S = {∞}: the orbit Y = HSg2ZS is closed in XS, it admits a finite HS-invariant measure,
and the action of HS on Y is almost mixing, so we are also able to address the problem with
homogeneous dynamics. We’ll bound ||h0||S in terms of ||gi||S and the volume of Y—see
propositions 5.2.2 and 5.2.3.

The two main technical ingredients to prove Theorem 2.1.5 are very similar to those used
by Li and Margulis for S = {∞}. To estimate the volume of Y we’ll apply the effective S-
adic recurrence of unipotent flows of Kleinbock and Tomanov [KT07]. The uniform effective
mixing speed for the action of HS on closed HS-orbits in XS will be deduced also from Kim-
Sarnak’s bound [Kim03, Appendix 2] for the Ramanujan-Petersson conjecture for SL(2)/Q
when the Qi’s are R-isotropic, and when they are R-anisotropic, from Deligne’s theorem
on holomorphic modular forms [Lub94, Theorem 1.2, p. 148] in its representation theoretic
version [Lub94, Theorem 2.14, p. 158], and the classical Jacquet-Langlands Correspondence
[Lub94, Theorem 3.4, p. 163].

2.2 The group of units of a quadratic form

2.2.1 The classical results of Siegel

It is likely that the interest of many that have worked with quadratic forms comes from
their connection with Number Theory. For example, to understand quadratic number fields
K = Q[

√
D] one must study the binary quadratic forms Q(x) = x2

1−Dx2
2. The group of units

O×K of the ring of integers of K is intimately related to the integral orthogonal group O(Q,Z),
for this reason some people refer to O(Q,Z) as the group of units of Q. In the milestone
paper [Sie39] of 1939, Siegel undertakes the investigation of the group of units of integral
quadratic forms in 3 or more variables, obtaining two results of the utmost importance for
this thesis. The first one is [Sie39, Satz 11, p. 230].

Theorem 2.2.1. For any non-degenerate integral quadratic form Q in d ≥ 3 variables, the
group O(Q,Z) is finitely generated.

Li and Margulis obtain in [LM16] an effective version of Theorem 2.2.1, which we extend
to the group of S-units O(Q,ZS) of Q, for any S. These result are discussed in the next
subsection. The second important theorem of Siegel is [Sie39, Satz 12, p. 233].

Theorem 2.2.2. For any non-degenerate integral quadratic form Q in d ≥ 3 variables, the
group O(Q,Z) is a lattice in O(Q,R).

The role played by Theorem 2.2.2 in this work is the following: Consider again the
dynamical system H y X used by Li and Margulis for the problem of Z-equivalence. The
key fact that H-orbits in X admit a finite H-invariant measure comes8 from Theorem 2.2.2.
More generally, the diagonal copy of O(Q,ZS) in O(Q,QS) is a lattice in O(Q,QS), and
that’s why closed HS-orbits in XS admit finite HS-invariant measures.

8Because closed H-orbits come from integral quadratic forms—see Lemma 6.1.2.
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The proofs of theorems 2.2.1 and 2.2.2 rely heavily on the reduction theory of Hermite
and Minkowski, which was polished by Siegel himself. A. Borel and Harish-Chandra pushed
further these ideas in their 1962 article [BH62] where, based classical examples of lattices
in semisimple real Lie groups, such as SL(d,Z) ⊂ SL(d,R) and O(Q,Z) ⊂ O(Q,R), they
introduce the notion of arithmetic subgroup of a linear algebraic Q-group G. They develop,
by analogy with quadratic forms, a reduction theory for arithmetic groups which is used to
generalize Theorem 2.2.1— arithmetic groups are finitely generated—and Theorem 2.2.2—
obtaining a condition on G for GR/GZ to have finite volume. They also establish—at almost
the same time as G.D. Mostow and T. Tamagawa [MT62]—Godement’s Conjecture, which
gives necessary and sufficient conditions on a Q-group G for GR/GZ to be compact. The
extension—by Borel—of these results to S-arithmetic groups came shortly after in [Bor63].

2.2.2 Small generators of S-integral orthogonal groups

In the article [LM16], Li and Margulis deduce several interesting results on integral quadratic
forms from Theorem 2.1.4. One that I find particularly beautiful is an effective version [LM16,
Theorem 2] on the finite generation of O(Q,Z).

Theorem 2.2.3. Let Q be a non-degenerate integral quadratic form in d ≥ 3 variables. The
group O(Q,Z) is generated by its elements γ with

||γ||∞ ≤ Jd||Q||d
7+3d4

∞ .

The proof is based on Theorem 2.1.4 and effective refinements of classical results on
reduction theory of integral quadratic forms.

Following their lead, I obtain an effective finite generation of O(Q,ZS) for any finite set Sf
of primes from effective results on reduction theory of quadratic forms over QS and Theorem
2.1.5.

Theorem 2.2.4. Let Q be a non-degenerate integral quadratic forms in d ≥ 3 variables. For
any finite set Sf of primes, the group O(Q,ZS) is generated by its elements γ with

||γ||S ≤ Ldp
20d7

S ||Q||4d6∞ .

2.3 Some interesting further problems

The main motivation of this thesis is the problem of deciding if two given integral quadratic
forms Q1 and Q2 in d variables are Z-equivalent. It can be reformulated in a more geometric
way as: are the quadratic spaces (Zd, Q1) and (Zd, Q2) isometric? But what if Q1 has d1

variables and Q2 has d2 < d1 variables? An equally interesting problem is to decide if Q1

represents Q2, which means there is an isometric embedding (Zd2 , Q2) ↪→ (Zd1 , Q1). Li and
Margulis obtain an effective search bound [LM16, Theorem 4] for this problem, which is
yet another application of Theorem 2.1.4. Due to time constraints I didn’t include here the
natural S-adic generalization.

It is known that the groups O(Q,ZS) are finitely presented— see [PR94, Theorem 5.11,
p. 272]—, and now that we have explicit generating sets G Q

S of them thanks to theorems
2.2.3 and 2.2.4, it would be nice to give a set of relations on G Q

S that defines O(Q,ZS).
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The program of making effective classical results on S-integral orthogonal groups could
also be extended to S-arithmetic groups of other classical Q-groups, such as unitary groups.
Some have already explored this line of research, like T. Chinburg and M. Stover who give
in the recent article [CS14] small generators of the group of S-units of central simple Q-
algebras. Although not effective, we mention also the algorithmic approach to the topic by
F. Grunewald and D. Segal, who treat arithmetic groups in [GS80] and S-arithmetic groups
in [GS85].

2.4 Structure of the thesis

The first part consists of two chapters that set the stage. In Chapter 3 we recall the classifica-
tion of quadratic forms over R and Qp, and we fix a representative in each equivalence class,
which we’ll call standard quadratic forms. We make reference to them in every chapter of the
thesis. In Chapter 4 we review part of the theory of unitary representations of SL(2,Qν),
with emphasis on the effective decay speed of coefficients of almost Lk unitary representa-
tions. This is the technical tool behind the effective mixing speed for the dynamical system
of ZS-equivalence.

The second—and biggest—part of the thesis is devoted to the proof of our search bound
for the ZS-equivalence problem, which spreads through chapters 5 to 8. In Chapter 5 we
translate the arithmetic problem of ZS-equivalence into a dynamical one in terms of the
action of an S-adic orthogonal group HS on the space XS of lattices of Qd

S: given points
y2, y1 in a closed HS-orbit Y in XS, we bound ||h0||S for an h0 ∈ HS moving y2 to y1. This
is done in Proposition 5.2.2 when H∞ is non-compact, and in Proposition 5.2.3 when H∞ is
compact. We prove these propositions in Chapter 6 and Chapter 7, respectively. The bound
of ||h0||S involves the volume of the orbit Y , so in Chapter 8 we obtain an upper bound of it
in terms the determinant of Q when Y comes from an integral quadratic form Q.

Having established our search bound for ZS-equivalence, we use it in Chapter 9 to prove
Theorem 2.2.4 on the effective finite generation of O(Q,ZS). We handle R-isotropic quadratic
forms in Theorem 9.0.2, leaving the R-anisotropic ones to Theorem 9.0.3.

The computations that give the explicit constants in our statements are gathered in two
appendices at the end of the thesis. In Appendix A we estimate the volume of small balls
in orthogonal groups with coefficients in Qν . For real orthogonal groups we obtain upper
and lower bounds in Lemma A.2.1, and in the p-adic case we prove a formula for the exact
volume in Lemma A.2.11. In Appendix B we prove effective versions of classical results on
reduction theory of real quadratic forms with explicit constants. For commodity of reference
we list the constants in our statements in Appendix C.
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Chapter 3

Quadratic forms over Qν

In this first chapter we present the main object of study of this work: quadratic forms. After
giving the basic definitions in Section 3.1, we specialize to the case of quadratic forms over a
completion Qν of Q, recalling (without proof) the classification of these. For future reference,
we choose a representative in each equivalence class, which we call standard quadratic forms.
This is done in Section 3.2 for real quadratic forms and in Section 3.3 for p-adic quadratic
forms. We prove a bound on the size of a matrix relating a quadratic form to its standard
form in Lemma 3.2.2 and Proposition 3.3.4. In Section 3.4 we introduce the Spin group of
a quadratic form, which is the universal covering of the respective special orthogonal group.
We conclude with a discussion in Section 3.5 of the relation between SL(2,Qν) and isotropic
quadratic forms on Q3

ν .

3.1 Basic definitions

A quadratic form in d variables is an homogeneous polynomial of degree 2

Q(x) =
d∑

i,j=1

aijxixj,

with coefficients in a commutative ring R with unit. We say that Q is isotropic if there is
v ∈ Rd − {0} such that Q(v) = 0, and that Q is anisotropic if there is no such v. Let Q,Q1,
and Q2 be quadratic forms in d variables with coefficients in R. Q1 and Q2 are R-equivalent,
denoted Q1 ∼

R
Q2, if they coincide up to a base-change of Rd. In other words, Q1 ∼

R
Q2 if

there exists g ∈ GL(d,R)—the group of d × d matrices whose determinant is invertible in
R—such that Q2(x) = Q1 ◦ g(x). Q is non-degenerate if it is not R-equivalent to a quadratic
form in less than d variables.

Suppose that 2 is invertible in R. Let’s recall the correspondence between quadratic
forms in d variables and symmetric bilinear forms on Rd. Q defines a symmetric bilinear
form 〈·, ·〉Q on Rd by the formula

〈x, y〉Q =
1

2
(Q(x+ y)−Q(x)−Q(y)).

27
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Conversely, if 〈·, ·〉 is a symmetric bilinear form on Rd, x 7→ 〈x, x〉 defines a quadratic form.
We denote by bQ the matrix (〈ei, ej〉Q)i,j of 〈·, ·〉Q with respect to the standard basis e1, · · · , ed
of Rd, and we define δQ = det bQ.

Now, a quick remainder of the possible absolute values on Q, which are maps |·| : Q→ R≥0

such that for any s, t ∈ Q:

(i) |s| = 0⇔ s = 0,

(ii) |st| = |s| · |t|,

(iii) |s+ t| ≤ |s|+ |t|.

An absolute value on Q is said to be trivial if it induces the discrete topology on Q. Two
absolute values on Q are equivalent if their topologies on Q coincide. Besides the standard
absolute value, that we’ll denote by | · |∞, there is an absolute value | · |p for each prime
number p uniquely determined by:

|n|p =

{
1 if n ∈ Z− pZ,
p−1 if n = p.

The completion of Q with respect to | · |∞ and | · |p are respectively R and the field of p-adic
numbers Qp. The absolute values | · |∞ and | · |p exhaust all the possible equivalence classes
of non-trivial absolute values on Q according to Ostrowski’s Theorem—see [Kob84, Theorem
1, p. 3]. For this reason, we’ll say that ∞ is also a prime number. We’ll use the symbol ν to
refer to a prime number, possibly ∞, and p for finite primes. Let || · ||ν be the norm on the
space of d× d matrices Md(Qν) of the maximum of the ν-absolute value of the entries. If Q
is a quadratic form on Qd

ν we define ||Q||ν = ||bQ||ν .

3.2 Real quadratic forms

Let’s review the classification of quadratic forms over Qν , starting with the familiar case of
real quadratic forms. A non-degenerate real quadratic form R on Rd is R-equivalent to a
diagonal quadratic form. The next classical lemma says a bit more—see [BO07, Fact 5.1].

Lemma 3.2.1. Let R be a non-degenerate quadratic form on Rd. There is k ∈ O(d,R) such
that R ◦ k is diagonal.

Suppose that R is R-equivalent to R′(x) = a1x
2
1 + · · · + adx

2
d. Permuting the variables

if necessary we may assume that a1, . . . , ap > 0 and ap+1, . . . , ad < 0. A suitable diagonal
matrix takes R′ to

Qp,q(x) = x2
1 + · · ·+ x2

p − x2
p+1 − · · · − x2

p+q,

where p+ q = d. Any non-degenerate quadratic form on Rd is equivalent to exactly one Qp,q

with p+ q = d. We’ll refer to these as the standard quadratic forms on Rd.
We write R as P ◦g with P standard and g ∈ GL(d,R). The next lemma says that we can

choose g with norm controlled by the size of the coefficients of R—see also [LM16, Lemma
1].
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Lemma 3.2.2. We can write any non-degenerate quadratic form R on Rd as P ◦ g∞, where
P is a standard quadratic form on Rd and g∞ ∈ GL(d,R) verifies

||g∞||∞ ≤ d||R||
1
2
∞.

Proof. We start by proving an auxiliary inequality. Consider k ∈ O(d,R) and A ∈ Md(R).
For any 1 ≤ i, j ≤ d we have∣∣∣∣∣

d∑
`=1

ki`A`j

∣∣∣∣∣
∞

≤

(
d∑
`=1

k2
i`

) 1
2
(

d∑
`=1

A2
`j

) 1
2

≤
√
d · ||A||∞.

This proves that ||kA||∞ ≤
√
d · ||A||∞.

We pass to quadratic forms. By Lemma 3.2.1 there is k ∈ O(d,R) such that

R′(x) = R ◦ k(x) = a1x
2
1 + · · · adx2

d.

We assume further that a1, . . . , ap are positive, and the rest are negative—permutation ma-
trices are in O(d,R). Note that

||R′||∞ = ||bR′ ||∞ = || tkbRk||∞ ≤ d||R||∞.

Consider
g′∞ = diag(

√
|a1|∞, . . . ,

√
|ad|∞),

and g∞ = g′∞k
−1. Then g∞ takes x2

1 + · · ·+ x2
p − · · · − x2

d to R and

||g∞||∞ ≤
√
d ||g′∞||∞ =

√
d ||R′||

1
2
∞ ≤ d||R||

1
2
∞.

3.3 p-adic quadratic forms

We move to the p-adic world. Let’s discuss first quadratic forms in one variable. For a, b ∈ Q×p ,
ax2

1 is Qp-equivalent to bx2
1 if and only if a/b is a square in Q×p . The Qp-equivalence classes

of non-degenerate quadratic forms in one variable are thus parametrized by Q×p /(Q×p )2. The
characterization of squares in Q×p follows easily from the next lemma—see [Ser95, p. 34].

Lemma 3.3.1. Let p be a prime number. A t ∈ Z×p is a square in Zp if an only if t mod p
is a square in F×p when p > 2, or t ≡ 1 mod 8 when p = 2.

The group Q×2 /(Q×2 )2 is isomorphic to (Z/2Z)3 and

C2 = {±1,±3,±2,±6} ⊆ Q×2

is a system of representatives. When p > 2, Q×p /(Q×p )2 ' (Z/2Z)2. We fix the system of
representatives

Cp = {1, np, p, pnp} ⊆ Q×p ,
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where np is an integer that is not a square in Z/pZ.
Now we recall the classification of p-adic quadratic forms in d ≥ 2 variables. We focus

in the diagonal case since any non-degenerate quadratic form on Qd
p is Qp-equivalent to a

diagonal one. The next lemma is a p-adic analog of Lemma 3.2.1—see [BO07, Fact 5.4]:

Lemma 3.3.2. Let p be a prime and let R be a non-degenerate quadratic form on Qd
p. There

is k ∈ GL(d,Zp) such that R ◦ k is diagonal.

There are two invariants that classify p-adic quadratic forms. The discriminant δ(R) of
R(x) = a1x

2
1 + · · ·+ adx

2
d is the projection of a1 · · · ad in Q×p /(Q×p )2, and its epsilon invariant

is

ε(R) =
∏
i<j

(ai, aj)p,

where (a, b)p is the Hilbert symbol :

(a, b)p =

{
1 if x2

1 − ax2
2 − bx2

3 is isotropic,

−1 if x2
1 − ax2

2 − bx2
3 is anisotropic.

These two invariants‘ classify p-adic quadratic forms—see [Ser95, p. 70].

Theorem 3.3.3. Two non-degenerate diagonal quadratic forms R1 and R2 on Qd
p are Qp-

equivalent if and only if δ(R1) = δ(R2) and ε(R1) = ε(R2).

For any prime p > 2, the number of Qp-equivalence classes of non-degenerate quadratic
forms in d variables with coefficients in Qp is 4 if d = 1, 7 if d = 2 and 8 if d ≥ 3—all
the combinations of δ(R) and ε(R) are realized. As for non-degenerate quadratic forms in d
variables with coefficients in Q2, there are respectively 8, 15 and 16 Q2-equivalence classes if
d = 1, d = 2 and d ≥ 3. See [Ser95, Corollaire, p. 71].

3.3.1 Standard p-adic quadratic forms

Now we give the list of representatives of the Qp-equivalence classes of quadratic forms we’ll
be working with. A big difference between the real and the p-adic case is that in the latter
there are anisotropic quadratic forms only when d ≤ 4—see [Ser95, Théorème 6, p. 66]. We
treat separately p = 2 and p > 2. Suppose first that p > 2. Any anisotropic quadratic
form over Qp is equivalent to exactly one of the following table. We’ll call these standard
anisotropic quadratic forms over Qp.

d = 1 d = 2 d = 3 d = 4

x2
1 x2

1 − npx
2
2 x2

1 − npx
2
2 + px2

3 x2
1 − npx

2
2 + px2

3 − pnpx2
4

npx
2
1 px2

1 − pnpx2
2 x2

1 − npx
2
2 + pnpx

2
3

px2
1 x2

1 − px2
2 x2

1 + px2
2 − pnpx2

3

pnpx
2
1 npx

2
1 − pnpx2

2 npx
2
1 + px2

2 − pnpx2
3

x2
1 − pnpx2

2

npx
2
1 − px2

2



3.3. P -ADIC QUADRATIC FORMS 31

As for isotropic quadratic forms, we define the standard ones as either a direct sum of
hyperbolic planes

x2
1 − x2

2 + · · ·+ x2
2m−1 − x2

2m,

or a direct sum of hyperbolic planes and a standard anisotropic quadratic form. For example,
there are 7 standard isotropic quadratic forms on Q4

p:

x2
1 − x2

2 + x2
3 − x2

4 and x2
1 − x2

2 + P (x3, x4),

with P (x3, x4) anisotropic standard on Q2
p. For any prime p > 2 and any d ≥ 1, every

non-degenerate quadratic form on Qd
p is Qp-equivalent to a unique standard quadratic form.

For p = 2, we define the standard anisotropic quadratic forms in one variable as mx2
1 with

m ∈ C2, in two variables as m1x
2
1−m2x

2
2 with m1 6= m2 in C2, in three variables m(x2

1+x2
2+x2

3)
with m ∈ C2 and x2

1 + x2 + x2
3 + x2

4 in four variables. Here we were less careful, there are
different Q2-equivalent standard binary quadratic forms, but this won’t cause troubles in the
proofs. Standard isotropic quadratic forms are also direct sums of hyperbolic planes, or sums
of hyperbolic planes and a standard anisotropic quadratic form.

The next result is analogous to Lemma 3.2.2.

Proposition 3.3.4. Consider a prime number p > 2. We can write any non-degenerate
quadratic form R on Qd

p as P ◦ g for a standard quadratic form P and some g ∈ GL(d,Qp)
with

||g||p ≤
√
p · ||R||

1
2
p .

Remark 3.3.5. The ideas we’ll use to prove Proposition 3.3.4 give a similar statement for
p = 2, but with we might need to replace

√
p by a bigger constant. Probably 2

√
2 is enough.

Let’s see that it suffices to prove Proposition 3.3.4 for a particular kind of diagonal
quadratic forms. Consider a non-degenerate quadratic form R on Qd

p. By Lemma 3.3.2 there
is k ∈ GL(d,Zp) such that

R′(x) = R ◦ k(x) = a1x
2
1 + · · ·+ adx

2
d.

Write ai as p2miui, with ui ∈ Z×p ∪ pZ×p and let g = diag (pm1 , . . . , pmd). Then gk−1 takes

R′′(x) = u1x
2
1 + . . .+ udx

2
d

to R and
||gk−1||p ≤

√
p ||R′||

1
2
p =
√
p ||R||

1
2
p .

It suffices then to prove the result for R′′. We’ll call almost standard a quadratic form
b1x

2
1 + · · ·+ bdx

2
d with bi ∈ Z×p ∪ pZ×p . Proposition 3.3.4 follows then from the next lemma.

Lemma 3.3.6. Consider a prime number p > 2. We can write any almost standard quadratic
form R on Qd

p as P ◦ g for a standard quadratic form P and some g ∈ GL(d,Qp) with
coefficients in Zp.

We’ll prove Lemma 3.3.6 by induction on d: we treat first the case d = 2, then d = 3 and
finally d ≥ 4.
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3.3.2 Binary quadratic forms

Lemma 3.3.7. Let p > 2 be a prime number. We can write any almost standard quadratic
form R on Q2

p as P ◦ g for a standard quadratic form P and a non-singular g ∈M2(Zp).

We’ll use two auxiliary results to prove Lemma 3.3.7.

Lemma 3.3.8. Let p > 2 be a prime number and let a ∈ Q×p . There is v = (t1, t2) ∈ Q2
p such

that t21 − t22 = a and

||v||p ≤
√
p · |a|

1
2
p .

Proof. We’ll first prove the result for a ∈ Cp. If a = 1, then (t1, t2) = (1, 0) works. For
a = np, we consider two cases: if p = 4m+ 3, we choose np = −1 and (t1, t2) = (0, 1). When
p = 4m + 1, consider the map Z → Fp, s 7→ s2 + np. Note that p never divides s2 + np, so
this function takes p+1

2
values in F×p . We can then choose t2 ∈ Z such that u = np + t22 is a

square in Z×p , and set t1 =
√
u. Finally, if a ∈ {p, pnp}, then u = a + 1 is a square in Z×p by

Lemma 3.3.1, so (t1, t2) = (
√
u, 1) does the job.

For the general case, we write a ∈ Q×p as cs2 with c ∈ Cp and s ∈ Q×p . Consider

v′ = (t′1, t
′
2) ∈ Q2

p such that (t′1)2 − (t′2)2 = c and ||v′||p ≤
√
p · |c|

1
2
p . Then (t1, t2) = sv′

works.

Lemma 3.3.9. Consider a prime p > 2 and an anisotropic standard quadratic form P on
Q2
p. For any v ∈ Q2

p we have

|P (v)|
1
2
p ≤ ||v||p ≤ (p|P (v)|p)

1
2 .

Proof. We write P (x) = a1x
2
1 + a2x

2
2, and let v = (t1, t2) ∈ Q2

p. Consider first the case
|a1|p = 1 and |a2|p = p−1. Note that |a1t

2
1|p 6= |a2t

2
2|p since they are even and odd powers of

p, respectively. Then
|P (v)|p = max{|t1|2p, p−1|t2|2p}.

If |t1|2p > p−1|t2|2p, then |t1|p ≥ |t2|p. It follows that

||v||p = |t1|p = |P (v)|
1
2
p .

When |t1|2p < p−1|t2|2p, necessarily |t1|p < |t2|p. Hence

||v||p = |t2|p =
√
p |P (v)|

1
2
p .

Suppose now that |a1|p = |a2|p = 1. If |t1|p 6= |t2|p, then |P (v)|p = max{|t21|p, |t22|p} = ||v||2p.
Assume now that |t1|p = |t2|p. Leaving aside the easy case t1 = t2 = 0, we can write
ti = p−mui for some m ∈ Z and ui ∈ Z×p , so

P (v) = p−2m(a1u
2
1 + a2u

2
2).

Since P is anisotropic, |a1u
2
1 + a2u

2
2|p = 1, thus |P (v)|p = p2m = ||v||2p. Finally, when

|a1|p = |a2|p = p−1, the quadratic form p−1P falls in the previous case.
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We are ready for the main proof.

Proof of Lemma 3.3.7. We write R(x) = a1x
2
1 + a2x

2
2, so a1, a2 ∈ Z×p ∪ pZ×p . Let P be the

standard quadratic form on Q2
p that is Qp-equivalent to R.

Suppose first that R is isotropic, so P (x) = x2
1 − x2

2. Comparing the discriminants of R
and P we see that a2 = −a1λ

2 for some λ ∈ Q×p . Moreover |λ|p = 1 since |ai|p ∈ {1, p−1}.
By Lemma 3.3.8 there is v = (t1, t2) ∈ Z2

p such that P (v) = a1. Then

g =

(
t1 λt2
t2 λt1

)
∈M2(Zp)

takes P to R.
Suppose now that R is anisotropic and consider any g ∈ GL(2,Qp) taking P to R. Let

v1 and v2 be the columns of g. Since |P (vi)|p = |ai|p ≤ 1, then ||vi||p ≤ 1 by Lemma 3.3.9.
This shows that ||g||p ≤ 1.

Later we’ll use the following observation.

Lemma 3.3.10. Consider a prime p > 2. There is k ∈ GL(2,Zp) taking x2 +y2 to −x2−y2.

Proof. It suffices to prove there is (a, b) ∈ Q2
p such that a2 + b2 = −1 and ||(a, b)||p = 1,

because then

k =

(
a −b
b a

)
∈ GL(2,Zp)

works. If −1 is a square in Qp, we take a =
√
−1 and b = 0. If not, we choose b ∈ Z − pZ

such that u = −1− b2 is a square in Z×p and we set a =
√
u.

3.3.3 Ternary quadratic forms

Lemma 3.3.11. Let p > 2 be a prime number. We can write any almost standard quadratic
form R on Q3

p as P ◦ g for a standard quadratic form P and a non-singular g ∈M3(Zp)

Proof. We write R(x) = a1x
2
1 + a2x

2
2 + a3x

2
3, so a1, a2, a3 ∈ Z×p ∪ pZ×p . Let C be the natural

map Q×p → Q×p /(Q×p )2. We consider two cases.

Case I: C(aiaj) = C(−1) for some i 6= j. Up to a permutation of variables we may sup-

pose that C(a1a2) = C(−1). Then R1(x) = a1x
2
1+a2x

2
2 is Qp-equivalent to P1(x) = x2

1−x2
2. We

write a3 = cλ2 with c ∈ Cp and λ ∈ Z×p . By Lemma 3.3.7 there is a non-singular g1 ∈M2(Zp)
that takes P1 to R1. Then g = g1 ⊕ (λ) takes P to R.

Case II: C(aiaj) 6= C(−1) for any i 6= j. Consider a diagonal matrix k ∈ GL(3,Zp)
such that

R′(x) = R ◦ k(x) = b1x
2
1 + b2x

2
2 + b3x

2
3

with b1, b2, b3 ∈ Cp. It suffices to prove the result for R′(x). We consider two subcases.

• Subcase II.1: |b1|p = |b2|p = |b3|p. Then C(bibj) is C(−1) or C(−np) for any i 6= j. We
assumed that the former case doesn’t happen, so C(bibj) is constant. This implies that
b1 = b2 = b3 = −np is a square. By Lemma 3.3.10 there is k′ ∈ GL(2,Zp) such that
k1 = (1)⊕ k′ takes R′′(x) = b1(x2

1−x2
2−x2

3) to R. We are done since R′′ falls in Case I.
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• Subcase II.2: The set {b1, b2, b3} meets Z×p and pZ×p . Suppose first that b1, b2 ∈ Z×p
and b3 ∈ pZ×p . Then C(b1b2) = C(−np). Comparing discriminants we see that R1(x) =
b1x

2
1 + b2x

2
2 is Qp-equivalent to P1(x) = x2

1 − npx
2
2 or P2(x) = px2

1 − pnpx
2
2. But P2

doesn’t represent 1 nor np, so R1 is Qp-equivalent to P1. Then R is Qp-equivalent to
the standard form P (x) = x2

1−npx
2
2 + b3x

2
3. By Lemma 3.3.7 there is g1 ∈M2(Zp) such

that g = g1 ⊕ (1) takes P to R′. When b1, b2 ∈ pZ×p and b3 ∈ Z×p , R1 is Qp-equivalent
to P2 and we conclude as before.

3.3.4 Quadratic forms in 4 or more variables

Everything is in place to complete the proof of our main result.

Proof of Lemma 3.3.6. We write R(x) = a1x
2
1 + · · · + adx

2
d with a1, . . . , ad ∈ Z×p ∪ pZ×p . We

proceed by induction on d. The cases d ≤ 3 are covered by lemmas 3.3.7 and 3.3.11, so
suppose that d ≥ 4. Two things can happen.

Case I: C(aiaj) = C(−1) for some i 6= j. Let R1(x) = a1x
2
1 + a2x

2
2 and R2(x) = a3x

2
3 +

· · · + adx
2
d. Up to a permutation of variables we may suppose that R1 is Qp-equivalent to

P1(x) = x2
1 − x2

2. Let P2 be the standard quadratic form Qp-equivalent to R2. Then R is
Qp-equivalent to P (x) = P1(x1, x2) + P2(x3, . . . , xd), which is standard. By the result for
quadratic forms in 2 and d− 2 variables, there are g1 ∈M2(Zp) and g2 ∈Md−2(Zp) such that
g = g1 ⊕ g2 takes P to R.

Case II: C(aiaj) 6= C(−1) for any i 6= j. Consider a diagonal matrix k ∈ GL(d,Zp)
such that

R′(x) = R ◦ k(x) = b1x
2
1 + · · ·+ bdx

2
d

for some b1, . . . , bd ∈ Cp with C(ai) = C(bi). If there are three b′is in either Z×p or pZ×p , in
fact they are equal, so by the argument we used in subcase II.1 of Lemma 3.3.11 there is
k1 ∈ GL(d,Zp) such that R′′ = R′ ◦ k1 falls in Case I (of this proof), and we are done. If this
doesn’t happen, then d = 4. Permuting the variables if necessary we have b1, b2 ∈ Z×p and
b3, b4 ∈ pZ×p . Arguing as in subcase II.2 of Lemma 3.3.11 we see that

b1x
2
1 + b2x

2
2 ∼Qp

x2
1 − npx

2
2 and b3x

2
3 + b4x

2
4 ∼Qp

px2
3 − pnpx2

4.

By Lemma 3.3.7 there are g1, g2 ∈M2(Zp) such that g = g1⊕g2 takes the standard anisotropic
quadradic form P (x) = x2

1 − npx
2
2 + px2

3 − pnpx2
4 to R′(x). This concludes the proof.

We close this section with a result about orthogonal groups of standard anisotropic
quadratic forms.

Lemma 3.3.12. Consider a prime p > 2. Let Hp be the orthogonal group of a standard
anisotropic quadratic form on Qd

p. Then Hp is contained in GL(d,Zp).
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Proof. It suffices to prove that ||h||p ≤ 1 for any h ∈ Hp. Suppose that Hp = O(P,Qp) with
P (x) = a1x

2
1 + · · · + adx

2
d standard anisotropic. Arguing as in the proof of Lemma 3.3.9 we

see that ||v||p ≤
√
p |P (v)|

1
2
p for any v ∈ Qd

p. If v1, . . . , vd are the columns of h ∈ Hp, then

||vi||p ≤
√
p |ai|

1
2
p ≤
√
p,

hence ||vi||p ≤ 1 and ||h||p ≤ 1.

3.4 The Spin group

Let ν be a prime and let G, G̃ and H be groups of Qν-points of Zariski-connected semisimple
Qν-groups. A covering—or isogeny—is morphism H → G with finite kernel and cokernel.
We say that G̃ is simply connected if for any H, any covering H → G̃ is an isomorphism.
For any G there is a covering π : G̃→ G with G̃ simply connected—see [PR94, Theorem 2.6,

p. 62]. In this situation we say that G̃ and kerπ are respectively the universal covering and
the fundamental group of G. When G is defined over Q, there is also a universal covering of
G defined over Q—see [PR94, Proposition 2.10, p. 76].

For example, SL(d,Qν) is simply connected while SO(P,Qν) isn’t—see [PR94, Propo-
sition 2.15, p. 86]—, where P is a non-degenerate quadratic form on Qd

ν , d ≥ 3. The
universal covering of SO(P,Qν) is the spin group of P , denoted by Spin(P,Qν). It is con-
structed using the Clifford algebra of (Qd

ν , P )—see [Sch85, Definition 3.4, p. 336]. If P is
rational, Spin(P,Qν) is the group of Qν-points of a Q-group Spin(P )1, and the covering
Spin(P )→ SO(P ) is defined over Q. We’ll denote by SO(P,Qν)

◦ the image of Spin(P,Qν)
in SO(P,Qν), which is a finite index subgroup. When ν = ∞, SO(P,R)◦ is the neutral
connected component of SO(P,R).

Later we’ll need a representative of small size of any SO(P,Qν)
◦-coset in O(P,Qν).

Lemma 3.4.1. Consider a prime number p > 2 and an integer d ≥ 3. Let Hp be the
orthogonal group of a standard isotropic quadratic form on Qd

p. Any H◦p -coset in Hp has a
representative η with ||η||p ≤ p.

Proof. Let Hp = O(P,Qp) where P (x) is an isotropic standard quadratic form on Qd
p. In

particular P (x) starts with x2
1 − x2

2 + . . .. First we recall how we can identify in practice the
H◦p -cosets of Hp

2. For any v ∈ Qd
p with P (v) 6= 0, let rv be the reflection with respect to the

P -orthogonal complement of v. Recall that these generate Hp. The spinor norm of Hp is the
unique group morphism S : Hp → Q×p /(Q×p )2 such that

S(rv) = P (v)(Q×p )2

for every non-isotropic vector v ∈ Qd
p—see [Sch85, p. 336]. H◦p is the kernel of the restriction

of S to SO(P,Qp), hence two elements of Hp are in the same H◦p−coset if and only if they have
the same determinant and spinor norm, and in our situation the 8 possibilities occur. There

1We’ll use boldface to denote abstract linear algebraic k-groups.
2The discussion that follows is valid for any non-degenerate quadratic form with coefficients in a field of

characteristic 6= 2, but we’ll stick with the case relevant to us.
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is—for any non-degenerate finite dimensional quadratic space over a field of characteristic
different from 2—an exact sequence

Spin(P,Qp) −→ SO(P,Qp)
S−→ Q×p /(Q×p )2.

Since P is isotropic and non-degenerate, we even have

Spin(P,Qp) −→ SO(P,Qp)
S−→ Q×p /(Q×p )2 −→ 1.

Indeed, consider e1 = (1, 0, . . . , 0) and a non-isotropic vector v ∈ Qd
p. Then re1rv is in

SO(P,Qp) and
S(re1rv) = P (e1)P (v)(Q×p )2 = P (v)(Q×p )2.

Thus S is surjective since P represents any element in Qp—it is isotropic and non-degenerate.
Consider the following system of representatives of Q×p /(Q×p )2:

Cp = {1, np, p, npp},

where np is a non-square mod p integer. By Lemma 3.3.8, any m ∈ Cp can be expressed as
P (um) for some um = (am, bm, 0, . . . , 0) with ||um||p ≤ 1. It’s easy to see that in the four
cases we can choose um with ||um||p = 1. The P -orthogonal complement of um is generated
by

vm = (bm, am, 0, . . . , 0), e3, . . . , ed.

The inverse of

gm = (um, vm, e3, . . . , ed) =

(
am bm
bm am

)
⊕ Id−2

is

g−1
m =

(
am/m −bm/m
−bm/m am/m

)
⊕ Id−2.

Hence ||gm||p = 1 and
||g−1

m ||p = |m−1|p ≤ p.

Let h0 = diag(−1, 1, . . . , 1). The respective matrices of re1 and rum in the standard basis of
Qd
p are h0 and hm = gmh0g

−1
m . We have

||hm||p ≤ ||gm||p||g−1
m ||p ≤ p.

The matrices hm and h0hm with m ∈ Cp form a system of representatives of Hp/H
◦
p verifying

the desired condition.

We’ll need a statement like Lemma 3.4.1 also for p = 2. As we saw in the proof of
that lemma, when the quadratic form P we consider is isotropic, there is a bound for a
system of representatives of O(P,Qp)/O(P,Qp)

◦ that depends only on the respective bound
for P (x) = x2

1 − x2
2.

Lemma 3.4.2. Let P (x) = x2
1 − x2

2 and H2 = O(P,Q2). Any H◦2 -coset in H2 has a repre-
sentative η with ||η||2 ≤ 4.
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Proof. For v = (a, b) ∈ Q2
ν , let v⊥ = (b, a). As in the proof of Lemma 3.4.1, it suffices to

see that for any m ∈ C2, there is um = (am, bm) ∈ Q2
2 such that P (um) = m, and such that

the matrix hm in the standard basis of Q2
2 of the linear map um 7→ −um, u⊥m 7→ u⊥m verifies

||hm||2 ≤ 4. This matrix is

hm =
1

m

(
−(a2

m + b2
m) 2ambm

−2ambm a2
m + b2

m

)
.

One can take:

m um
1 (1, 0)
3 (2, 1)
2 (3/2, 1/2)
6 (5/2, 1/2)

For m ∈ {−1,−3,−2,−6} we take um = u⊥−m.

Here the statement for certain diagonal isotropic quadratic forms.

Lemma 3.4.3. Let d ≥ 2 and let H2 be the orthogonal group of a diagonal quadratic form
P (x) = x2

1 − x2
2 + a3x

2
3 + . . . + adx

2
d with a3, . . . , ad ∈ Q×2 . Any H◦2 -coset in H2 has a

representative η with ||η||2 ≤ 4.

3.5 Isotropic ternary quadratic forms and SL(2)

Let ν be a prime. We’ll explain the connection between SL(2,Qν) and non-degenerate
isotropic quadratic forms on Q3

ν . Recall that the adjoint representation of SL(2) is the linear
representation of SL(2) on its Lie algebra sl(2) given by conjugation. It preserves the Killing
form K of sl(2), hence it is a morphism SL(2)→ SO(K ). Note that K (x) = 8(x1x2 + x2

3)
in the basis

β =

(
e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

))
of mathfraksl(2,Q), so in particular K is Q-isotropic. For any g =

(
a b
c d

)
∈ SL(2,Q),

the matrix of Ad g with respect to β is

[Ad g]β =

 a2 −b2 −2ab
−c2 d2 2cd
−ac bd 2bc+ 1

 . (3.1)

The same formulas hold when we replace Q by Qν . K is similar to any non-degenerate
isotropic quadratic form R on Q3

ν , hence writing the adjoint representation of SL(2,Qν) on an
appropriate basis of sl(2,Qν) yields a morphism SL(2,Qν)→ SO(R,Qν). For later reference
we gather some properties of this morphism when R is standard.

Let’s work first with SL(2,R). Consider

a∞,t =

(
et/2 0
0 e−t/2

)
∈ SL(2,R), b∞,t =

cosh t sinh t 0
sinh t cosh t 0

0 0 1

 ∈ SO(2, 1)
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Lemma 3.5.1. There is a covering of Lie groups ι∞ : SL(2,R) → SO(2, 1)◦ such that
ι∞(a∞,t) = b∞,t.

Proof. Note that K (x) = 8(x2
1 +x2

2−x2
3) in the basis β1 = (h, e+ f, e− f) of sl(2,R), so the

adjoint representation gives a morphism ι∞ : SL(2,R) → SO(2, 1)◦. From (3.1) we deduce
that

ι∞(a∞,t) =

 0 0 1
1/2 1/2 0
1/2 −1/2 0

et 0 0
0 e−t 0
0 0 1

0 1 1
0 1 −1
1 0 0

 = b∞,t.

Consider now

c∞,t =

1 0 0
0 cosh t sinh t
0 sinh t cosh t

 .

Here is a slight variation of Lemma 3.5.1.

Lemma 3.5.2. There is a covering of Lie groups ι′∞ : SL(2,R) → SO(1, 2)◦ such that
ι′∞(a∞,t) = c∞,t.

Now we’ll discuss SL(2,Qp). Consider

ap,m =

(
pm 0
0 p−m

)
for anym ∈ Z. We’ll denote byKp the group SL(2,Zp) andKp(n) = ker(Kp → SL(2,Z/pnZ))
for n ≥ 1.

Recall that SO(P,Qp)
◦ is the image of Spin(P,Qp)→ SO(P,Qp)—see 3.4.

Lemma 3.5.3. Consider a prime p > 2 and a standard isotropic quadratic form P on Q3
p.

There is a group morphism ιp : SL(2,Qp)→ SO(P,Qp)
◦ with the following properties:

(i) ||ιp(ap,m)||p ≤ p2m+1 for any integer m ≥ 0.

(ii) For every n ≥ 1, ιp(Kp(n)) is contained in the kernel of SL(3,Zp)→ SL(3,Z/pn−1Z).

We’ll use the next easy result to prove Lemma 3.5.3

Lemma 3.5.4. Let p > 2 be a prime number. Consider K (x) = 8(xy+ z2) and an isotropic
standard quadratic form P on Q3

p. There is g ∈ GL(3,Q) such that K ◦ g is a multiple of
P , ||g||p ≤ p and ||g−1||p ≤ 1.

Proof. Note that P (x) = x2
1 − x2

2 + cx2
3 for some c ∈ Cp and that |c−1|p ≤ p. The matrix

g =

c−1 −c−1 0
1 1 0
0 0 1
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takes K to 8
c
P . Its inverse is

g−1 =

 c/2 1/2 0
−c/2 1/2 0

0 0 1

 .

We readily see that ||g||p ≤ p and ||g−1||p ≤ 1.

Proof of Lemma 3.5.3. Recall that K (x) = 8(xy + z2) in the basis β = (e, f, h) of sl(2,Qp).
By Lemma 3.5.4, there is g0 ∈ GL(3,Q) such that K ◦ g0 is a multiple of P , ||g0||p ≤ p and
||g−1

0 ||p ≤ 1. We define ιp : SL(2,Qp)→ SO(P,Qp) as

ιp(g) = g−1
0 [Ad g]βg0.

Let’s see that ιp has the claimed properties.
Since g0 is a rational matrix, ι defines a morphism of Q-groups SL(2) → SO(P ) with

finite kernel. SL(2) is a simply connected Q-group—see [PR94, p. 63]—, so by the uniqueness
of the universal covering there is an isomorphism of Q-groups ψ : SL(2) → Spin(P ) such
that the diagram

SL(2) Spin(P )

SO(P )

ψ

commutes—see [PR94, Proposition 2.10, p. 76]. Taking the Qp-points we see that the image
of ιp is indeed SO(P,Qp)

◦.
From (3.1) we see that [Adap,m]β = diag(p2m, p−2m, 1). Then

||ιp(ap,m)||p ≤ ||g−1
0 ||p ||[Adap,m]β||p ||g0||p ≤ p2m+1,

which proves (i).
Let’s prove (ii). We have

[Ad g]β − I3 =

(a− 1)(a+ 1) −b2 −2ab
−c2 (d− 1)(d+ 1) 2cd
−ac bd 2bc

 .

If g ∈ Kp(n), then ||[Ad g]β − I3||p ≤ p−n since a− 1, b, c, d− 1 are in pnZp. Hence

||ιp(g)− I3||p ≤ ||g−1
0 ||p ||[Ad g]β − I3||p ||g0||p ≤ p−(n−1),

so we are done.

Corollary 3.5.5. Consider a prime number p > 2 and an integer d ≥ 3. Let Hp be the
orthogonal group of a standard isotropic quadratic form on Qd

p. There is a morphism with
finite kernel ρ : SL(2,Qp)→ H◦p with the following properties:
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(i) ||ρ(ap,m)||p ≤ p2m+1 for any m ≥ 0,

(ii) ρ(Kp(n)) is contained in ker(SL(d,Zp)→ SL(d,Z/pn−1Z)) for every n ≥ 1.

Proof. Suppose that Hp is the orthogonal group of the standard isotropic form P on Qd
p. P

is of the form
P (x) = x2

1 − x2
2 + a3x

2
3 + . . .+ adx

2
d.

Note that P1(x) = x2
1 − x2

2 + a3x
2
3 is standard isotropic. We define ρ as the composition

SL(2,Qp)
ιp−→ SO(P1,Qp)

◦ ϕ−→ H◦p ,

with ιp as in Lemma 3.5.3 and, for any h ∈ SO(P1,Qp)
◦, ϕ(h) acts on V = Qpe1⊕Qpe2⊕Qpe3

as h and as the identity on Qpe4 ⊕ · · · ⊕ Qped. The claimed properties follow from Lemma
3.5.3.



Chapter 4

Decay of coefficients of unitary
representations

In this chapter we introduce the tools we’ll need from the theory of unitary representations of
semisimple groups. Our motivation is the unitary representation that arises from a measure-
preserving dynamical system, that we discuss in Section 4.1. We’ll explain how an estimate
of the decay of the coefficients of this representation implies a mixing speed of the underlying
dynamical system. In the three remaining sections we cite the results for SL(2) that we’ll
need.

4.1 Basic definitions and motivation

If H is a Hilbert space—always assumed to be complex—, we denote by U(H) the group of
unitary transformations of H. A unitary representation of a locally compact group G on H
is a group morphism π : G→ U(H) such that g 7→ π(g)v is continuous for any v ∈ H.

Let π be a unitary representation of G. We’ll often denote by Hπ the Hilbert space of
π. For v, w ∈ Hπ, the map g 7→ 〈π(g)v, w〉 is the coefficient of v and w. When v = w we
call it the diagonal coefficient of v. The unitary representations π1 and π2 of G are unitary
equivalent if there is a G-equivariant bijective isometry Hπ1 → Hπ2 .

We say that π is irreducible if 0 and Hπ are the only G-invariant closed subspaces of Hπ.
The set of equivalence classes of unitary representations of G, denoted by Ĝ, is known as the
unitary dual of G. We denote by [π] the unitary equivalence class π. A unitary representation
σ of G is weakly contained in π if any diagonal coefficient of σ can be approximated uniformly
on compact subsets by finite sums of diagonal coefficients of π. The support supp π of π
consists of the [σ] ∈ Ĝ weakly contained in π.

Here is the important example of unitary representation that justifies the existence of
this chapter: Let Y be a topological space endowed with a finite Borel measure µ. Suppose
that α is a measure-preserving, continuous action of a locally compact group G on Y . The
formula

πα(g)f(y) = f(α(g−1)y)

defines a unitary representation πα of G on L2(Y, µ). Recall that α is mixing if for any

41
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ϕ, ψ ∈ L2(Y ),

lim
g→∞
〈πα(g)ϕ, ψ〉 =

1

µ(Y )

∫
Y

ϕdµ

∫
Y

ψdµ.

The fact that α is mixing can be reformulated in terms of certain coefficients of πα. Note
that

L2
0(Y ) =

{
f ∈ L2(Y ) |

∫
Y

fdµ = 0

}
is a G-invariant closed subspace of L2(Y ). We denote π◦α the restriction of πα to L2

0(Y ). The
orthogonal projection of ϕ ∈ L2(Y ) to L2

0(Y ) is ϕ0 = ϕ− 1
µ(Y )

∫
Y
ϕdµ and

〈π◦α(g)ϕ0, ψ0〉 = 〈πα(g)ϕ, ψ〉 − 1

µ(Y )

∫
Y

ϕdµ

∫
Y

ψdµ.

This means that α is mixing if an only if any coefficient of π◦α vanishes at ∞. To obtain
effective results about quadratic forms, we’ll need to estimate the error term∣∣∣∣〈πα(g)ϕ, ψ〉 − 1

µ(Y )

∫
Y

ϕdµ

∫
Y

ψdµ

∣∣∣∣
in terms of g. In other words, we want to know how fast the coefficients of π◦α decay.

4.2 Effective decay of coefficients

The result on the decay of coefficients we’ll use applies to a family of unitary representations
that verify an integrability condition that we explain now.

Let k ∈ [2,∞). A unitary representation π of G—again, a locally compact group—is
almost Lk if there is a dense subset D of Hπ such that the coefficient of any two vectors in
D is an Lk+ε function on G for any ε > 0—see the article [Sha00, p. 125] of Y. Shalom for a
discussion of this concept.

The case k = 2 is particularly important. A unitary representation of G is tempered if and
only if it is weakly contained in L2(G). There is a close connection between tempered and
almost L2 unitary representations: A result—[CHH88, Theorem 1]—of Cowling, Haagerup
and Howe says that any almost L2 unitary representation of a locally compact group G is
tempered. Conversely, they show—[CHH88, Theorem 2]—that any tempered unitary rep-
resentation is almost L2 when G is the group of Qν-points of a semisimple linear Qν-group
1. They achieve this by proving there is a dense subset D of Hπ such that the coefficient
of any v, w ∈ D decays at least as fast as the so-called Harish-Chandra spherical function
of G, which is known to be in L2+ε(G) for any ε > 0. In the next section we’ll define the
Harish-Chandra function of SL(2,Qν).

From now on we focus in the theory for SL(2), which is enough for our needs. We
denote by K2,p the group SL(2,Zp) and K2,∞ = SO(2,R). The Harish-Chandra function of
SL(2,Qν) is the map Ξν : SL(2,Qν)→ [0, 1] given by

Ξν(g) =

∫
K2,ν

||gke1||−1dk,

1Since we work with othogonal groups of quadratic forms in at least 3 variables, for us almost L2 and
tempered are interchangeable terms.
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where || · || is || · ||ν when ν < ∞, and the standard euclidean norm || · ||euc of R2 when
ν =∞. We integrate with respect to the Haar probability measure on K2,ν . If π is a unitary
representation of SL(2,Qν) and v ∈ Hπ, we denote by δν(v) the square-root of the dimension
of the C-linear span of π(K2,ν)v. We say that v is K2,ν-finite if and only if δν(v) <∞. The
next result—which is a particular case of [CHH88, Theorem 2]—tells us that the coefficients
of K2,ν-finite vectors decay at least as fast as Ξν .

Theorem 4.2.1 (Cowling, Haagerup, Howe). Consider a prime ν. Let π be a tempered
unitary representation of SL(2,Qν). For any v1, v2 ∈ Hπ we have

|〈π(g)v1, v2〉| ≤ Ξν(g)||v1|| ||v2||δν(v1)δν(v2),

for any g ∈ SL(2,Qν).

In Chapter 6 we’ll need a decay speed for the larger family of K2,∞-smooth vectors of
unitary representations of SL(2,R). A vector v ∈ Hπ is K2,∞-smooth if the map K2,∞ →
Hπ, k 7→ π(k)v is smooth. Consider the matrix

Z =

(
0 −1
1 0

)
,

in the Lie algebra of K2,∞. If v ∈ Hπ is K2,∞-smooth, we define its first Sobolev norm as

||v||Z = (||v||2 + ||π(Z)v||2)
1
2 , where

π(Z)v =
d

dt

∣∣∣
t=0
π(etZ)v.

Lemma 4.2.2. Let π be an almost L2k unitary representation of SL(2,R), where k is a
positive integer. For any K2,∞-smooth vectors v1, v2 ∈ Hπ and any g ∈ SL(2,R) we have

|〈π(g)v1, v2〉| ≤ 5 Ξ
1
k∞(g)||v1||Z ||v2||Z .

Proof. Note that π⊗k is tempered because the coefficient of v1 ⊗ · · · ⊗ vk and w1 ⊗ · · · ⊗ wk
is the product of k coefficients of π. Consider v, w ∈ Hπ. Applying Theorem 4.2.1 to π⊗k we
obtain

|〈π(g)v, w〉|k = |〈π⊗k(g)v⊗k, w⊗k〉|
≤ Ξ∞(g)||v⊗k|| ||w⊗k||δ∞(v⊗k)δ∞(w⊗k)

≤ Ξ∞(g)(||v|| ||w||δ∞(v)δ∞(w))k,

so
|〈π(g)v, w〉| ≤ Ξ

1
k∞(g)||v|| ||w||δ∞(v)δ∞(w).

Let rθ ∈ K2,∞ be the rotation of angle θ. To obtain the inequality for K2,∞-smooth vectors
we decompose Hπ as Hilbert sum of K2,∞-invariant subspaces

Hπ =
⊕̂
m∈Z

Hm,
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where K2,∞ acts on Hm by π(rθ)vm = eimθvm. Note that eθZ = rθ
2, so

π(Z)vm =
d

dθ

∣∣∣
θ=0

eimθvm = imvm.

Consider a K2,∞-smooth v =
∑

m∈Z vm with vm ∈ Hm. We have π(Z)v =
∑

m∈Z imvm, so

||π(Z)v||2 =
∑
m∈Z

m2||vm||2.

Consider a second K2,∞-smooth vector w =
∑

n∈Zwn. To obtain the bound for 〈π(g)v, w〉
we use the Cauchy-Schwarz inequality as follows:

|〈π(g)v, w〉| ≤
∑
m,n∈Z

|〈π(g)vm, wn〉|

≤ Ξ
1
k∞(g)

(∑
m∈Z

||vm||

)(∑
n∈Z

||wn||

)

= Ξ
1
k∞(g)

||v0||+
∑

m∈Z−{0}

1

m
||mvm||

||w0||+
∑

n∈Z−{0}

1

n
||nwn||


≤ (1 + 2ζ(2)) Ξ

1
k∞(g)

(
||v0||2 + ||π(Z)v||2

) 1
2
(
||w0||2 + ||π(Z)w||2

) 1
2

≤ 5 Ξ∞(g)
1
k ||v||Z ||w||Z .

For Chapter 7, we need a decay speed of coefficients of vectors fixed by small compact-
open subgroups of SL(2,Qp), that we achieve in Corollary 4.3.7. In the proof we’ll use the
next two lemmas. For any positive integer n we denote by K2,p(n) the kernel of the natural
map K2,p → SL(2,Z/pnZ). Let π be a unitary representation of SL(2,Qp). A vector v ∈ Hπ

invariant under some K2,p(n) is K2,p-finite, and the next result gives an upper bound of δp(v).

Lemma 4.2.3. For any positive integer n we have

#SL(2,Z/pnZ) = p3n − p3n−2.

Proof. Let An be a free (Z/pnZ)-module with basis (e1, e2). The SL(2,Z/pnZ)-orbit of e1

has size p2n − p2n−2 because it consists of the elements x1e1 + x2e2 of An such that p does
not divide x1 and x2 simultaneously. The stabilizer of e1 in SL(2,Z/pnZ) is

Sn :=

(
1 Z/pnZ
0 1

)
.

Thus
#SL(2,Z/pnZ) = #(SL(2,Z/pnZ)e1) #Sn = p3n − p3n−2, (4.1)

as claimed.

2An easy way to see this is with the standard identification of C with the matrices

(
a −b
b a

)
, a, b ∈ R.

Note that i corresponds to Z.
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Here is a more explicit decay of coefficients of K2,p(n)-fixed vectors.

Lemma 4.2.4. Let π be a tempered unitary representation of SL(2,Qp). If v1, v2 ∈ Hπ are
respectively K2,p(n1) and K2,p(n2)-invariant, then

|〈π(g)v1, v2〉| ≤ p
3
2

(n1+n2)Ξp(g)||v1|| ||v2||

for any g ∈ SL(2,Qp).

Proof. Note that π(K2,p)vi has at most [K2,p : K2,p(ni)] = #SL(2,Z/pniZ) elements because
vi is K2,p(ni)-invariant. Then, by Lemma 4.2.3 we have

δp(vi) ≤ (#SL(2,Z/pniZ))
1
2 < p

3
2
ni .

From Theorem 4.2.1 we deduce that

|〈π(g)v1, v2〉| ≤ Ξp(g)||v1|| ||v2||δp(v1)δp(v2)

≤ p
3
2

(n1+n2)Ξp(g)||v1|| ||v2||,

for any g ∈ SL(2,Qp).

4.3 The Harish-Chandra function of SL(2)

The purpose of this section is to give estimates of the decay of Ξν . Before that, we explain
briefly how Ξν arises as a coefficient of an important irreducible unitary representation of
SL(2,Qν). To lighten the notation, in this section we denote Gν = SL(2,Qν) and Kν = K2,ν .
Let Bν be the subgroup of upper-triangular matrices of Gν . We define ap,m = diag(pm, p−m)

and a∞,t = diag(e
t
2 , e−

t
2 ) for m ∈ Z and t ∈ R. Consider

A+
p = {ap,m | m ∈ N} and A+

∞ = {a∞,t | t ≥ 0}.

For any irreducible unitary representation σ of Gν , the subspace of Kν-invariant vectors HKν
σ

is either trivial or a line—see [Lub94, Proposition 5.1.4, p. 63]. In the latter case we say
that σ is a spherical or class-one irreducible unitary representation of Gν . Suppose that σ
is spherical and let v be a unit vector of HKν

σ . The diagonal coefficient cv : g 7→ 〈σ(g)v, v〉
of v is the a spherical function of σ3. The unitary representation σν of Gν induced by the
trivial representation of Bν is irreducible and class-one—see [Lub94, Theorem 5.1.7, p. 64].
Its spherical function is the Harish-Chandra function Ξν of Gν .

As Ξν is Kν bi-invariant, its decay speed depends only on the values it takes on A+
ν , since

Gν = KνA
+
νKν according to the Cartan decomposition of Gν .

3Let Cc(Gν//Kν) be the space of continuous Kν bi-invariant functions Gν → C with compact support.
A function F : Gν → C is spherical if it verifies the next three conditions:

(I) F is continuous and Kν bi-invariant.

(II) F (I2) = 1.

(III) For any ϕ ∈ Cc(Gν//Kν), F ∗ ϕ = ηF (ϕ)F for some ηF (ϕ) ∈ C.

The classification of class-one irreducible unitary representations of Gν is equivalent to the classification of
positive definite spherical functions of Gν—see [Lan85, Theorem 9, p. 65].
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4.3.1 Decay speed of Ξ∞

Let rθ ∈ K∞ be the rotation of angle θ. The map θ 7→ rθ is a parametrization [0, 2π)→ K∞,
and λK∞ is simply (2π)−1 d

dθ
. Thus

Ξ∞(a∞,t) =
1

2π

∫ 2π

0

||a∞,trθe1||−1
eucdθ

=
1

2π

∫ 2π

0

(
et cos2 θ + e−t sin2 θ

)− 1
2 dθ.

The next lemma describes the behavior of Ξ∞(a∞,t) for big t. See [HT92, p. 236] for a
proof.

Lemma 4.3.1. The functions t 7→ Ξ∞(a∞,t) and t 7→ te−
t
2 are equivalent as t→∞.

For our purposes it will be convenient to dispose of an exponential upper bound of
Ξ∞(a∞,t). The next corollary is immediate from Lemma 4.3.1.

Corollary 4.3.2. There is a positive constant D1 such that Ξ∞(a∞,t) ≤ D1e
− t

3 .

Combining Corollary 4.3.2 and Lemma 4.2.2 we get a decay estimate along A+
∞ for coef-

ficients of K∞-smooth vectors.

Corollary 4.3.3. Let π be an almost L2m unitary representation of SL(2,R), with m a
positive integer. For any K2,∞-smooth vectors v1, v2 ∈ Hπ we have

|〈π(a∞,t)v1, v2〉| ≤ e−
t

3m (5D1

1
m ||v1||Z ||v2||Z)

for t ≥ 0.

4.3.2 Decay speed of Ξp

This time we’ll obtain an explicit formula of Ξp(ap,m), which easily implies an exponential
decay of Ξp along A+

p .

Lemma 4.3.4. For any prime p and any integer m ≥ 0 we have

Ξp(ap,m) =
p−m

p+ 1
((2m+ 1)(p− 1) + 2).

To compute Ξp(ap,m) we’ll use a well-adapted measurable partition of Kp. For any integer
n ≥ 0 we define

Fn =
{

(kij) ∈ Kp | |k11|p = p−n, |k21|p = 1
}

and
F−n =

{
(kij) ∈ Kp | |k11|p = 1, |k21|p = p−n

}
.

As usual, we denote by λH a Haar measure of a locally compact group H. When H is
compact we take the Haar probability measure.
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Lemma 4.3.5. The subset
⋃
n∈Z Fn of Kp has full measure and

λKp(Fn) =
p− 1

p+ 1
p−|n| (4.2)

for any n ∈ Z.

Proof. Let (e1, e2) be the standard basis of V = Q2
p. We denote by Ψ be the map k 7→ ke1

from Kp to the unit sphere SV of V . Note that µ = Ψ∗λKp is the unique Kp-invariant
probability measure on SV , thus

µ(A) = λV (ZpA), (4.3)

for any measurable subset A of SV . Consider Cn = Ψ(Fn). Then

λKp(Fn) = µ(Cn),

since Fn = Ψ−1(Cn). Note that
⋃
n∈ZCn is conull in SV because it consists of the points

(x1, x2) ∈ SV with x1 6= 0 6= x2. Since Cn = diag(pn, 1)C0 for any n ≥ 0, from (4.3) we get

µ(Cn) =

∣∣∣∣det

(
pn 0
0 1

)∣∣∣∣
p

µ(C0) = p−nµ(C0).

In the same way one shows that µ(Cn) = p−|n|µ(C0) for any n ∈ Z. Thus

1 = µ(SV ) =
∑
n∈Z

µ(Cn) =
p+ 1

p− 1
µ(C0),

so

λKp(Fn) = µ(Cn) =
p− 1

p+ 1
p−|n|

for any n ∈ Z.

Let’s prove the formula of Ξp(ap,m).

Proof of Lemma 4.3.4. From the definition of Fn we easily see that

||ap,mke1||−1
p =


pm if n ≤ −2m,

p−m−n if − 2m < n < 0,

p−m if n ≥ 0,
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for k ∈ Fn and m ≥ 0. Then

Ξp(ap,m) =
∑
n∈Z

∫
Fn

||ap,mke1||−1
p dλKp(k)

=

( ∑
n≤−2m

λKp(Fn)

)
pm +

∑
−2m<n<0

λKp(Fn)p−m−n +

(∑
n≥0

λKp(Fn)

)
p−m

=
p− 1

p+ 1

[ ∑
n≤−2m

pm+n +
∑

−2m<n<0

p−m +
∑
n≥0

p−m−n

]

=
(p− 1)p−m

p+ 1

[∑
`≤0

p` + (2m− 1) +
∑
n≥0

p−n

]

=
(p− 1)p−m

p+ 1

[
2

1− p−1
+ 2m− 1

]
=

p−m

p+ 1
((2m+ 1)(p− 1) + 2),

as we wanted.

Here is the exponential bound of Ξp we’ll use in practice.

Corollary 4.3.6. For any prime number p we have

Ξp(ap,m) < 10p−
m
2

for m ≥ 1.

Proof. Note that

Ξp(ap,m) =
1

pm

(
(2m+ 1)

p− 1

p+ 1
+

2

p+ 1

)
≤ 1

pm

((
2− 4

p+ 1

)
m+ 1

)
≤ 3

m

pm
,

and m
pm

< 2
log 2

p−
m
2

4. Thus

Ξp(ap,m) <
6

log 2
p−

m
2 < 10p−

m
2 .

Using Corollary 4.3.6 in Lemma 4.2.4 we obtain the next decay speed of coefficients.

Corollary 4.3.7. Let π be a tempered unitary representation of SL(2,Qp). Suppose that
v1, v2 ∈ Hπ are respectively K2,p(n1) and K2,p(n2)-invariant. Then

|〈π(ap,m)v1, v2〉|∞ ≤ p−
m
2 (10p

3
2

(n1+n2)||v1|| ||v2||),
for any m ≥ 1.

4Indeed:
pm/2

m
≥ 2m/2

m
>

1 + log 2
2 m

m
>

log 2

2
.



Chapter 5

Effective criteria of ZS-equivalence

In this chapter we are interested in a slight generalization of the classical problem of Z-
equivalence of integral quadratic forms, which consists deciding if two given integral quadratic
forms are Z-equivalent. Gauss describes in [Gau65] an algorithm that solves the problem for
binary quadratic forms. Unfortunately, it is hard to extend it to quadratic forms in 3 or more
variables. An amazing contribution to the problem of Z-equivalence is the following elegant
result of Li and Margulis—see [LM16, Theorem 1]. The statement we present here is less
sharp, but easier to read.

Theorem 5.0.1. Let Q1 and Q2 be non-degenerate integral quadratic forms in d ≥ 3 vari-
ables. If Q1 and Q2 are Z-equivalent, there is γ0 ∈ GL(d,Z) with

||γ0||∞ ≤ Ad(||Q1||∞||Q2||∞)
13
40
d3 (5.1)

such that Q1 ◦ γ0 = Q2.

Here Ad is a positive constant that depends only on d, and ||γ0||∞, ||Qi||∞ are respectively
the maximum of the absolute values of the entries of γ0 and the coefficients of Qi. Theorem
5.0.1 gives an effective criterion to decide if Q1 and Q2 as in the statement are Z-equivalent:
one checks if the equation Q1 ◦ γ0 = Q2 has a solution in the finite subset of GL(d,Z)
determined by (5.1). We’ll sometimes refer to Theorem 5.0.1 as the Z-equivalence criterion
of Li and Margulis. The goal of this chapter is to obtain an effective criterion of Z[1/n]-
equivalence of quadratic forms.

Before going further we give an alternate description of the ring Z[1/n] and we introduce
new notation. The ring Z[1/n] depends only on the prime divisors p1, · · · , pk of n because its
consists of the rational numbers with denominator of the form pa11 · · · p

ak
k with a1, . . . , ak ∈ N.

Thus it is natural to introduce, for any finite set Sf = {p1, . . . , pk} of primes, S = {∞}∪Sf—
we’ll explain in a moment why we add ∞—and the ring of S-integers

ZS =

{
m

pa11 · · · p
ak
k

| m ∈ Z, a1, · · · , ak ∈ N
}
,

with the convention Z{∞} = Z. We denote by pS the product of the primes in Sf , setting
p{∞} = 1. The product ring

∏
ν∈S Qν will be denoted QS and we define the S-height of

t = (tν)ν∈S ∈ QS as

HS(t) =
∏
ν∈S

|tν |ν .

49
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The main reason for working with S = Sf∪{∞} instead of Sf is that the diagonal embbeding
of ZS in QS is a lattice in QS (but is dense in QSf ).

5.1 Effective criteria of ZS-equivalence

Thanks to the criterion of Z-equivalence of Li and Margulis we can decide if Q1 and Q2 are
Z-equivalent by searching for a solution γ of Q1 ◦ γ = Q2 in a finite subset of GL(d,Z) since
any entry of a γ ∈ GL(d,Z) with ||γ||∞ ≤M is an integer between −M and M , hence there
are finitely many choices. When Sf 6= ∅, |x|∞ ≤ M has infinitely many solutions in ZS, so
||γ||∞ ≤M doesn’t determine a finite subset of GL(d,ZS). To fix this, note that a system of
inequalities

|x|ν ≤Mν , ν ∈ S,
defines a finite subset of ZS. In our criteria of ZS-equivalence we’ll bound all the norms
||γ||ν , ν ∈ S, of a γ ∈ GL(d,ZS) taking Q1 to Q2. When Q1 and Q2 are anisotropic over QS

1

there is a uniform bound of
||γ||S = max

ν∈S
||γ||ν

for any γ ∈ GL(d,ZS) taking Q1 to Q2, thus the kind of criteria we aim at says nothing
new in that case. Suppose then that Q1 and Q2 are QS-isotropic2. We have two criteria
of ZS-equivalence depending on whether Q1 and Q2 are R-isotropic or not. The reader can
find an explicit value of Ci,d, as well as of any of the other constants in our statements that
depend on d, in Appendix C.

Theorem 5.1.1. Let Sf be a non-empty finite set of odd primes and let S = {∞} ∪ Sf .
Consider non-degenerate, R-isotropic integral quadratic forms Q1 and Q2 in d ≥ 3 variables.
If Q1 and Q2 are ZS-equivalent, there is γ0 ∈ GL(d,ZS) with

||γ0||∞ < Ci,dp19d6

S (||Q1||∞||Q2||∞)2d3 ,

and ||γ0||p ≤ p|δQ1|
− 1

2
p for p ∈ Sf , such that Q1 ◦ γ0 = Q2.

Theorem 5.1.2. Let S = {∞}∪Sf be a finite set of primes. Consider non-degenerate integral
quadratic forms Q1 and Q2 in d ≥ 3 variables that are R-anisotropic and Qp0-isotropic for
some p0 > 2 in Sf . If Q1 and Q2 are ZS-equivalent, there is γ0 ∈ GL(d,ZS) with

||γ0||p0 < Ca,dp13d6

S (||Q1||∞||Q2||∞)
1
2
d3+3d,

||γ0||p ≤ p|δQ1|
− 1

2
p for p ∈ Sf − {p0},

||γ0||∞ ≤ dd+1 · d!||Q1||
d−1
2
∞ ||Q2||

1
2
∞,

such that Q1 ◦ γ0 = Q2.

Remark 5.1.3. The hypotheses 2 /∈ Sf in Theorem 5.1.1 and p0 > 2 in Theorem 5.1.2 can
be removed by extending Proposition 5.3.1 (valid for all primes ν 6= 2) to all ν. See Remark
3.3.5.

1In other words, anisotropic over Qν for every ν ∈ S.
2That is, isotropic over Qν for some ν ∈ S.
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Remark 5.1.4. The last inequality in Theorem 5.1.2 is in fact verified by any matrix g0 in
GL(d,R) taking Q1 to Q2. We included it in the statement for the sake of completeness.

To prove our criteria of ZS-equivalence we need various tools that we’ll introduce in
subsequent chapters. In the rest of the present one we explain the dynamical interpretation
of the arithmetic problem of ZS equivalence of quadratic forms, we state three intermediate
results and, taking them for granted, we prove Theorem 5.1.1 and Theorem 5.1.2.

5.2 Dynamical interpretation

Now we present a dynamical reformulation of the problem of ZS-equivalence. Suppose that
Q1 and Q2 are ZS-equivalent, non-degenerate integral quadratic forms in d ≥ 3 variables.
We denote by Gd,S the group GL(d,QS). There is a standard quadratic form P on Qd

S such
that

Q1 = P ◦ f and Q2 = P ◦ g,

for some f, g ∈ Gd,S. We want to bound all the ν-norms, ν ∈ S, of some γ0 ∈ GL(d,ZS) that
transforms Q1 to Q2. Let’s consider first an easier question:

Q1. Which matrices in Gd,S take Q1 to Q2?

It’s easy to see that precisely those of the form f−1hg with h ∈ O(P,QS). We denote O(P,QS)
by HS and Γd,S will be the diagonal copy of GL(d,ZS) in Gd,S. Since we are looking for a
matrix in GL(d,ZS) taking Q1 to Q2, the next natural question is:

Q2. For which h ∈ HS is f−1hg in Γd,S?

To detect these elements of HS we introduce the homogeneous space Xd,S = Gd,S/Γd,S
3.

Let xd,S = Γd,S/Γd,S be the base point of Xd,S and consider the action of HS on Xd,S by
left multiplication. Here is the link between the arithmetic problem of ZS-equivalence of
quadratic forms and the dynamics of HS on Xd,S: f−1hg is in Γd,S if and only if h moves
gxd,S to fxd,S. Since Q1 and Q2 are ZS-equivalent, their corresponding points fxd,S and
gxd,S in Xd,S lie in the same HS-orbit Y in Xd,S, which is closed since it comes from an
integral quadratic form. Hence the problem of ZS-equivalence of integral quadratic forms is
intimately related to the next dynamical problem.

Problem 5.2.1. Given two points y1 and y2 in a closed HS-orbit in Xd,S, bound the size of
the smallest h∗ ∈ HS moving y2 to y1.

The answer is easy when HS is compact—which happens iff Q1 and Q2 are anisotropic
over QS—because HS itself is bounded. So let’s consider the case where HS is non-compact.
With their [LM16, Theorem 5], Li and Margulis answer Problem 5.2.1 when S = {∞}. We
extend their result to any finite set S = {∞} ∪ Sf of primes in Proposition 5.2.2 when H∞
is non-compact, and in Proposition 5.2.3 when H∞ is compact. A crucial fact to prove these
results is that any closed HS-orbit Y in Xd,S admits a unique—up to multiplication by a

3The space Xd,S has finite volume with respect to its Gd,S-invariant measure—unique up to multiplication
by a positive constant.
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positive real number—HS-invariant measure µY (see Lemma 6.1.3). For g′ ∈ Gd,S, ν ∈ S and
S ′ ⊆ S we define

Tν(g
′) =

||g′ν ||dν
| det g′ν |ν

and TS′(g
′) =

∏
ν∈S′

Tν(g
′).

Here are out two dynamical statements.

Proposition 5.2.2. Let S = {∞}∪Sf be a finite set of primes and let HS be the orthogonal
group of a standard quadratic form on Qd

S with d ≥ 3. Suppose that H∞ is non-compact.
Consider f, g ∈ Gd,S such that fxd,S and gxd,S are in a closed HS-orbit Y in Xd,S. Then
there is h? ∈ HS with

||h?∞||∞ < Cdp
9d3

S (T∞(f)T∞(g))
3
2
d(d−1)+6(TSf (f)TSf (g))3d2µY (Y )6,

||h?p||p ≤ p for odd p ∈ Sf and ||h?2||2 ≤ 4 if 2 ∈ Sf , such that h?gxd,S = fxd,S.

Proposition 5.2.3. Let S = {∞}∪Sf be a finite set of primes and let HS be the orthogonal
group of a standard quadratic form on Qd

S with d ≥ 3. Suppose that H∞ is compact and that
Hp0 is non-compact for some p0 > 2 in Sf . Consider f, g ∈ Gd,S such that fxd,S and gxd,S
are in a compact HS-orbit Y in Xd,S. Then there is h? ∈ HS with

||h?p0 ||p0 < Fdp
13d2

S (Tp0(f)Tp0(g))6(TS(f)TS(g))d(d−1)µY (Y )4,

||h?p||p ≤ p for odd p ∈ Sf − {p0}, and ||h?2||2 ≤ 4 if 2 ∈ Sf , such that h?gxd,S = fxd,S.

Chapters 6 and 7 are devoted to prove propositions 5.2.2 and 5.2.3, respectively. We follow
closely the original arguments of Li and Margulis, making an extra effort to give explicitly
the constants Cd and Fd in the statements. Even if the strategy of the proof is the same in
both cases, we keep them separate hoping that the ideas will be more transparent in this
way.

5.3 The proof of the equivalence criteria

Taking the dynamical statements for granted, the thing missing to prove the criteria of ZS-
equivalence is the relation of the terms Tν(f), Tν(g) and µY (Y ) in propositions 5.2.2 and 5.2.3
to the quadratic forms Q1 and Q2. The next two results take care of this. The first one is a
combination of Lemma 3.2.2 and Proposition 3.3.4, which are proved in Chapter 3.

Proposition 5.3.1. Consider a prime ν 6= 2 and an integer d ≥ 2. Any non-degenerate
integral quadratic form R on Qd

ν can be written as P ◦ g, with P a standard quadratic form
on Qd

ν and g ∈ Gd,ν such that

||g||ν ≤

{
d||R||

1
2
∞ if ν =∞,

(p||R||p)
1
2 if ν = p.
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Now we handle the term µY (Y ). If Q is a non-degenerate integral quadratic form in d
variables, we define

YQ,S = HSg
′xd,S,

where HS is the orthogonal group of the standard quadratic form on Qd
S that is QS-equivalent

to Q, and g′ is any matrix in Gd,S such that O(Q,QS) = (g′)−1HSg
′. YQ,S is closed in

Xd,S—see Lemma 6.1.1—thus it admits a unique HS-invariant finite measure µYQ,S
4 up to

multiplication by a positive constant—see Lemma 6.1.3. We denote by δQ the determinant
of the matrix bQ of Q in the standard basis of Qd. The next result, which extends [LM16,
Theorem 6], gives an upper bound of the volume of YQ,S. Its proof is the goal of Chapter 8.

Proposition 5.3.2. Consider a finite set S = {∞} ∪ Sf of primes and d ≥ 3. Let Q be a
non-degenerate integral quadratic form in d variables isotropic over QS. Then

µYQ,S(YQ,S) <

{
C

(2)
d p3d6

S HS(δQ)
d+1
2 if Sf 6= ∅,

C
(2)
d 22d6|δQ|

d+1
2∞ if S = {∞}.

To close this chapter let’s prove our criteria of ZS-equivalence.

Proof of Theorem 5.1.1. Recall that the R-isotropic, non-degenerate integral quadratic forms
Q1 and Q2 in d ≥ 3 variables are ZS-equivalent. Let P be the standard quadratic form on
Qd
S that is QS-equivalent to (Q1)S and (Q2)S

5 and let HS = O(P,QS). Consider f, g ∈ Gd,S

taking respectively P to (Q1)S and (Q2)S, with coordinates fν and gν verifying the inequalities
of Proposition 5.3.1. Note that fxd,S and gxd,S are in the HS-orbit Y = YQ1,S in Xd,S,
which is closed by Lemma 6.1.1. According to Proposition 5.2.2 there is h? ∈ HS such that
h?gxd,S = fxd,S,

||h?∞||∞ < Cdp
9d3

S (T∞(f)T∞(g))
3
2
d(d−1)+6(TSf (f)TSf (g))3d2µY (Y )6,

and ||h?p||p ≤ p for p ∈ Sf—recall that 2 /∈ Sf . Since f−1h?g = (γ0, . . . , γ0) ∈ Γd,S takes (Q1)S
to (Q2)S, then γ0 ∈ GL(d,ZS) takes Q1 to Q2.

Now we relate Tν(f) and Tν(g) to Q1 and Q2. For p ∈ Sf , ||Q1||p ≤ 1 because Q1 is
integral, so ||fp||p ≤

√
p. Since ||fp||p is an integral power of p, in fact ||fp||p ≤ 1, thus

Tp(f) =
||fp||dp
| det fp|p

≤
(
|(δP )p|p
|δQ1|p

) 1
2

≤ |δQ1|
− 1

2
p . (5.2)

For T∞ we have

T∞(f) =
||f∞||d∞
| det f∞|∞

≤ dd
(
||Q1||d∞
|δQ1|∞

) 1
2

. (5.3)

4Note that µY is determined by a Haar measure on HS , which we fix as follows: each factor Hν is the
orthogonal group of a diagonal quadratic form, and we endow it with the Haar measure determined by the
basis in (A.1) of its Lie algebra. In the introduction of Appendix A we explain how a basis of the Lie algebra
determines a Haar measure. We consider in HS the product measure.

5To avoid confusions, we’ll write QS when we think a rational quadratic form Q as quadratic form over
QS via the diagonal embedding Q→ QS .
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Similar bounds hold for Tp(g) and T∞(g). Recall also that

µY (Y ) ≤ C
(2)
d p3d6

S HS(δQ1)
d+1
2 = C

(2)
d p3d6

S HS(δQ1δQ2)
d+1
4 ,

by Proposition 5.3.2. Then

||h?∞||∞ < Cdp
9d3

S

(
d2d ||Q1||

d
2
∞||Q2||

d
2
∞√

|δQ1δQ2|∞

) 3
2
d(d−1)+6

HSf (δQ1δQ2)
− 3

2
d2(C

(2)
d p3d6

S HS(δQ1δQ2)
d+1
4 )6

≤ Jdp18d6+9d3

S (||Q1||∞||Q2||∞)
3
4
d2(d−1)+3d HS(δQ1δQ2)

3
2

(d+1)

|δQ1δQ2|
3
4
d(d−1)+3
∞ HSf (δQ1δQ2)

3
2
d2
,

where Jd = d3d2(d−1)+12dCd(C
(2)
d )6. Since HS(δQ1δQ2) is a positive integer and d ≥ 3,

HS(δQ1δQ2)
3
2

(d+1) ≤HS(δQ1δQ2)
3
2
d2 = |δQ1δQ2|

3
2
d2

∞ HSf (δQ1δQ2)
3
2
d2 ,

so

HS(δQ1δQ2)
3
2

(d+1)

|δQ1δQ2|
3
4
d(d−1)+3
∞ HSf (δQ1δQ2)

3
2
d2
≤ |δQ1δQ2 |

3
2
d2

∞

|δQ1δQ2|
3
4
d(d−1)+3
∞

≤ |δQ1δQ2|d
2

∞.

Thus we obtain

||h?∞||∞ ≤ Jdp19d6

S (||Q1||∞||Q2||∞)
3
4
d2(d−1)+3d|δQ1δQ2|d

2

∞.

We are ready to bound γ0:

||γ0||∞ = ||f−1
∞ h?∞g∞||∞ ≤ d2||f−1

∞ ||∞||g∞||∞||h?∞||∞

≤ d · d!
||f∞||d−1

∞

| det f∞|∞
||g∞||∞||h?∞||∞

≤ dd+1 · d!||Q1||
d−1
2
∞ ||Q2||

1
2
∞||h?∞||∞

≤ (dd+1 · d!Jd)p19d6

S (||Q1||∞||Q2||∞)( 3
4
d2+ 1

2
)(d−1)+3d|δQ1δQ2|d

2

∞

≤ (dd+1 · d!Jd)p19d6

S (||Q1||∞||Q2||∞)d
3 |δQ1δQ2|d

2

∞

≤ Ci,dp19d6

S (||Q1||∞||Q2||∞)2d3 ,

where

Ci,d = dd+1 · d!2d
2+1Jd = d3d2(d−1)+13d+1 · d!2d

2+1Cd(C
(2)
d )6.

Finally, for p ∈ Sf
||γ0||p ≤ ||f−1

p ||p||gp||p||h?p||p ≤ p|δQ1 |
− 1

2
p .
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Proof of Theorem 5.1.2. This time Q1 and Q2 are R-anisotropic, Qp0-isotropic for some odd
p0 in Sf , and ZS-equivalent. Consider f, g ∈ Gd,S as in Proposition 5.3.1 such that

(Q1)S = P ◦ f and (Q2)S = P ◦ g,

where P is a standard quadratic form on Qd
S. Let HS be the orthogonal group of P and let

Y = YQ1,S. The bounds 5.2 and 5.3 for Tν(f) and Tν(g) hold also in the current situation.
Take h? ∈ HS moving gxd,S to fxd,S as in Proposition 5.2.3. Once more f−1h?g = (γ0, . . . , γ0)
is in Γd,S, and γ0 ∈ GL(d,ZS) takes Q1 to Q2. We have

||h?p0||p0 < Fdp
13d2

S (Tp0(f)Tp0(g))6(TS(f)TS(g))d(d−1)µY (Y )4

≤ Fdp
13d2

S |δQ1δQ2|−3
p0

(
d2d ||Q1||

d
2
∞||Q2||

d
2
∞√

HS(δQ1δQ2)

)d(d−1)

(C
(2)
d p3d6

S HS(δQ1)
d+1
2 )4

≤ Ca,dp13d6

S (||Q1||∞||Q2||∞)
1
2
d2(d−1)|δQ1δQ2 |3∞,

where C ′a,d = d2d2(d−1)Fd(C
(2)
d )4. Then

||γ0||p0 = ||f−1
p0
h?p0gp0||p0 ≤

||fp0||d−1
p0

| det fp0|p0
||gp0||p0||h?p0||p0

≤ |δQ1|
− 1

2
p0 ||h?p0 ||p0

< C ′a,dp13d6

S (||Q1||∞||Q2||∞)
1
2
d2(d−1)|δQ1δQ2|

7
2∞

≤ Ca,dp13d6

S (||Q1||∞||Q2||∞)
1
2
d2(d−1)+ 7

2
d2

= Ca,dp13d6

S (||Q1||∞||Q2||∞)
1
2
d3+3d,

where
Ca,d = (d!)7C ′a,d = (d!)7d2d2(d−1)Fd(C

(2)
d )4,

For p ∈ Sf ,
||γ0||p = ||f−1

p h?pgp||p ≤ |δQ1|
− 1

2
p ||h?p||p ≤ p|δQ1|

− 1
2

p .

To conclude we bound the ∞-norm of γ0. Recall that H∞ = O(d,R), so ||h?∞||∞ ≤ 1.

||γ0||∞ = ||f−1
∞ h?∞g∞||∞

≤ d · d!
||f∞||d−1

∞

| det f∞|∞
||g∞||∞

≤ dd+1 · d!||Q1||
d−1
2
∞ ||Q2||

1
2
∞.
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Chapter 6

Dynamical statement I: R-isotropic
case

The goal of this chapter is to establish Proposition 5.2.2, the dynamical result we used
to obtain our ZS-equivalence criterion for R-isotropic integral quadratic forms 5.1.1. We’ll
restate it below.

Recall that Gd stands for GL(d). If S = {∞} ∪ Sf is a finite set of primes, Γd,S is the
diagonal copy of GL(d,ZS) in Gd,S, Xd,S is the homogeneous space Gd,S/Γd,S and xd,S is the
basepoint Γd,S/Γd,S. For g ∈ Gd,S, ν ∈ S and S ′ ⊆ S we define

Tν(g) =
||gν ||dν
| det gν |ν

and TS′(g) =
∏
ν∈S′

Tν(g).

Finally, remember that a quadratic form P = (Pν)ν∈S on Qd
S is standard if, for each ν ∈ S,

Pν is a standard quadratic form on Qd
ν—see Chapter 3 for this definition. Here is the main

result of this chapter:

Proposition 6.0.1. Consider a finite set of primes S = {∞} ∪ Sf and d ≥ 3. Let HS be
the orthogonal group of a standard quadratic form on Qd

S. Suppose that H∞ is non-compact.
Take f, g ∈ Gd,S such that fxd,S and gxd,S are in a closed HS-orbit Y in Xd,S. Then there is
h? ∈ HS such that h?gxd,S = fxd,S,

||h?∞||∞ < Cdp
9d3

S (T∞(f)T∞(g))
3
2
d(d−1)+6(TSf (f)TSf (g))3d2µY (Y )6,

||h?p||p ≤ p for any odd p ∈ Sf , and ||h?2||2 ≤ 4 if 2 ∈ Sf .

Here is a cartoon of the strategy that Li and Margulis follow to prove [LM16, Theorem
5], the same that we adapt to obtain Proposition 6.0.1: Consider points y1 = fxd,S and
y2 = gxd,S in a closed HS-orbit Y in Xd,S. We want to estimate the size of an h0 ∈ HS

moving y1 to y2. Suppose that the action of HS on Y is mixing, and moreover that we
dispose of an estimate of the mixing speed of the form: There is a function F : HS → [0,∞)
vanishing at ∞ such that, for any measurable subsets U1,U2 of Y and any h ∈ HS,∣∣∣∣µY ((hU1) ∩ U2)− µY (U1)µY (U2)

µY (Y )

∣∣∣∣ ≤ CU1,U2F (h), (6.1)
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where CU1,U2 > 0 depends only on U1 and U2. Suppose now that U1 and U2 are small
neighborhoods of y1 and y2. If we choose h′ ∈ HS such that

CU1,U2F (h′) <
µY (U1)µY (U2)

µY (Y )
,

by (6.1) necessarily µY ((h′U1) ∩ U2) is positive. In other words, h′ moves a point near y1 to
a point near y2. Thus, there is h0 ∈ HS of about the same size as h′ that moves y1 to y2.

The purpose of this chapter is to turn this cartoon—which although somewhat inaccurate,
serves as guide—into a real proof. The chapter is organized as follows: In Section 6.1 we’ll
prove that the orbits YQ,S are indeed closed, which justifies our interest in the dynamical
situation of Proposition 6.0.1, as well as a partial converse in Lemma 6.1.2. In the sketch
of proof above we assumed that HS y Y is mixing, and this is not always the case, but in
Section 6.2 we’ll show that this is virtually true: there is a finite partition Y1t· · ·tY` of Y and
a finite index subgroup H◦S of HS whose action on each Yi is mixing. To obtain an estimate
like (6.1) for H◦S y Yi we’ll first show that L2

0(Yi) is an almost L4 unitary representation
of H◦∞ and then we’ll apply the decay speed for coefficients of smooth vectors—Corollary
4.3.3. Since the indicator functions of U1 and U2 are not smooth, we need to replace them
by smooth functions supported on these small open sets. In Section 6.3 we prepare for this.
Finally, we complete the proof of Proposition 7.0.1 in Section 6.4.

6.1 Closed orbits and integral quadratic forms

Let HS be the orthogonal group of a non-degenerate quadratic form on Qd
S. The goal of

this section is to explain the nice relationship there is between closed HS-orbits in Xd,S

and integral quadratic forms: if Q is integral and non-degenerate, YQ,S is closed in Xd,S.
Conversely, closed HS orbits in Xd,S are always of this form when d ≥ 3 and HS is non-
compact. This will play an important role to reduce the proof of Proposition 6.2.1 to the
case when HS is the orthogonal group of a ternary quadratic form. We start with the easy
implication.

Lemma 6.1.1. Let Q be a non-degenerate integral quadratic form in d ≥ 2 variables. Then
YQ,S is closed in Xd,S for any finite set S = {∞} ∪ Sf of primes.

Proof. We write QS = P ◦ g with g ∈ Gd,S and P a standard quadratic form on Qd
S. Let

HS = O(P,QS). Suppose that hngxd,S −→
n→∞

fxd,S for some hn ∈ HS and some f ∈ Gd,S.

There are γn ∈ Γd,S such that hngγn → f , so

P ◦ f = lim
n→∞

P ◦ (hngγn) = lim
n→∞

QS ◦ γn.

The diagonal copy Md(ZS)∆ in Md(QS) of Md(ZS) is discrete and closed. Since each bQ◦γn
is in Md(ZS)∆, then the matrix of P ◦ f is as well and P ◦ f = QS ◦ γn for n � 1. Since
QS = P ◦ g, we have f = hgγn for some h ∈ HS and some big enough n. In other words,
fxd,S is in YQ,S.
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Now we’ll see that closed HS-orbits in Xd,S always come from integral quadratic forms.
When HS is compact, every HS-orbit in Xd,S is closed, but not all of them are of the form YQ,S.
Leaving aside this case, when d ≥ 3, closed HS-orbits come always from integral quadratic
forms. This fact will be important in the proofs of Proposition 6.2.1 and Proposition 7.1.1.

Lemma 6.1.2. Consider a finite set S = {∞}∪Sf of primes and let R be a non-degenerate
quadratic form in d ≥ 3 variables with coefficients in QS. If R is QS-isotropic and SO(R,QS)xd,S
is closed in Xd,S, then SO(R,QS) = SO(QS,QS) for a non-degenerate integral quadratic form
Q in d variables.

To prove this we need a fact that we’ll use over and over: closed HS-orbits in Xd,S

admit finite HS-invariant measures. This is a result of Dani and Margulis, and is valid more
generally for any semisimple subgroup H ′S of Gd,S, which means that H ′S =

∏
ν∈S H

′
ν and all

the H ′ν are semisimple, algebraic subgroups of GL(d,Qν)—see [Ben20, Proposition 3.1] for a
proof for semisimple real Lie groups.

Lemma 6.1.3. Consider a finite set S = {∞} ∪ Sf of primes and let HS be the orthogonal
group of a non-degenerate quadratic form in d ≥ 3 variables with coefficients in QS. Any
closed HS-orbit Y in Xd,S admits a finite HS-invariant measure µY . Moreover, µY is unique
up to multiplication by a positive scalar.

Proof of Lemma 6.1.2. For ν ∈ S, let Rν be the component of R in Qν . Since R is QS-
isotropic, then Rν0 is isotropic for some ν0 ∈ S. We’ll prove first that Rν0 has an integral
multiple Q. Let HS = SO(R,QS), which is semisimple since d ≥ 3. Then ΛS = Γd,S ∩HS is
a lattice in HS by Lemma 6.1.3. For S0 ⊂ S, let ΛS0 be the projection of ΛS to GS0,d. If we
show that Λν0—which is contained in SO(Rν0 ,Q)—is Zariski-dense, so Rν0 has a non-trivial
integral multiple Q. Let T be the subset of ν ∈ S for which Rν is isotropic. Note that ΛT

is still a lattice in HT because HS−T is compact. HT is semisimple, Zariski-connected and
has no compact factors, hence ΛT is Zariski-dense in HT by Borel’s Density Theorem—see
[Zim84, p. 41 and Remark in p. 42]. ΛT projects to Λν0 , so this last one is Zariski-dense in
Hν0 .

Let S ′ = S − {ν0}. To show that HS = SO(QS,QS) it suffices to prove that HS′

contains a neighborhood of the identity in SO(Q,QS′). Let ∆S′ be the diagonal copy of
SO(Q,ZS) in Gd,S′ . Since SO(Q,Qν0) is non-compact, by the Strong Approximation Theo-
rem 1the closure—with respect to the analytic topology—of ∆S′ is a clopen subgroup US′ of
SO(Q,QS′). Write Gd,S = Gν0 ×Gd,S′ . Note that

(1×∆S′)xd,S = (SO(Q,ZS)× 1)xd,S ⊂ HSxd,S,

hence (1×US′)xd,S is also contained in HSxd,S, since this last is closed in Xd,S. This implies
also that there is a neighborhood of the identity WS =

∏
ν∈SWν in Gd,S such that w 7→ wxd,S

is an homeomorphism WS → WSxd,S and (WSxd,S) ∩ (HSxd,S) = (WS ∩HS)xd,S. Then HS′

contains US′ ∩WS′ .

To close this section we rewrite Lemma 6.1.2 in terms of the orbits YQ,S.

1See [PR94, Theorem 7.12]
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Corollary 6.1.4. Consider a finite set of primes S = {∞} ∪ Sf and d ≥ 3. Let HS be the
orthogonal group of a QS-isotropic standard quadratic form on Qd

S. Then any closed HS-orbit
in Xd,S is of the form YQ,S for some integral quadratic form Q.

Proof. Let Y be a closed HS-orbit in Xd,S and take gxd,S ∈ Y . Consider R = P ◦ g. The set
g−1Y = O(R,QS)xd,S is also closed in Xd,S. Since R is isotropic, Lemma 6.1.2 tells us that
O(R,QS) = O(QS,QS) for some integral quadratic form Q, so Y = YQ,S.

6.2 Mixing speed for closed H◦S-orbits

Let HS be the orthogonal group of a standard quadratic form on Qd
S. In the introduction we

said that the action of HS on any closed HS-orbit Y in Xd,S is virtually mixing. Let’s precise
what we meant by that. Let H◦S be the image in HS of the corresponding Spin group2. Since
H◦S has finite index in HS, there are finitely many H◦S-orbits Y1, . . . , Y` in Y . When H∞ is
non-compact, the action of H◦∞ on each Yi is mixing. What is really surprising is that there
is a mixing speed for H◦∞ y Yi, valid independently of Yi and Y . This is a consequence of
deep results in the theory of automorphic representations. A detailed discussion of them is
out of the scope of this work, we’ll just present the relevant statements for our applications
in 6.2.1. Once more, following the original arguments of Li and Margulis, and to keep things
as concrete as possible, we’ll state the mixing speed for a particular copy of SO(2, 1)◦ in H◦∞.
To do so, we introduce first more notation.

Consider a non-degenerate quadratic form R on Rd and a linear subspace V of Rd. If
R
∣∣
V

is non-degenerate, then Rd = V ⊕ V ⊥, where V ⊥ is the R-orthogonal complement of

V . We denote by O(R,R)V the subgroup of h ∈ O(R,R) such that h(V ) = V and h acts as
the identity on V ⊥. Suppose that H∞ is orthogonal group of a standard isotropic quadratic
form P on Rd. By definition of standard, P (x) = x2

1 + · · · + x2
r − x2

r+1 − · · · − x2
d for some

1 ≤ r < d. Suppose that r ≥ 2 and let V = Re1 ⊕ Re2 ⊕ Rer+1. We’ll denote ρH∞ the
morphism SL(2,R) → H∞ obtained composing ι∞ : SL(2,R) → SO(2, 1)◦ as in Lemma
3.5.1 with the natural isomorphism O(2, 1) → HV

∞. If r = 1, set V = Re1 ⊕ Rer+1 ⊕ Rer+2

and define ρH∞ as the composition

SL(2,R)
ι′∞−→ SO(1, 2)◦ −→ HV

∞,

with ι′∞ as in Lemma 3.5.2. Note that the image of ρH∞ is HV ◦
∞ , the neutral connected

component of HV
∞. We’ll denote by XH∞ ∈ h∞ the image of

Z =

(
0 −1
1 0

)
∈ sl(2,R)

under (the derivative at I2 of) ρH∞ .
Let π be a unitary representation of H∞. Recall that if v ∈ Hπ is H∞-smooth, for X ∈ h∞

we define
||v||X = (||v||2 + ||π(X )v||2)

1
2 .

Finally, we set D = 5
√
D1, with D1 is as in Corollary 4.3.2.

2For the definition of Spin see Section 3.4 of Chapter 3.
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Proposition 6.2.1. Consider a finite set S = {∞}∪Sf of primes and d ≥ 3. Let HS be the
orthogonal group of a standard quadratic form on Qd

S with H∞ non-compact and let ρ = ρH∞.
Suppose that Y ′ is a closed H◦S-orbit in Xd,S. For any H◦∞-smooth functions ϕ1, ϕ2 ∈ L2(Y ′)
we have∣∣∣∣∫

Y ′
(ϕ1 ◦ ρ(a∞,−t))ϕ2dµY ′ −

1

µY ′(Y ′)

∫
Y ′
ϕ1dµY ′

∫
Y ′
ϕ2dµY ′

∣∣∣∣ ≤ De−t/6||ϕ1||XH∞ ||ϕ2||XH∞
(6.2)

for t ≥ 0.

Like we said in Chapter 4, a mixing speed of HS y Y ′ can be interpreted as a speed of
decay of coefficients of L2

0(Y ). We’ll obtain Proposition 6.2.1 from the next lemma and the
decay speed of coefficients of Corollary 4.3.3.

Lemma 6.2.2. Consider a finite set S = {∞} ∪ Sf of primes and d ≥ 3. Let HS be the
orthogonal group of a standard quadratic form P on Qd

S with H∞ non-compact. Let V be
a 3-dimensional subspace of Rd where P∞ is non-degenerate and isotropic. For any closed
H◦S-orbit Y ′ in Xd,S, the unitary representation of HV ◦

∞ on L2
0(Y ′) is almost L4.

Taking Lemma 6.2.2 for granted for the moment, let’s deduce Proposition 6.2.1.

Proof of Proposition 6.2.1. Let Y ′ be a closed H◦S-orbit in Xd,S and let π be the unitary
representation of H◦∞ on L2(Y ′). Consider ϕ1, ϕ2 ∈ L2(Y ′) and define

ψi = ϕi −
1

µY ′(Y ′)

∫
Y ′
ϕidµY ′ ,

which is simply the orthogonal projection of ϕi to L2
0(Y ′). Note that the left-hand side of

inequality (6.2)—the one we want to prove—is equal to |〈π(ρ(a∞,t))ψ1, ψ2〉|∞.
By definition of ρ : SL(2,R)→ H∞, its image is of the form HV ◦

∞ , where

V = Re1 ⊕ Rei ⊕ Rej

for some 1 < i < j. By Lemma 6.2.2, the unitary representation of HV ◦
∞ on L2

0(Y ′) is almost
L4. Since ρ : SL(2,R) → HV ◦

∞ is a finite covering of Lie groups, the unitary representation
of SL(2,R) on L2

0(Y ′) is also almost L4. The decay speed of coefficients of smooth vectors—
Corollary 4.3.3—give the result:

|〈π ◦ ρ(a∞,t)ψ1, ψ2〉|∞ ≤ e−
t
6 (5
√
D1||ϕ1||XH∞ ||ϕ2||XH∞ ).

The technical results we use to prove Lemma 6.2.3—Proposition 6.2.5 and Theorem
6.2.6—work only when the subspace V of Rd is defined over Q. The next lemma is es-
sentially a restatement of Lemma 6.2.2 with this extra hypothesis. After stating it we’ll see
that we can eliminate the rationality assumption.

Lemma 6.2.3. Let Q be an R-isotropic non-degenerate integral quadratic form in d ≥ 3
variables. Consider a 3-dimensional subspace W of Qd such that Q is non-degenerate and
isotropic on V ′ = WR. For any finite set S = {∞}∪Sf of primes, the unitary representation
of SO(Q,R)V

′◦ on L2
0(SO(QS,QS)◦xd,S) is almost L4.
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Proof of Lemma 6.2.2. Suppose that Y ′ = H◦Sgxd,S is closed in Xd,S. Then so is g−1Y ′ =
(g−1H◦Sg)xd,S. By Lemma 6.1.2, g−1H◦Sg = O(Q,QS) for some non-degenerate integral
quadratic form Q in d variables. Consider a 3-dimensional linear subspace V of Rd where P∞
is isotropic and non-degenerate, and let V ′′ = g−1

∞ V . The unitary representations of HV ◦
∞ and

g−1
∞ HV ◦

∞ g∞ = SO(Q,R)V
′′◦ on L2(Y ′) and L2(SO(Q,QS)xd,S) are unitary equivalent. We’ll

show that the latter one is almost L4.
Choose a linear subspace W ⊆ Qd of dimension 3 such that the restrictions of Q to V ′′

and V ′ = WR have the same signature. By Witt’s Theorem—see [Ser95, p. 58]—there is
h0 ∈ SO(Q,R)◦ such that SO(Q,R)V

′′◦ = h0SO(Q,R)V
′◦h−1

0 . The left multiplication by
h0 is a measure-preserving homeomorphism SO(Q,QS)◦xd,S → SO(Q,QS)◦xd,S, equivariant
with respect to SO(Q,R)V

′◦ → SO(Q,R)V
′′◦ (the conjugation by h0). Hence the unitary

representations of these groups on L2
0(SO(Q,QS)◦xd,S) are unitary equivalent. The one of

SO(Q,R)V
′◦ is almost L4 by Lemma 6.2.3, so we are done.

The remaining of this section is devoted to the proof of Lemma 6.2.3.

6.2.1 Automorphic representations at ∞
We introduce here the technical statements we use to prove Lemma 6.2.3.

Let J be a semisimple Q-subgroup of GL(d). The group Λ∞ = J∞ ∩GL(d,Z) is a lattice
in J∞ by Borel, Harish-Chandra’s Theorem. For any positive integer N , the N -th principal
congruence subgroup of Λ∞ is defined as

Λ∞(N) = ker(Λ∞ → GL(d,Z/NZ)).

More generally, if S = {∞}∪Sf is a finite set of primes, then ΛS = Gd,S ∩Γd,S is a lattice in
Gd,S. If N is a natural number not divisible by any p ∈ Sf , the N -th principal congruence
subgroup ΛS(N) of ΛS is the kernel of ΛS → GL(d,Z/NZ). A congruence subgroup of ΛS is
a subgroup that contains a principal congruence subgroup.

Recall that the unitary dual of J∞, denoted by Ĵ∞, is the set of equivalence classes of
irreducible unitary representations. We endow it with the Fell topology—see [BdlHV08, p.

427]. If π is a unitary representation of J∞, its support suppπ is the set of elements of Ĵ∞

weakly contained in π. The automorphic spectrum Ĵ∞
Aut

of J is the closure in Ĵ∞ of⋃
N≥1

supp(L2(J∞/Λ∞(N)).

This notion is independent of the Q-embedding J ↪→ GL(d) since the commensurability
class of congruence subgroups is independent of the the Q-embedding—see [Ben09, Corol-
lary 2.8]. For us, an automorphic representation of J∞ is a unitary representation whose

support is contained in Ĵ∞
Aut

. The next lemma provides various examples of automorphic
representations.

Lemma 6.2.4. Consider a simple, simply-connected Q-subgroup J of GL(d) and a finite
set S = {∞} ∪ Sf of primes. Let Λ be a congruence subgroup of ΛS. Suppose that J∞ is
non-compact. The natural unitary representation of J∞ on L2(JS/Λ) is automorphic.
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Proof. First, let’s see that it is enough to treat the case where Λ is a principal congruence
subgroup of ΛS. If Λ′ is a finite-index subgroup of Λ, the natural map F : JS/Λ

′ → JS/Λ is a
JS-equivariant finite covering, thus we can identify L2(JS/Λ) with the subspace of functions
in L2(JS/Λ

′) constant on almost every fiber of F . So let’s assume that Λ = ΛS(N) with N
relatively prime to pS.

We’ll show that, as unitary representations of J∞,

suppL2(JS/ΛS(N)) =
⋃
n≥1

suppL2(J∞/Λ∞(NpnS)).

It suffices to see that there is, for n ≥ 1, a J∞-invariant subspace Hn of H = L2(JS/ΛS(N))
such that ∪n≥1Hn is dense in H, and the unitary representations of J∞ on L2(J∞/ΛS(NpnS))
and Hn are isomorphic.

For p prime and n ≥ 1 consider Kp = GL(d,Zp), Kn
p = ker(Kp → GL(d,Z/pnZ)) and

Un
p = Jp∩Kn

p . Suppose that Sf = {p1, . . . , p`}. We’ll denote by Un
Sf

the group Un
p1
×· · ·×Un

p`
.

For every n ≥ 1, J∞ × Un
Sf

is an open subgroup of JS, and we’ll see that it acts transitively

on JS/Λ. By the Strong Approximation Theorem [PR94, Theorem 7.2], J∞Λ is dense in
JS, hence JS = (J∞ × Un

Sf
)Λ. Note that (J∞ × Un

Sf
) ∩ ΛS(N) = Λ∞(NpnS), so there is an

identification

JS/ΛS(N) ' (J∞ × Un
Sf

)/Λ∞(NpnS).

We then have an isomorphism of J∞-spaces

J∞/Λ∞(NpnS) ' Un
Sf
\(J∞ × Un

Sf
)/Λ∞(NpnS),

which identifies L2(J∞/Λ∞(NpnS)) with the subspace Hn of Un
Sf

-invariant vectors of H. Since

the (Un
Sf

)n≥1 are arbitrarily small, ∪n≥1Hn is dense in H3.

Lemma 6.2.4 says that we can define also the automorphic spectrum of J∞ as the closure
in Ĵ∞ of the union of the supports, as unitary representation of J∞, of L2(JS/Λ), where S
runs though all the finite sets {∞} ∪ Sf of primes and Λ is any congruence subgroup of ΛS.
In the next chapter we’ll introduce the ring A of adèles of Q, thanks to which we construct
a natural unitary representation of J∞ that contains all the L2(JS/Λ). The automorphic
spectrum of J∞ can be also defined more succinctly as the support of this representation.

Following Li and Margulis, here is the first technical tool—see [LM16, Lemma 5]—we’ll
use to prove Lemma 6.2.3. As they remark in their article, it is a consequence of two
deep results from the theory of automorphic representations: the Kim-Sarnak bound for
the Ramanujan Conjecture for SL(2) over Q—see [Kim03, Appendix 2]—and the Jacquet-
Langlands Correspondence—see [Lub94, Theorem 3.4, p. 163].

Proposition 6.2.5. Let R be a non-degenerate integral quadratic form in 3 variables. Any

σ ∈ ̂Spin(R)
Aut

is either trivial or almost L4.

3A continuous function F : JS/Λ→ C with compact support is the uniform limit as n→∞ of Fn : x 7→∫
UnSf

F (ux)du and Cc(JS/Λ) is dense in H.
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In the proof of Lemma 6.2.3 we’ll show that the unitary representation of SO(Q,R)V
′◦ on

L2
0(SO(QS,QS)◦xd,S) is automorphic using the so-called Burger-Sarnak’s Restriction Principle—

see [BS91, Theorem 1.1]:

Theorem 6.2.6. Let J be a connected semisimple linear Q-group and let J’ be a semisimple
Q-subgroup of J. If π is an automorphic representation of J∞, then π

∣∣
J ′∞

is an automorphic

representation of J ′∞.

6.2.2 The proof of Lemma 6.2.3

Having now the adequate tools at our disposal, let’s complete the proof of Lemma 6.2.3.

Proof of Lemma 6.2.3. Let R be the restriction of Q to W . We’ll denote by HR and HQ

the semisimple Q-groups SO(R) and SO(Q). Let ι : HR → HQ be the natural morphism
of Q-groups such that ι(HR

k ) = SO(Q, k)Wk for any field extension k of Q. Let JR be the
Q-group Spin(R) and let R be the covering JR → HR. We define Q : JQ → HQ in the same
fashion. To become familiar with the new notation, remark that SO(Q,QS)◦ = QS(JQS ).
The composition ι ◦ R lifts to ι̃ : JR → JQ, so we have the commutative diagram

JR JQ

HR HQ

R

ι̃

ι

Q

We denote Λ = Q−1
S (HQ

S ∩ Γd,S), which is a congruence subgroup of JQS . To see that the

unitary representation of SO(Q,R)V
′◦ on L2

0(QS(JQS )xd,S) is almost L4, it suffices to show that

one of JR∞ on L2
0(JQS /Λ) is almost L4, because R∞ has finite kernel and by the commutativity

of the diagram. We see JR as a Q-subgroup of JQ using ι̃. The unitary representation π
of JQ∞ on L2

0(JQS /Λ) is automorphic by Lemma 6.2.4, hence σ = π
∣∣
JR∞

is automorphic by

Theorem 6.2.6. Proposition 6.2.5 says that an irreducible automorphic representation of JR∞
is either trivial or almost L4, hence we have to show that the trivial representation of JR∞
is not weakly contained in σ. If this happens, then σ would have a non-zero JR∞-invariant
vector4, which is impossible. Indeed, if ϕ ∈ L2

0(JQS /Λ) is JR∞-invariant, then ϕ is JQ∞-invariant
by the Howe-Moore phenomenon—see Lemma 8.3.8. Since JQ∞ is normal in JQS , then ϕ—as
function on JQS —is JQ∞-invariant on the right. The group JQ∞ is non-compact, so JQ∞Λ is dense
in JQS by the Strong Approximation Theorem—see [PR94, Theorem 7.12]. This shows that
ϕ is almost surely constant. Recall that

∫
Y ′
ϕ = 0, so the only possibility is ϕ = 0.

6.3 Preparing to apply the mixing speed

Suppose that y1 = fxd,S and y2 = gxd,S are in a closed H◦S-orbit Y ′ in Xd,S. To prove
Proposition 6.0.1, we’ll apply Proposition 6.2.1 to smooth functions ϕ1, ϕ2 supported on

4Because the trivial representation is an isolated point in ĴR
Aut

by Proposition 6.2.5.
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small neighborhoods U1,U2 of y1 and y2. We have to estimate the L2-norms of ϕi and of
some derivative of it, so it will be convenient to choose Ui that identifies with a neighborhood
of the identity in HS, in that way we can do the computations on HS. We take care of this
in 6.3.1, and in 6.3.2 we construct the bump function on HS that we’ll use to define the ϕ′is.

6.3.1 Injectivity radius in Xd,S

For any r > 0 we define

G∞,d(r) = {g∞ ∈ G∞,d(r) | ||g∞ − Id||∞ < r and ||g−1
∞ − Id||∞ < r},

and
Gd,p(r) = {gp ∈ Gd,p | ||gp − Id||p ≤ r and ||g−1

p − Id||p ≤ r}.
For g ∈ Gd,S and ν ∈ S we denote

rν(g) = T−1
ν (g) =

| det gν |ν
||gν ||dν

,

and

Bg
S = G∞,d

(
r∞(g)

3d2 · d!

)
×
∏
p∈Sf

Gd,p(rp(g)).

Lemma 6.3.1. The map Bg
S → Xd,S, f 7→ fgxd,S is injective for any g ∈ Gd,S.

We’ll use the following observation in the proof of Lemma 6.3.1.

Lemma 6.3.2. The ball Gd,p(r) is a compact-open subgroup of Gd,p for any 0 < r ≤ 1.

Proof. Consider gp ∈ Gd,p. If ||gp − Id||p ≤ 1, then gp has coefficients in Zp because

||gp||p ≤ max{||gp − Id||p, ||Id||p} = 1.

This implies that Gd,p(1) = GL(d,Zp) of Gd,p. More generally we have

Gd,p(p
−n) = ker(GL(d,Zp)→ GL(d,Z/pnZ))

for any positive integer n.

Proof of Lemma 6.3.1. The statement is equivalent to

(g−1(Bg
S)−1Bg

Sg) ∩ Γd,S = {Id}

for any g ∈ Gd,S. Suppose that f, h ∈ Bg
S and γ = (γ0, . . . , γ0) ∈ Γd,S verify γ = g−1f−1hg.

We’ll prove that γ0 − Id has integral coefficients and ||γ0 − Id||∞ < 1. Note that f−1
p hp is in

Gd,p for p ∈ Sf since rp(g) ≤ 1. Hence:

||γ0 − Id||p = ||g−1
p (f−1

p hp − Id)gp||p
≤ ||g−1

p ||p||gp||p||f−1
p hp − Id||p

≤
||gp||dp
| det gp|p

· rp(g) = 1,
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so γ − Id has integral coefficients. The computation in the real coordinate is similar:

||γ0 − Id||∞ = ||g−1
∞ (f−1

∞ h∞ − Id)g∞||∞
≤ d2||g−1

∞ ||∞||g||∞||f−1
∞ h∞ − Id||∞

≤ d · d!

r∞(g)
(||f−1

∞ h∞ − f−1
∞ ||∞ + ||f−1

∞ − Id||∞)

<
d2 · d!

r∞(g)
(||f−1

∞ ||∞||h∞ − Id||∞ + ||f−1
∞ − Id||∞)

<
d2 · d!

r∞(g)
· r∞(g)

3d2 · d!

(
r∞(g)

3d2 · d!
+ 2

)
≤ 1

3

(
1

3d2
+ 2

)
< 1.

The only integral matrix with∞-norm strictly less than 1 is the zero matrix, so γ0 = Id.

6.3.2 Bump functions on closed H◦S-orbits

Let HS be the orthogonal group of a standard quadratic form P = (Pν)ν∈S on Qd
S and

suppose that Y ′ = H◦Sgxd,S is closed in Xd,S. We define Ug = (Bg
S ∩HS)gxd,S, rg = r∞(g)

3d2·d!
and

ϕg : Y ′ → [0,∞) as

ϕg(y) =

{
ψrg(b∞) if y = bgxd,S with b ∈ HS ∩Bg

S,

0 if y ∈ Y ′ − Ug.

Here ψrg is as in Lemma A.2.18. The function ϕg is well-defined—recall that Bg
S → Xd,S, b 7→

bgxd,S is injective by Lemma 6.3.1—, H◦∞-smooth and has support in Ug. Here we prove some
properties of ϕg that we’ll use in the proof of Proposition 6.0.1. We’ll use freely the properties
of ψrg proved in Lemma A.2.18. Before doing computations, we remind the reader that if
Pν(x) = a1x

2
1 + · · ·+ adx

2
d, we endow Hν with the Haar measure induced by the basis

Eij − aia−1
j Eji, 1 ≤ i < j ≤ d

of the Lie algebra of Hν—see the introduction of Appendix A. We have

∫
Y ′
ϕgdµY ′ =

∫
HS∩Bg

S

ψrg(b∞)dλHS(b)

= λHSf (HSf ∩Bg
Sf

)

∫
H∞(rg)

ψrg(b∞)dλH∞(b∞)

= (p−3
S rSf (g))

1
2
d(d−1) < 1,
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where rSf (g) =
∏

p∈Sf rp(g). To get the last line we used the volume formula of Corollary

A.2.12. Note that rp(g) ≤ 1 for p ∈ Sf , hence p−3
S rSf (g) < 1. Similarly we have

||ϕg||L2(Y ′) =

(∫
HS∩Bg

S

ψ2
rg(b∞)dλHS(b)

) 1
2

= λHSf (HSf ∩Bg
Sf

)
1
2 ||ψrg ||L2(H∞)

<Mdr
−( 1

4
d(d−1)+1)

g

= (3d2 · d!)
1
4
d(d−1)+1Mdr∞(g)−( 1

4
d(d−1)+1), (6.3)

where Md is as in Lemma A.2.18, and5

||XH∞(ϕg)||L2(Y ′) ≤ ||XH∞(ψrg)||L2(H∞)

≤ (3d2 · d!)
1
4
d(d−1)+1Md||XH∞||∞r∞(g)−( 1

4
d(d−1)+1)

= 2(3d2 · d!)
1
4
d(d−1)+1Mdr∞(g)−( 1

4
d(d−1)+1). (6.4)

Recall that ||ϕg||XH∞ = (||ϕg||2L2(Y ′) + ||XH∞(ϕg)||2L2(Y ′))
1
2 . Combining (6.3) and (6.4) we

obtain

||ϕg||XH∞ ≤ Ndr∞(g)−( 1
4
d(d−1)+1),

where Nd = 3(3d2 · d!)
1
4
d(d−1)+1Md. We gather these properties of ϕg in the next lemma.

Lemma 6.3.3. Consider a finite set of primes S = {∞} ∪ Sf and d ≥ 3. Let HS be the
orthogonal group of a standard quadratic form on Qd

S. Suppose that H∞ is non-compact.
Take g ∈ Gd,S such that Y ′ = H◦Sgxd,S is closed. The function ϕg : Y ′ → [0,∞) has support
in Ug, is H◦∞-smooth,

||ϕg||L1(Y ′) = (p−3
S rSf (g))

1
2
d(d−1) < 1,

and

||ϕg||XH∞ ≤ Ndr∞(g)−( 1
4
d(d−1)+1).

6.4 The proof of the dynamical statement

We are finally ready to prove the main result of this chapter.

Proof of Proposition 6.0.1. Let’s choose η ∈ HS such that ηgxd,S and fxd,S are in the closed
H◦S-orbit Y ′ ⊆ Y in Xd,S, η∞ is a diagonal matrix with ±1 in the main diagonal, ||ηp||p ≤ p
for odd p ∈ Sf and ||η2||2 ≤ 4 if 2 ∈ Sf 6.

Consider the H◦∞-smooth functions ϕ1 := ϕηg, ϕ2 = ϕf : Y ′ → [0,∞) of Lemma 6.3.3,
supported respectively in the open subsets Uηg and Uf of Y ′. By Proposition 6.2.1 and

5Here XH∞ ∈ h∞ is as in Proposition 6.2.1.
6This is possible thanks to lemmas 3.4.1 and 3.4.3 when Hp is non-compact and Lemma 3.3.12 when Hp

is compact.
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Lemma 6.3.3 we have∣∣∣∣∣
∫
Y ′

(ϕ1 ◦ ρ(a∞,−t))ϕ2dµY −
(p−6
S rSf (f)rSf (ηg))

1
2
d(d−1)

µY (Y ′)

∣∣∣∣∣
∞

≤ De−
t
6 ||ϕ1||XH∞ ||ϕ2||XH∞

≤ DN 2
d e
− t

6 (r∞(f)r∞(g))−( 1
4
d(d−1)+1).

(6.5)

Recall that ρ = ρH∞ is the morphism SL(2,R)→ H∞ of Proposition 6.2.1. Let’s assume that
(ρ(a∞,t)Uηg) ∩ Uf = ∅ for any t ∈ [0, 1]7. Then, for any such t,

∫
Y ′

(ϕ1 ◦ ρ(a∞,t))ϕ2dµY ′ = 0,
so (6.5) yields

(p−6
S rSf (f)rSf (ηg))

1
2
d(d−1)

µY (Y ′)
≤ DN 2

d e
− t

6 (r∞(f)r∞(g))−( 1
4
d(d−1)+1). (6.6)

Let t0 − 1 be positive number for which we have equality in (6.6) for t = t0 − 1. Then

DN 2
d e
− t0

6 (r∞(f)r∞(g))−( 1
4
d(d−1)+1) <

(p−6
S rSf (f)rSf (ηg))

1
2
d(d−1)

µY (Y ′)
.

Let h′∞ = ρ(b∞,t0). From (6.5) we deduce that∫
Y ′

(ϕ1 ◦ (h′∞)−1)ϕ2dµY (Y ′) 6= 0,

so h′∞Uηg meets Uf . Thus there are

s ∈ Bηg
S ∩H

◦
S and t ∈ Bf

S ∩H
◦
S

such that (t−1h′∞s)ηgxd,S = fxd,S. We set h? = t−1h′∞sη. For p ∈ Sf we have

||h?p||p = ||t−1
p spηp||p ≤ ||ηp||p ≤

{
p if p > 2,

4 if p = 2.

It remains only to prove the bound for ||h?∞||∞. Before doing so, note that by the choice of
t0 we have

(p−6
S rSf (f)rSf (ηg))

1
2
d(d−1) = DN 2

d e
1
6 e−

t0
6 (r∞(f)r∞(g))−( 1

4
d(d−1)+1)µY (Y ′),

so

et0 < 3D6N 12
d p

18d(d−1)
S (rSf (f)rSf (ηg))−3d(d−1)(r∞(f)r∞(g))−( 3

2
d(d−1)+6)µY (Y )6

< 3 · 23d2(d−1)D6N 12
d p

9d3

S (rSf (f)rSf (g))−3d(d−1)(r∞(f)r∞(g))−( 3
2
d(d−1)+6)µY (Y )6.

7If this is not the case there is h? ∈ HS such that h?gxd,S = fxd,S , ||h?p||p ≤ p for odd p ∈ Sf , ||h?2||2 ≤ 4
if 2 ∈ Sf and ||h?∞||∞ < 12d2.
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To obtain the last line we use that rSf (ηg)−1 ≤ 2dpdSrSf (g)−1 by the choice of η8. Recall that
Tν(g) = rν(g)−1 by definition. Now

||h?∞||∞ = ||t−1
∞ h

′
∞s∞η∞||∞

≤ d2||t−1
∞ ||∞||s∞||∞||h′∞||∞

≤ 4d2||h′∞||∞
< 12 · 23d2(d−1)D6N 12

d d
2p9d3

S (rSf (g)rSf (g))−3d(d−1)(r∞(f)r∞(g))−( 3
2
d(d−1)+6)µY (Y )6

= Cdp
9d3

S (TSf (g)TSf (g))3d(d−1)(T∞(f)T∞(g))
3
2
d(d−1)+6µY (Y )6,

which completes the proof.

8In fact rSf (ηg)−1 ≤ pdSrSf (g)−1 if 2 /∈ Sf .
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Chapter 7

Dynamical statement II: R-anisotropic
case

The purpose of this chapter is to establish Proposition 5.2.3, which is the main ingredient
of the proof of the criterion of ZS-equivalence of R-anisotropic integral quadratic forms—
Theorem 5.1.2. We’ll use the same notation as in Chapter 6.

Consider a finite set S = {∞}∪Sf of primes and d ≥ 3. We look at the action of HS—the
orthogonal group of a standard quadratic form on Qd

S—on the space Xd,S of lattices of Qd
S,

but now H∞ is compact. An important difference with respect to the dynamical setting in
the previous chapter is that closed HS-orbits in Xd,S are compact1. Here is the main result
we’ll prove.

Proposition 7.0.1. Consider a finite set of primes S = {∞}∪Sf and d ≥ 3. Let HS be the
orthogonal group of a standard quadratic form on Qd

S. Suppose that H∞ is compact and Hp0

is non-compact for some p0 > 2 in Sf . Take f, g ∈ Gd,S such that fxd,S and gxd,S are in a
compact HS-orbit Y in Xd,S. Then there is h? ∈ HS such that h?gxd,S = fxd,S,

||h?p0 ||p0 ≤ Fdp
13d2

S (Tp0(f)Tp0(g))6(TS(f)TS(g))d(d−1)µY (Y )4,

||h?p||p ≤ p for odd p ∈ Sf − {p0} and ||h?2||2 ≤ 4 is 2 ∈ Sf .

Remark 7.0.2. The assumption p0 > 2 can be removed easily, we just need to extend Lemma
3.5.3 to p = 2.

The main idea behind the proof of Proposition 7.0.1 is now an effective uniform mixing
speed—Proposition 7.1.1—for the action of H◦p0 on compact H◦S-orbits in Xd,S, which is the
topic of Section 7.1. Having this, we prove Proposition 7.0.1 in Section 7.2. Many arguments
will be identical to those in Chapter 6, so we’ll take the liberty of skipping some details.

7.1 Mixing speed for compact H◦S-orbits

Once more we’ll state the mixing speed for compact H◦S-orbits just for a copy in Hp0 of an
orthogonal group of a ternary quadratic form.

1Indeed, if HSgxd,S is closed, g−1HSg = O(Q,QS) for a non-degenerate integral quadratic form Q, and
g−1HSgxd,S is homeomorphic to O(Q,QS)/O(Q,ZS), which is compact since O(Q,R)/O(Q,Z) is compact—
see [Ben09, Theorem 5.8, p.48].

71
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Consider p > 2. Suppose that Hp is the orthogonal group of a standard isotropic quadratic
form P on Qd

p. Then

P (x) = x2
1 − x2

2 + a3x
2
3 + · · ·

and R(x) = x2
1−x2

2 +a3x
2
3 is a standard isotropic quadratic form on V = Qpe1⊕Qpe2⊕Qpe3.

We define the morphism ρHp : SL(2,Qp)→ H◦p as the composition

SL(2,Qp)
ιp−→ SO(R,Qp)

◦ −→ HV ◦
p ↪→ H◦p ,

with ιp as in Lemma 3.5.32. For any positive integer m we denote

ap,m =

(
pm 0
0 p−m

)
∈ SL(2,Qp). (7.1)

Let Kd,p = GL(d,Zp) and Kd,p(n) = ker(Kd,p → GL(d,Z/pnZ)). Here is the uniform mixing
speed.

Proposition 7.1.1. Consider a finite set S = {∞} ∪ Sf of primes and d ≥ 3. Let HS

be the orthogonal group of a standard quadratic form on Qd
S. Suppose that H∞ is compact

and Hp0 is non-compact for some p0 > 2. Let ρ = ρHp0 : SL(2,Qp0) → H◦p0 as defined
above. Consider a compact H◦S-orbit Y ′ in Xd,S and L2-functions ϕ1 and ϕ2 on Y ′ that are
respectively H◦p0 ∩ (Kd,p0(n1)) and H◦p0 ∩ (Kd,p0(n2))-invariant. Then∣∣∣∣∫

Y ′
(ϕ1 ◦ ρ(ap0,−m))ϕ2dµY ′ −

∫
Y ′
ϕ1dµY ′

∫
Y ′
ϕ2dµY ′

µY ′(Y ′)

∣∣∣∣ ≤ p
−m

2
0

(
10p

3
2

(n1+n2+2)

0 ||ϕ1||L2 ||ϕ2||L2

)
.

Lemma 7.1.2 shows that the unitary representation of HV ◦
p0

on L2
0(Y ′) is tempered. Let’s

see first how to deduce Proposition 7.1.1 form Lemma 7.1.2: the unitary representation
SL(2,Qp0) y L2

0(Y ′) (through ρ) is also tempered since ιp0 is a finite covering. Using
Lemma 3.5.3 we see that

ρ(K2,p0(n+ 1) ∩ SL(2,Qp)) ⊂ Kd,p0(n),

thus ϕi is invariant with respect to K2,p0(ni + 1)∩ SL(2,Qp). Then the inequality of Propo-
sition 7.1.1 is obtained by applying Corollary 4.3.7 to ψ1 and ψ2, the orthogonal projections
of ϕ1, ϕ2 to L2

0(Y ′), and using that ||ψi||L2 ≤ ||ϕi||L2 .
The fact that HV ◦

p0
y L2

0(Y ′) is tempered follows from the next result in the same way
that Lemma 6.2.3 implies Lemma 6.2.2.

Lemma 7.1.2. Let S = {∞} ∪ Sf be a finite set of primes and let Q be an R-anisotropic
integral quadratic form in d ≥ 3 variables. Consider a 3-dimensional linear subspace W of
Qd, p0 ∈ Sf and V ′ = WQp0 . Suppose that Q

∣∣
V ′

is isotropic and non-degenerate. Then the

unitary representation of SO(Q,Qp0)
V ′◦ on L2

0(SO(Q,QS)◦xd,S) is tempered.

In 7.1.1 and 7.1.3 we introduce the tools we’ll use in the proof of Lemma 7.1.2, which we
give in 7.1.4.

2As in the real case, if W is a linear subspace of Qp on which P is non-degenerate, HW
p consists of the

h ∈ Hp such that h(W ) = W and h acts as the identity on the P -orthogonal complement of W .
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7.1.1 Automorphic representations at finite primes

Let J be a connected semisimple Q-subgroup of GL(d). In Chapter 6 we defined the auto-
morphic spectrum of J∞, and now we extend this notion to Jp. For a finite set of primes
S = {∞}∪Sf , let ΛS be the diagonal copy of JZS in JS and let ΛS(N) be the corresponding
principal congruence subgroup for any natural number N relatively prime to pS. If π is a
unitary representation of JS and S ′ ⊆ S, we’ll denote by suppS′π the support of the restric-

tion of π to JS′ . We endow ĴS with its Fell topology. The automorphic spectrum of Jp is the

subset of Ĵp given by

Ĵp
Aut

=
⋃
p-N

supppL
2(JSp/ΛSp(N)).

The proof of the next lemma goes along the same lines as the proof of Lemma 6.2.43.

Lemma 7.1.3. Let J be a simple connected Q-group and let S = {∞}∪ Sf be a finite set of
primes. Suppose that Jp is non-compact for some p ∈ Sf . Then the unitary representation
of Jp on L2(JS/Λ) is automorphic, for any congruence subgroup Λ of ΛS.

We’ll need an extension of the Restriction Principle of Burger and Sarnak—Theorem
6.2.6—to finite primes.

Theorem 7.1.4. Let J′ ⊆ J be connected semisimple Q-groups and let ν be a prime number.
The restriction to J ′ν of an automorphic representation of Jν is automorphic.

This result is proved by Clozel and Ullmo [CU04, Théorème 5.1]4.

7.1.2 Unitary representations of adelic groups

We make a small technical detour to explain the form of irreducible unitary representations
of adelic groups.

The ring of adèles A of Q is the restricted product of all the Qν with respect to (Zp)p.
In concrete terms, A consists of the a ∈

∏
ν Qν such that ap is in Zp for almost every p5,

endowed with the topology having as basis all the subsets of the form
∏

ν Uν , where Uν is an
open subset of Qν and Up = Zp for almost every p. The sum and multiplication on A are
defined component-wise. A is a locally compact topological ring. We work with the Haar
measure λA of A determined by

λA (U) =
∏
ν

λQν (Uν),

for any basic open subset U =
∏

ν Uν . If r ∈ Q, then r is a p-adic integer for almost any p,
hence there is a diagonal embedding Q ↪→ A, whose image we identify with Q. Consider the
subset

W = (−1, 1)×
∏
p

Zp

3Minor modifications are required. For example, when applying the Strong Approximation Theorem:
since we are not assuming that J is simply connected, JpΛ might not be dense in JS , but its closure is a
finite index subgroup of JS .

4See also [CU04, Section 5.4, p. 227], where it’s shown that it’s not necessary to ask for J simply connected.
5This means for all except finitely many p.
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of A. Note that Q is a lattice in A since Q ∩W = {0} and A = Q +W .
Consider now a Q-subgroup H of GL(d). The adelic group HA is the restricted product of

the Hν with respect to (Up)p, where Up = Hp ∩GL(d,Zp). It is a locally compact group, and

one can describe its unitary dual in terms of the Ĥν when H satisfies a technical condition:
we say that H is nice if Hν is a group of type I—for this definition, see [GGPS69, p. 222]—for

every ν and, for almost any p, the subspace HUp
σp of Up-invariant vectors of Hσp is of dimension

at most one for any σp ∈ Ĥp. The unitary representation σp is spherical if dim HUp
σp = 1.

Assume that H is nice. Here is the construction of irreducible representations of HA:
Consider an irreducible unitary representation σν of Hν for each prime ν. Suppose that σp is
spherical for almost any p and, for such p, choose an Up-invariant unit vector wp ∈ Hσp . The
restricted tensor product σ = ⊗νσν is defined as follows: Let H′σ be the linear span of the
vectors ⊗νvν with vν ∈ Hσν each ν and vp = wp for almost every p. We consider the inner
product

〈⊗νvν ,⊗νv′ν〉 =
∏
ν

〈vν , v′ν〉.

Let (Hσ, 〈·, ·〉) be the Hilbert space obtained by completing (H′σ, 〈·, ·〉). The action of HA on
Hσ given by

σ(h)(⊗νvν) = ⊗νσν(hν)vν ,

is a unitary representation σ. It doesn’t depend on the choice of the Up-invariant vectors wp.

The following description of ĤA is taken from [GGPS69, p. 273, 274].

Theorem 7.1.5. Let H be a nice Q-subgroup of GL(d). Any irreducible unitary repre-

sentation of HA is of the form ⊗νσν, where σν ∈ Ĥν and σp spherical for almost any p6.
Conversely, any unitary representation of HA of this form is irreducible.

We close this parenthesis with the lemma that allows to apply the previous theorem to
orthogonal groups.

Lemma 7.1.6. The special orthogonal group SO(Q) of a non-degenerate rational quadratic
form Q in d ≥ 3 variables is nice.

7.1.3 Automorphic representations of quaternion algebras

Here we cite two important technical results we’ll use to prove Lemma 7.1.2: the Jacquet-
Langlands Correspondence and a representation-theoretic formulation of a famous theorem of
Deligne about holomorphic modular forms. The role of these is similar to that of Proposition
6.2.5 in the previous chapter. Both are stated in terms of quaternion algebras. We start by
fixing some notation.

Let D be a Q-quaternion algebra. We’ll denote by GD the Q-group of automorphisms of
D. In concrete terms, for any prime ν, GD

ν ' Q×ν \D×ν since all the automorphisms of Dν are
interior by the Skolem-Noether Theorem. Recall that we say that D is ramified at ν if Dν is
a division algebra. When this doesn’t happen, Dν 'M2(Qν) and we say that D is split at ν.
Alternatively, D ramifies or splits at ν if GD

ν is respectively compact and non-compact. In

6The σν are unique up to unitary equivalence.
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the latter case GD
ν ' PGL(2,Qν). Let’s fix a Q-embedding GD ↪→ GL(3)7. For any finite

set S = {∞} ∪ Sf of primes, let ΛD
S be the diagonal copy of GD

ZS in GD
S . We denote ΛD the

diagonal embedding of GD
Q in GD

A .
In this chapter, the next result replaces Proposition 6.2.5.

Lemma 7.1.7. Let D be a Q-quaternion algebra ramified at ∞ and split at p0. Any ρ ∈
ĜD
p0

Aut
is either one-dimensional or tempered.

We’ll deduce Lemma 7.1.7 from the two technical results mentioned before. Suppose
that DQ is a division algebra. The first black box is the Jacquet-Langlands Correspondence,
a link between irreducible automorphic representations of GD

A and cuspidal representations
of PGL(2,A). We won’t cite the most general formulation, which is given in terms of the
multiplicative group of D, rather than GD—see [Gel75, Theorems 10.1 and 10.2]. For our
purposes, the following statement taken from [Lub94, Theorem 6.2.1, p. 80] is enough.

Theorem 7.1.8. Consider Q-quaternion algebra D and let S be the set of primes on which
D ramifies. Let σ′ = ⊗σ′ν be an irreducible unitary representation of GD

A contained in
L2(GD

A /G
D
Q ). If σ′ is not one-dimensional, there is an irreducible unitary representation

σ = ⊗σν of PGL(2,A) contained in L2(PGL(2,A)/PGL(2,Q)) such that:

a) σν is in the discrete series of PGL(2,Qν) if ν ∈ S.

b) σν and σ′ν are unitary equivalent if ν /∈ S.

Our second black box is a theorem of Deligne, originally formulated in the language of
modular forms. Again, the statement here—taken form [Lub94, Theorem 6.1.2, p. 79]—is
weaker than the original one, but it spares us the work of defining cuspidal representation.

Theorem 7.1.9. Let σ = ⊗νσν be an irreducible unitary representation of PGL(2,A) con-
tained in L2(PGL(2,A)/PGL(2,Q)). If σ∞ is in the discrete series of PGL(2,R), then σp
is tempered for any p <∞.

We are ready to prove the lemma about irreducible automorphic representations of GD
p0

Proof of Lemma 7.1.7. To start, note that GD
A /G

D
Q and GQ

S /Λ are compact since GD
∞ is com-

pact8, where S = {∞}∪Sf is a finite set of primes and Λ is any congruence subgroup of ΛD
S —

see [Ben09, Theorem 5.8, p. 48]. Thus L2(GD
A /Λ

D) and L2(GD
S /Λ) decompose as a Hilbert

sum of countably many irreducible unitary representations—of GD
A and GD

S , respectively—,
each with finite multiplicity [GGPS69, Theorem, p. 23].

Let Ap0 be the subset of ĜD
p0

consisting of the equivalence classes of one-dimensional or

tempered irreducible unitary representations. Since Ap0 is closed9 in ĜD
p0

, it suffices to prove

7Every automorphism of Dν is an orientation-preserving isometry of (Im(Dν), NDν ), hence the Q-
embedding can be defined writing any automorphism in terms of a basis of D.

8More generally, this holds whenever D is not isomorphic to M2(Q). Equivalently, when D ramifies at
some ν.

9Tempered irreducible unitary representations form a closed subset since they are the support of L2(GDp0).
Also, there are finitely many one-dimensional representations, each corresponding to a closed singleton in

ĜDp0—see [BdlHV08, Corollary F.2.9, p. 432].
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that suppp0L
2(GD

Sp
/Λ) is contained in Ap0 for any congruence subgroup Λ of ΛD

Sp0
. Take

ρ ∈ ĜD
p0

contained in L2(GD
Sp0
/Λ). As we did in the proof of Lemma 6.2.4, one can show that

L2(GD
A /Λ

D) contains a subrepresentation of GD
Sp0

unitary equivalent to L2(GD
Sp0
/Λ)—see also

[Lub94, Proposition 6.3.1, p. 82]—, hence there is an irreducible representation σ′ = ⊗νσ′ν
of GD

A contained in L2(GD
A /Λ

D) such that σ′p0 is unitary equivalent to ρ. Since ρ is not one-
dimensional, neither is σ′, so it corresponds to an irreducible unitary representation σ = ⊗νσν
of PGL(2,A) contained in L2(PGL(2,A)/PGL(2,Q)) by Theorem 7.1.8. Since D ramifies
at ∞, σ∞ is in the discrete series of PGL(2,R), so σp0 is tempered by Theorem 7.1.9. As D
splits at p0, σp0 ' σ′p0 ' ρ, so we are done.

Now we reformulate Lemma 7.1.7 in terms of quadratic forms.

Corollary 7.1.10. Consider a non-degenerate integral quadratic form R in 3 variables. Sup-
pose that R is R-anisotropic and Qp0-isotropic. An automorphic representation of HR

p0
that

doesn’t contain one-dimensional unitary representations is tempered.

Proof. Let D be the Q-quaternion algebra such that SO(R) and GD are Q-isomorphic. Then

D ramifies at ∞ and splits at p0. Consider Ap0 ⊆ ĜD
p0

an in the proof of Lemma 7.1.7. If an
automorphic representation π of HR

p0
contains weakly a one-dimensional representation ρ, in

fact π must contain ρ since the points in Ap0 corresponding to one-dimensional representations
are isolated in Ap0 .

7.1.4 The proof of the mixing speed

We are ready to prove the representation-theoretic result that gives the effective mixing
speed.

Proof of Lemma 7.1.2. Let R be the restriction of Q to W . HQ and HR denote the groups
SO(Q) and SO(R). We extend any h ∈ HR

Q to Qd by the identity of the Q-orthogonal

complement of W . This defines a Q-morphism HR ↪→ HQ, which we use to see HR as
Q-subgroup of HQ.

The space Y = HQ
S xd,S has finitely many HQ◦

S -orbits, say Y ′1 = HQ◦
S xd,S, . . . , Y

′
` . Consider

the closed subspace L2
00(Y ) of the ϕ ∈ L2(Y ) with

∫
Y ′i
ϕ = 0 for 1 ≤ i ≤ `, and the natural

HQ◦
S -equivariant inclusion

L2
0(Y ′1) ↪→ L2

00(Y ). (7.2)

We’ll show that the unitary representation of HR
p0

on L2
00(Y ) is tempered. This implies the

result we seek by (7.2) and since HR◦
p0

is an open, finite-index subgroup of HR
p0

.

Let π be the unitary representation of HQ
S on L2

00(Y ). π
∣∣
HQ
p0

is automorphic by Lemma

7.1.3, so π
∣∣
HR
p0

is also automorphic thanks to Theorem 7.1.4. So, according to Corollary

7.1.10, it suffices to check that L2
00(Y ) doesn’t contain one-dimensional representations of

HR
p0

. Take ϕ ∈ L2
00(Y ) such that

π(h)ϕ = χ(h)ϕ

for every h ∈ HR
p0

, where χ is a (unitary) character of HR
p0

. Since χ is trivial on HR◦
p0

, ϕ
is HR◦

p0
-invariant. As HR◦

p0
has non-trivial unipotents, ϕ is HQ◦

p0
-invariant by Lemma 8.3.8.
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As function on HQ
S , ϕ is HQ◦

p0
-invariant on the left and ΓQS -invariant on the right, where

ΓQS = (SO(Q,ZS) ↪→ HQ
S ). But HQ◦

p0
is a normal subgroup of HQ

S , thus ϕ is also HQ◦
p0

-

invariant on the right. By the Strong Approximation Theorem, HQ◦
S is contained in the

analytic closure of HQ◦
p0

ΓQS , hence ϕ is HQ◦
S -invariant on the left—thus also on the right since

HQ◦
S E HQ

S . This shows that ϕ is almost surely constant on each Yi, but recall that
∫
Y ′i
ϕ = 0,

so necessarily ϕ = 0.

7.2 The proof of the dynamical statement

Having the uniform mixing speed of Proposition 7.1.1 at our disposal, we establish now the
dynamical result behind our criterion of ZS-equivalence for R-anisotropic integral quadratic
forms.

Proof of Proposition 7.0.1. We choose η ∈ HS such that ηgxd,S and fxd,S are in the same
compact H◦S-orbit Y ′ ⊆ Y , ||ηp||p ≤ p for odd p ∈ Sf , ||η2||2 ≤ 4 if 2 ∈ Sf and η∞ =
diag(±1, 1, . . . , 1)10.

For g′ ∈ Gd,S, recall that we introduced in 6.3.1 the small balls

Bg′

S = Gd,∞

(
r∞(g′)

3d2 · d!

)
×
∏
p∈Sf

Gd,p(p
−3rp(g

′)),

where rν(g
′) = | det g′ν |ν

||g′ν ||dν
and rS′(g

′) =
∏

ν∈S′ rν(g
′) if S ′ ⊆ S. Consider the neighborhoods of

fxd,S and ηgxd,S in Y ′

U = (Bf
S ∩H

◦
S)fxd,S, V = (Bηg

S ∩H
◦
S)ηgxd,S.

Let n2 = − logp0(rp0(f)) + 4. Consider ρ : SL(2,Qp0) → Hp0 as in Proposition 7.1.1. Note
that U is invariant under

H◦p0 ∩Gd,p0(p
−3
0 rp(f)) = H◦p0 ∩Kd,p0(p

−(n2−1)).

In other words, ϕ2 = 1U is a H◦p0 ∩Kd,p0(p
−(n2−1))-invariant vector of L2(Y ′). By the same

token, if n1 = − logp0(rp0(ηg))+4, then ϕ1 = 1V isH◦p0∩Kd,p0(p
−(n1−1))-invariant. Proposition

7.1.1 applied to ϕ1 and ϕ2 yields∣∣∣∣µY ((ρ(ap0,m)V) ∩ U)− µY (U)µY (V)

µY (Y ′)

∣∣∣∣
∞
≤ p

− 1
2
m

0 (10p
3
2

(n1+n2)

0 ||1U ||L2||1V ||L2)

= p
− 1

2
m

0 (10p12
0 (rp0(f)rp0(ηg))−

3
2 (µY (U)µY (V))

1
2 ),
(7.3)

for any m ≥ 1. Suppose that ρ(ap0,1)V and U are disjoint11. Let m0 be the smallest positive

integer such that the right-hand side of (7.3) is strictly smaller than µY (U)µY (V)
µY (Y ′)

and set

10As before, this is possible thanks to lemmas 3.4.1 and 3.3.12.
11Otherwise there is h? ∈ HS such that h?gxd,S = fxd,S , ||h?p0 ||p0 ≤ p40, ||h?p||p ≤ p for odd p ∈ Sf − {p0}

and ||h?2||2 ≤ 4 if 2 ∈ Sf .
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h′p0 = ρ(ap0,m0). From (7.3) we deduce that that h′p0V meets U , hence there are

s ∈ Bf
S ∩H

◦
S and t ∈ Bηg

S ∩H
◦
S

such that (t−1h′p0s)ηgxd,S = fxd,S. We set h? = t−1h′p0sη, which is in HS. For p ∈ Sf − {p0}
we have

||h?p||p = ||t−1
p spηp||p ≤ ||ηp||p ≤

{
p if p > 2,

4 if p = 2.

Before bounding h?p0 note that by the choice of m0

µY (U)µY (V)

µY (Y ′)
≤ p

− 1
2
m

0 (10p
25
2

0 (rp0(f)rp0(ηg))−
3
2 (µY (U)µY (V))

1
2 ),

thus
pm0

0 ≤ 102p25
0 (rp0(f)rp0(ηg))−3(µY (U)µY (V))−1µY (Y )2. (7.4)

Since U and Bf
S have the same volume by Lemma 6.3.1, using the volume estimate of Lemma

A.2.1 and Corollary A.2.12 we get

µY (U)−1 = λHS(Bf
S)−1 ≤ Fdp

3
2
d(d−1)

S rS(f)−
1
2
d(d−1),

where Fd = R−1
d (3d2 · d!)

1
2
d(d−1) with Rd as in Lemma A.2.1. Similarly

µY (V)−1 ≤ Fdp
3
2
d(d−1)

S rS(ηg)−
1
2
d(d−1).

Now we go back to (7.4):

pm0
0 ≤ (10Fd)2p25

0 p
3d(d−1)
S (rp0(f)rp0(ηg))−3(rS(f)rS(ηg))−

1
2
d(d−1)µY (Y )2.

Since ||ηp||p ≤ p for odd p ∈ Sf , then rp(ηg)−1 ≤ pdrp(g)−1. If 2 ∈ Sf , ||η2||2 ≤ 4, so
r2(ηg)−1 ≤ 4dr2(g)−1. Thus

pm0
0 ≤ (10Fd)2 · 2

1
2
d2(d−1)p3d+25

0 p
7
2
d(d−1)

S (rp0(f)rp0(g))−3(rS(f)rS(g))−
1
2
d(d−1)µY (Y )2

≤ (10Fd)2 · 2
1
2
d2(d−1)p

1
2

(7d2−d+50)

S (rp0(f)rp0(g))−3(rS(f)rS(g))−
1
2
d(d−1)µY (Y )2.

Recall that ||h′p0 ||p0 = ||ρ(ap0,m0)||p0 ≤ p2m0+1
0 by Lemma 3.5.5 and, by definition, TS′(g) = TS′(g)−1

it S ′ ⊆ S. We are ready to bound h?p0 :

||h?p0||p0 = ||t−1
p0
h′p0sp0ηp0||p0

≤ p2m0+2
0

≤ (10Fd)4 · 2d2(d−1)p7d2−d+52
S (rp0(f)rp0(g))−6(rS(f)rS(g))−d(d−1)µY (Y )4

< (10Fd)4 · 2d2(d−1)p13d2

S (Tp0(f)Tp0(g))6(TS(f)TS(g))d(d−1)µY (Y )4.



Chapter 8

Volume of closed HS-orbits

The objective of this chapter is to prove Proposition 5.3.2, which gives an upper bound of
the volume of the closed orbit YQ,S ⊂ Xd,S associated to a non-degenerate integral quadratic
form Q in d ≥ 3. We’ll recall the notation and restate the result.

Let S = {∞} ∪ Sf be a finite set of primes. Consider the groups Gd,S = GL(d,QS),
Γd,S = (GL(d,ZS) ↪→ Gd,S) and the space of lattices Xd,S = Gd,S/Γd,S of Qd

S and its base
point xd,S = Γd,S/Γd,S. Let Q be a non-degenerate integral quadratic form in d variables and
let P be the standard quadratic form on Qd

S that is QS-equivalent to QS
1. We define

YQ,S = HSgxd,S,

where HS is the orthogonal group of P—we’ll say that HS is the standard conjugate of
O(Q,QS)—and g ∈ Gd,S takes P to QS. The orbit YQ,S is closed in Xd,S by Lemma 6.1.1,
hence it admits an HS-invariant measure µYQ,S

2 by Lemma 6.1.3. Remember that δQ is the
determinant of the matrix of Q in the standard basis of Qd and pS is the product of the
primes in Sf if Sf 6= ∅. Here is the main result of this chapter, a generalization of [LM16,

Theorem 6, p. 891]. We remind the reader that an explicit value of the constant C
(2)
d , as well

as all the constants that depend on d in our statements can be found in Appendix C.

Proposition 8.0.1. Consider a finite set S = {∞} ∪ Sf of primes and d ≥ 3. Let Q be a
non-degenerate integral quadratic form in d variables such that QS is isotropic. Then

µYQ,S(YQ,S) <

{
C

(2)
d p3d6

S HS(δQ)
d+1
2 if Sf 6= ∅,

C
(2)
d 22d6|δQ|

d+1
2∞ if S = {∞}.

8.1 Intermediate statements and main proof

Our proof of Proposition 8.0.1 relies on three intermediate statements. To formulate them,
it is convenient to replace Xd,S by the space X1

d,S of covolume 1 lattices of Qd
S because the

latter has finite volume. We identify X1
d,S with G1

d,S/Γd,S, where

G1
d,S := {g ∈ Gd,S |HS(det g) = 1}.

1Recall that QS is the quadratic form on QdS determined by Q via the diagonal embedding Q→ QS .
2In 8.4.1 of Section 8.4 we’ll fix a Haar measure on HS , which determines the normalization of µYQ,S .
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Let x1
d,S = Γd,S/Γd,S ∈ X1

d,S, and let βd,S be the G1
d,S-invariant measure on X1

d,S determined
by our choice of Haar measure on G1

d,S—see section 8.4. Consider Q,P and HS as before.
Instead of YQ,S, we’ll work with the following subset of X1

d,S: Write Q = P ◦f ′ with f ′ ∈ Gd,S.
Let

MS(Q) =

(
HS(δQ)

HS(δP )

) 1
2

. (8.1)

We define N = NS(Q) ∈ QS as N∞ = MS(Q)−
1
d and Np = 1 for p ∈ Sf . It’s easy to see that

f = NS(Q)f ′ is in G1
d,S, so we set

Y 1
Q,S = HSfx

1
d,S.

Notice that YQ,S ⊆ XS and Y 1
Q,S ⊆ X1

d,S have the same volume. Indeed, both are identified
with HS/(HS ∩ (f−1Γd,Sf)) since conjugation by f and f ′ is the same. For g ∈ Md(QS) we
define its S-height as

HS(g) =
∏
ν∈S

||gν ||ν .

We pass to the intermediate statements. The first one—proved in Section 8.2—says that
if we move a point in Y 1

Q,S in a transversal direction, the time it takes to get back to Y 1
Q,S can’t

be arbitrarily small. In other words, the orbits Y 1
Q,S are isolated in directions transversal to

HS. This corresponds to [LM16, Lemma 16, p. 893] in the article of Li and Margulis.

Lemma 8.1.1. Let S = {∞} ∪ Sf be a finite set of primes. Consider a non-degenerate
integral quadratic form Q in d ≥ 3 variables and the standard conjugate HS of O(QS,QS).
Take g ∈ G1

d,S and u ∈ G1
d,S−HS with ||up||p ≤ 1 for p ∈ Sf . If gx1

d,S and ugx1
d,S are in Y 1

Q,S,
then

||u∞ − Id||∞ ≥
1

2d3
p−1
S HS(g)−2HS(δQ)−

1
d .

Consider a non-compact orthogonal group HS of a non-degenerate quadratic form on
Qd
S, d ≥ 3. The second intermediate result—proved in Section 8.3—says there is a compact

subset of X1
d,S that meets at least half of any closed HS-orbit in X1

d,S. This generalizes [LM16,
Lemma 13, p. 892]. We need some notation for the precise statement. For any M > 0 we
define

Ω̃d,S(M) =

g ∈ SL±(d,R)×
∏
p∈Sf

GL(d,Zp) : ||g∞||∞ ≤M

 ,

and Ωd,S(M) = Ω̃d,S(M)x1
d,S. Consider Ed = 2d

3 · 32d4d3d3 . We introduce the following
compact subset of X1

d,S

Ωd,S =

{
Ωd,S(Edp2d4

S ) if Sf 6= ∅,
Ω∞,d(Ed2d

4
) if S = {∞}.

Lemma 8.1.2. Consider d ≥ 3 and a finite set S = {∞}∪Sf of primes. The compact subset
Ωd,S of X1

d,S has the following property: Let HS be the orthogonal group of an isotropic, non-

degenerate quadratic form on Qd
S. For any closed HS-orbit Y in X1

d,S we have

µY (Y ∩ Ωd,S) ≥ 1

2
µY (Y ).
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The last intermediate result—proved in Section 8.4—shows a recurrence of closed HS-
orbits in directions transversal to HS. It is the counterpart of Lemma 8.1.1. For the case
S = {∞}, see [LM16, Lemma 15, p. 892].

Lemma 8.1.3. Consider a finite set S = {∞} ∪ Sf of primes and d ≥ 3. Let HS be the
orthogonal group of a non-degenerate diagonal quadratic form on Qd

S. Suppose that HS is
non-compact. For any closed HS-orbit Y in X1

d,S with µY (Y ) > Adp
4cd
S , there is u ∈ G1

d,S−HS

such that u(Y ∩ Ωd,S) meets Y , ||up||p ≤ 1 for any p ∈ Sf , and

||u∞ − Id||∞ ≤ C
(4)
d p4

SµY (Y )
− 1
cd .

Let’s deduce the main result of the chapter from the intermediate results.

Proof of Proposition 8.0.1. Let Q be a non-degenerate integral quadratic form in d ≥ 3
variables. Suppose that QS is isotropic. Let P be the standard quadratic form on Qd

S that
is QS-equivalent to QS and set HS = O(P,QS). As we explained right before Lemma 8.1.2,
the HS-orbits YQ,S and Y := Y 1

Q,S—respectively in Xd,S and X1
d,S—have the same volume

µYQ,S(YQ,S) = µY (Y ).

Let Ad be as in Lemma 8.1.3. We consider two cases:

• µY (Y ) > Adp
4cd
S By Lemma 8.1.3 there is g respectively in Ω̃d,S(Edp2d4

S ) and Ω̃d,S(Ed2d
4
)

if Sf 6= ∅ and S = {∞}, as well as u ∈ G1
d,S −HS with ||up||p ≤ 1 for p ∈ Sf and

||u∞ − Id||∞ ≤ C
(4)
d p4

SµY (Y )
− 1
cd ,

such that gx1
d,S and ugx1

d,S are in Y . We also know that

||u∞ − Id||∞ ≥
1

2d3
p−1
S HS(g)−2HS(δQ)−

1
d ,

by Lemma 8.1.1. Let’s consider the case Sf 6= ∅. It follows that

µY (Y ) <

(
24d2

d− 1
HS(g)2p5

SV
1
cd
d HS(δQ)

1
d

)cd
< (25d(Edp2d4

S )2p5
S)cdVdHS(δQ)

cd
d

< FdVdp3d6

S HS(δQ)
d+1
2 ,

where Fd = (22d3+5 · 34d4d6d3+1)cd . When S = {∞}, a similar computation yields

µY (Y ) < FdVd22d6|δQ|
d+1
2∞ .

• µY (Y ) ≤ Adp
4cd
S Since HS(δQ) is a positive integer, we have

µY (Y ) ≤ Adp
4cd
S ≤ Adp

4cd
S HS(δQ)

d+1
2 .

Since Adp
4cd
S is smaller than FdVdp3d6

S and FdVd22d6 , in both cases we get the inequality
of the statement.
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8.2 Transversal isolation of compact HS-orbits

In this section we prove Lemma 8.1.1. The proof is short and elementary. It is based on the
next four lemmas. For the definition of MS(Q) see (8.1).

Lemma 8.2.1. Let Q be a non-degenerate integral quadratic form in d ≥ 2 variables. Then

1 ≤MS(Q) ≤ pSHS(δQ)
1
2

for any finite set S = {∞} ∪ Sf of primes.

Proof. Let P be the standard quadratic form on Qd
S that is QS-equivalent to QS. We have

(δP )∞ = ±1 and p−2 ≤ |(δP )p|p ≤ 1

for p ∈ Sf , thus
p−2
S ≤HS(δP ) ≤ 1.

Since MS(Q) =
(

HS(δQ)

HS(δP )

) 1
2

and HS(δQ) is a positive integer, the inequality we want follows.

Lemma 8.2.2. For any g∞ ∈ GL(d,R) we have

||g∞||∞ ≥
| det g∞|

1
d∞√

d
.

Proof. Consider f = | det g∞|
− 1
d∞ g. Notice that f is in SL±(d,R). Thanks to the Iwasawa

decomposition of this group we can write f = kan, for some k ∈ O(d,R),

a = diag(a1, . . . , ad)

and n unipotent and upper-triangular. Since |a1 · · · ad|∞ = 1, then ||an||∞ ≥ 1. Thus

1 ≤ ||an||∞ = ||k−1f ||∞ = | det g∞|
− 1
d∞ ||k−1g∞||∞

≤
√
d · | det g∞|

− 1
d∞ ||g∞||∞,

which is equivalent to what we wanted.

Lemma 8.2.3. For any gp ∈ GL(d,Qp) we have

||gp||p ≥ | det gp|
1
d
p .

Proof. We write g = kan with k ∈ GL(d,Zp),

a = diag(pn1 , . . . , pnd),

and n unipotent, upper-triangular. Then

||gp||p = ||an||p ≥ max
i
|pni |p.

The product of the positive real numbers |pni |p| det gp|
− 1
d

p for 1 ≤ i ≤ d is 1, so at least one
is ≥ 1. Thus

||gp||p ≥ | det gp|
1
d
p .
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Lemma 8.2.4. If t is a real number in the interval [0, 1
2
], then

√
t+ 1− 1 ≥ 2

5
t.

Proof. Since F (t) =
√
t+ 1− 1 is concave, it suffices to verify the inequality for t ∈ {0, 1/2}.

When t = 1
2
,

2

(√
3

2
− 1

)
= 0.44 . . . >

2

5
.

We are ready to prove the transversal isolation of the orbits YQ,S.

Proof of Lemma 8.1.1. Let Q be a non-degenerate integral quadratic form in d ≥ 3 variables.
The strategy we’ll follow is: points in Y 1

QS
correspond to quadratic forms ZS-equivalent to

Q. The ones associated to gx1
d,S and ugxd,S are different because u /∈ HS, so the S-height of

the difference of their matrices is at least 1. From this we’ll deduce the bound for u∞.
First we recover the matrices with coefficients in ZS corresponding to points in Y 1

Q,S. We’ll
recall briefly the definition of Y 1

Q,S. Let P be the standard quadratic form QS-equivalent to
QS, HS = O(P,QS) and consider f ′ ∈ Gd,S such that Q = P ◦ f ′. Let f = NS(Q)f ′, where
NS(Q) ∈ QS is defined as:

NS(Q)∞ = MS(Q)−
1
3 ,

and NS(Q)p = 1 for p ∈ Sf . See (8.1) for the definition of MS(Q). Then f is in G1
d,S and

Y 1
Q,S = HSfx

1
d,S.

Let b ∈ GL(d,QS) be the matrix of P in the standard basis of Qd
S. If g′ is in HSf

′Γd,S, then

tg′bg′ = tγ tf ′bf ′γ = tγbQSγ

for some γ ∈ Γd,S. It follows that the matrix tg′bg′ ∈Md(QS) is the diagonal image of a ma-
trix in Md(ZS). This implies that if g1x

1
d,S is in Y 1

Q,S—for g1 ∈ G1
d,S—then NS(Q)−2 tg1bg1 ∈

Md(QS) is the diagonal image of a matrix with coefficients in ZS.
Now we compare the matrices B,C ∈ Md(QS) associated to the two points of the state-

ment. We’ll renormalize them to make the estimates in Md(R). Let g, u ∈ G1
d,S as in the

statement. Then gx1
d,S and ugx1

d,S are in YQ,S. We consider

B = NS(Q)−2( tgbg), C = NS(Q)−2( tg tubug).

For any p ∈ Sf we have

||Cp||p = || tgp tupbpupgp||p
≤ || tgp||p|| tup||p||Pp||p||up||p||gp||p
≤ ||gp||2p,
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and similarly ||Bp||p ≤ ||gp||2p. It follows that HSf (g)2B∞ and HSf (g)2C∞ have integral
coefficients, where

HSf (g) =
∏
p∈Sf

||gp||p.

These two matrices are different because tubu 6= b, hence the ∞-norm of their difference is
at least 1:

1 ≤ ||HSf (g)2C∞ −HSf (g)2B∞||∞
= HSf (g)2MS(Q)

2
d || tg∞( tu∞b∞u∞ − b∞)g∞||∞.

We rearrange this inequality and we work with the right-hand side:

HSf (g)−2MS(Q)−
2
d ≤ || tg∞( tu∞b∞u∞ − b∞)g∞||∞
≤ d2|| tg∞||∞ · || tu∞b∞u∞ − b∞||∞ · ||g∞||∞
= d2||g∞||2∞ · || t(u∞ − Id)b∞(u∞ − Id) + t(u∞ − Id)b∞ + b∞(u∞ − Id)||∞
≤ d2||g∞||2∞(d||u∞ − Id||∞ · ||b∞(u∞ − Id)||∞ + 2||u∞ − Id||∞)

≤ d3||g∞||2∞(||u∞ − Id||2∞ + ||u∞ − Id||∞).

Hence

||u∞ − Id||2∞ + ||u∞ − Id||∞ ≥ Cg,

where Cg = d−3HS(g)−2MS(Q)−
2
d . We obtain that ||u∞ − Id||∞ is greater or equal than the

positive root of t2 + t− Cg, that is

||u∞ − Id||∞ ≥
1

2
(
√

4Cg + 1− 1).

Using (8.2.1) and lemmas 8.2.2, 8.2.3 we deduce that

4Cg = 4 · d−3HS(g)−2MS(Q)−
2
d ≤ 4 · d−3(dHS(det g)−

2
d )

= 4 · d−2 <
1

2
.

We use now Lemma 8.2.4 and the lower bound of (8.2.1):

||u∞ − Id||∞ ≥
1

5
· 4Cg

=
4

5d3
HS(g)−2MS(Q)−

2
d

≥ 4

5d3
p
− 2
d

S HS(g)−2HS(δQ)−
1
d

≥ 1

2d3
p−1
S HS(g)−2HS(δQ)−

1
d ,

which is what we wanted.
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8.3 Uniform recurrence of closed HS-orbits

The goal of this section is to prove the existence of the compact subset Ωd,S of X1
d,S of Lemma

8.1.2 that intersects at least a half of any closed HS-orbit in X1
d,S. In other words, closed

HS-orbits are uniformly recurrent. This is a refinement of Dani-Margulis’ Recurrence of
Unipotent Flows, and in fact the heart of the proof is an effective version of it.

The section is divided into four parts: Suppose that Ω is a subset of X1
d,S and that the

systole of any ∆ ∈ Ω is at least t, for some t > 0. In 8.3.1 we give—in terms of t—a compact
subset of GL(d,QS) that covers Ω. We describe in 8.3.2 a compact subset Od,S of X1

d,S having
the properties of Ωd,S, using the systole map α1 : X1

d,S → R. To achieve this, we’ll use an
effective result of recurrence of unipotent flows on X1

d,S, whose proof is postponed to 8.3.4.
The main proof is given in 8.3.3.

8.3.1 Effective S-adic Mahler’s Criterion

The classical version of Mahler’s Criterion gives a necessary and sufficient condition for a
subset of lattices of Rd of covolume 1 to be relatively compact in terms of the systole3 map.
We’ll prove here an effective version for lattices of Qd

S. The statement is specially tailored
for our needs: it gives an explicit lift to GL(d,QS) of a compact subset in X1

d,S described in
terms of the systole map. We’ll prove the result first for S = {∞} and then for general S.

Recall that any lattice of Rd is of the form gZd with g ∈ GL(d,R). Thus we can
identify respectively the space of lattices and lattices of covolume 1 of Rd with Xd,∞ =
GL(d,R)/GL(d,Z) and X1

d,∞ = SL±(d,R)/GL(d,Z). We parametrize these spaces with the
Siegel sets of GL(d,R). Let’s recall the definition.

Consider the following subgroups of Gd,∞ = GL(d,R):

K = O(d,R)

A = {diag(a1, · · · , ad) ∈ Gd,∞ | ai > 0 for every 1 ≤ i ≤ d},
N = {unipotent, upper-triangular matrices in Gd,∞}.

For α, β > 0 we denote

Aα = {diag(a1, · · · , ad) ∈ A | ai ≤ αai+1 for 1 ≤ i ≤ d− 1},
Nβ = {n ∈ N | ||n− Id||∞ ≤ β}.

The (α, β)-Siegel set of Gd,∞ is defined as

S α,β
d,∞ = KAαNβ.

The next lemma bounds the∞-norm of g ∈ S α,β
d,∞∩SL±(d,R) in terms of α, β and the length

of a vector in ∆ = gZd. It can be thought as an effective version Mahler’s Criterion since

Xd,∞ = (S α,β
d,∞ ∩ SL

±(d,R))xd,∞

for α and β big enough—see Proposition 9.3.1. We denote by || · ||euc the standard euclidean
norm on Rd.

3The systole of a lattice ∆ of Rd is the length of the shortest non-zero vector in ∆.
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Lemma 8.3.1. Let S α,β
d,∞ be a Siegel set of GL(d,R) with β ≤ 1 ≤ α. Any g ∈ S α,β

d,∞ ∩
SL±(d,R) verifies

||g||∞ ≤
√
d · α

(d−1)2

2 max{1, ||ge1||−(d−1)
euc }.

Proof. We write g = kan with k ∈ O(d,R), a = diag(ad, . . . , ad) ∈ Aα, and n ∈ Nβ. Notice
that ||ge1||euc = a1, and

||an||∞ = ||(a1, . . . , ad)||∞
because an is upper-triangular and

|(an)ij|∞ = |ainij|∞ ≤ β|ai|∞ ≤ |ai|∞

if i < j. We’ll bound from above ak in terms of a1 and α. By the definition of Aα we have
ai ≤ αj−iaj and a−1

j ≤ αj−ia−1
i if i < j. Then

1 = [a1 · · · ak−1]ak[ak+1 · · · ad] ≥ [a1(α−1a1) · · · (α−(k−2)a1)]ak[(α
−1ak) · · · (α−(d−k)ak)]

= α−
(k−2)(k−1)

2 ak−1
1 α−

(d−k)(d−k+1)
2 ad−k+1

k ,

hence

ak ≤ α
(k−2)(k−1)
2(d−k+1) α

d−k
2 a
− k−1
d−k+1

1

≤ α
(d−2)(d−1)

2 α
d−1
2 max{1, a−(d−1)

1 }

= α
(d−1)2

2 max{1, a−(d−1)
1 }.

This gives and upper bound for ||an||∞. To finish we have

||g||∞ = ||kan||∞ ≤
√
d · ||an||∞

≤
√
d · α

(d−1)2

2 max{1, a−(d−1)
1 }.

We pass to the S-adic case. Let S = {∞} ∪ Sf be a finite set of primes. We define the
height of v ∈ Qd

S as

HS(v) = ||v∞||euc
∏
p∈Sf

||vp||p.

Notice that in the real factor we are using the euclidean norm of Rd instead of || · ||∞. First we
characterize the lattices—that is discrete and co-compact subgroups—of Qd

S in an analogous
way to the case S = {∞}.

Lemma 8.3.2. Consider a finite set S = {∞} ∪ Sf of primes and let d ≥ 1. Any lattice of
Qd
S is of the form gZdS with g ∈ GL(d,QS).

Proof. Consider a lattice ∆ of Qd
S. We start with two general observations. We’ll take ZS

embedded diagonally in Qd
S.
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First we’ll see that ∆ is indeed a ZS-module. Take p ∈ Sf . Then p∆ is also a lattice of
Qd
S. We have p∆ ⊆ ∆, so

[∆ : p∆]cov ∆ = cov (p∆). (8.2)

Since HS(p) = 1, the multiplication by p is a volume-preserving linear automorphism of Qd
S,

hence ∆ and p∆ have the same covolume. Thus ∆ = p∆ by (8.2). More generally, ∆ = u∆
for any u ∈ Z×S since Z×S is generated by Sf ∪ {−1}. This shows that ∆ is a ZS-module.

Now we’ll show that if v ∈ ∆ has a zero coordinate, then v = 0. Recall that pS is the
product of the primes in Sf if this set is non-empty and pS = 1 for S = {∞}. If v∞ = 0,
then pnSv → 0 as n → ∞. Since pnSv ∈ ∆ and ∆ is discrete, pnSv = 0 for n � 1, so v = 0.
Suppose now that vp0 = 0 for some p0 ∈ Sf and let T = S − {p0}. Choose k0 > 1 such that
pk00 > pT Then

lim
n→∞

(
pT

pk00

)n
v = 0.

These vectors are in ∆, so we conclude as before that v = 0.
Now we prove the result by induction on d.
Take first d = 1. Let

α1(∆) = inf{HS(v) | v ∈ ∆− {0}}.

We claim that α1(∆) is attained by some v0 ∈ ∆− {0}. Consider a sequence vn ∈ ∆− {0}
with HS(vn) → α1(∆). We may suppose that (vn)p is in Z×p for every n and any p ∈ Sf 4.
Then (vn) is trapped in a compact of the form CN = [−N,N ]×

∏
p∈Sf Z

×
p . The set ∆∩CN is

finite, hence some vector in it attains α1(∆). Let’s see that ∆ = ZSv0. Since v0 is invertible
in QS, any v ∈ ∆ is of the form v0t with t ∈ QS. Let FS = [0, 1) ×

∏
p∈Sf

Zp. Note that
QS = ZS + FS. Write t = z + f with z ∈ ZS and f ∈ FS. Then v0f = v − v0z is in ∆. We
have HS(v0f) < H (v0), so v0f = 0.

Suppose that the result holds for some d ≥ 1 and consider a lattice ∆ in Qd+1
S . Take

v0 ∈ ∆ − {0} such that HS(v0) ≤ HS(v) for any v ∈ (QSv0) ∩ (∆ − {0}). The case d = 1
shows that ∆ ∩ (QSv0) = ZSv0, so ∆ ∩ (QSv0) is cocompact in QSv0. This implies that
∆′ = ∆ + QSv0 is discrete in V = Qd+1

S /QSv0
∼= Qd

S. Since ∆ is cocompact in Qd+1
S , ∆′ is

cocompact in V . Thus ∆′ is a lattice in V . By the inductive hypothesis, ∆′ has a ZS-basis
v1 + QSv0, . . . , vd + QSv0 that is also a QS-basis of V , with v1, . . . , vd ∈ ∆. The matrix g
with columns v0, . . . vd is in GL(d+ 1,QS) and ∆ = gZdS.

As usual, we endow R and Qp with the Haar measures such that

λR([0, 1]) = λQp(Zp) = 1,

and QS with λQS = ⊗ν∈SλQν . Let ∆ be a lattice of Qd
S. We define its systole as

α1(∆) = min
v∈∆−{0}

HS(v),

and its covolume cov∆ as the volume of Qd
S/∆. If we write ∆ as gZdS for some g ∈ GL(d,QS),

it’s easy to see that
cov gZdS = HS(det g).

4Just note that HS(uvn) = HS(vn) for any u ∈ Z×S and remember that (vn)p 6= 0 since v 6= 0.
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Thanks to Lemma 8.3.2 we identify, respectively, the space of lattices and lattices of covolume
1 of Qd

S with Xd,S = Gd,S/Γd,S and X1
d,S = G1

d,S/Γd,S. Again, these spaces are parametrized
by the Siegel sets of Gd,S: for any α, β > 0 we define

S α,β
d,S = S α,β

d,∞ ×
∏
p∈Sf

GL(d,Zp).

Here is an effective S-adic Mahler’s Criterion.

Lemma 8.3.3. Consider a finite set of primes S = {∞} ∪ Sf and an integer d ≥ 2. If ∆
is a lattice of Qd

S of covolume 1, then ∆ = gZdS for some g ∈ Gd,S with gp ∈ GL(d,Zp) for
p ∈ Sf and

||g∞||∞ ≤
√
d ·
(

2√
3

) (d−1)2

2

max{1, α1(∆)−(d−1)}. (8.3)

Proof. Thanks to Proposition 9.3.1, ∆ = gZdS for some g ∈ S
2√
3
, 1
2

d,S . Further, we choose g
with

HS(ge1) = α1(∆).

Since gp is in GL(d,Zp), then | det gp|p = 1 and ||ge1||p = 1 for any p ∈ Sf . Thus g∞ is in
SL±(d,R) because

1 = cov(∆) = HS(det g) = | det g∞|∞,
and

α1(∆) = HS(ge1) = ||g∞e1||euc.
We obtain inequality (8.3) by applying Lemma 8.3.1 to g∞.

To close this part we state a non-effective S-adic Mahler’s Criterion. It follows directly
form Lemma 8.3.3.

Corollary 8.3.4 (Mahler’s Criterion). A subset Ω of X1
d,S is relatively compact if and only

if
inf{α1(∆) | ∆ ∈ Ω} > 0.

8.3.2 The compact in terms of α1

Here we give a compact subset Od,S of X1
d,S with the property we want for Ωd,S, but defined

in terms of α1. We begin with some notation. The set

Sd,S(ε) = {∆ ∈ X1
d,S | α1(∆) ≥ ε}

is compact for any ε > 0 by Mahler’s Criterion (Lemma 8.3.4). Let d ≥ 3. We define

ε∞,d =
1

2
·
(

1

2 · 32dd32d+2

)(d−1)2

and εp,d =
1

2
·
(

1

2 · 32dd3p2d+1

)(d−1)2

.

For S = {∞} ∪ Sf a finite set of primes we define

εd,S = min
ν∈S

εν,d and Od,S = Sd,S(εd,S).

This is the compact subset that meets all the closed HS-obits in X1
d,S.
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Lemma 8.3.5. Consider d ≥ 3 and a finite set of primes S = {∞} ∪ Sf . Let HS be
the orthogonal group of a non-degenerate isotropic quadratic form on Qd

S. For any closed
HS-orbit Y in X1

d,S we have

µY (Y ∩Od,S) ≥ 1

2
µY (Y ).

Suppose that HS is the orthogonal group of a non-degenerate quadratic form P on Qd
S,

and that Hp0 is non-compact. To prove Lemma 8.3.5 we will approximate µY (Y ∩Od,S) by
averages of 1Od,S along pieces of Up0-orbits, where Up0 is a one-parameter unipotent subgroup
of Hp0 . After justifying why this is possible, we’ll introduce the main ingredient of the proof
of Lemma 8.3.5: the effective refinements of Dani-Margulis’ Recurrence of Unipotent Flows—
see [Mar75] and [Dan86]. These are due to Kleinbock-Margulis [KM98] for S = {∞} and to
Kleinbock-Tomanov [KT07] for general S.

Recall that H◦S denotes the image of Spin(P,QS) in HS. H◦S is a normal subgroup of HS

of finite index, thus a closed HS-orbit in X1
d,S is a finite union of closed H◦S-orbits. There is no

harm then if we work with the latter. Consider a closed H◦S-orbit Y of X1
d,S, its H◦S-invariant

measure µY and a mesurable subset Ω of X1
d,S. The next two results justify that µY (Y ∩Ω) can

be approximated by averaging 1Ω along pieces of suitable orbits of a one-parameter unipotent
subgroup of Hp0 . The first is a version of Birkhoff’s Theorem for every Qν . It follows from
[Tem92, Chapter 6, Corollary 3.2]. For T ≥ 0 we define

Bν(T ) = {t ∈ Qν | |t|ν ≤ T}.

Theorem 8.3.6. Consider a prime ν. Let Φ be a measure-preserving, ergodic action of Qν

on a locally compact space Y0 endowed with a finite measure µ0. For any measurable subset
Ω of Y0, there is a measurable subset EΩ of Y0 of full measure such that

µ0(Ω)

µ0(Y0)
= lim

T→∞

λQν ({t ∈ Bν(T ) | Φt(y) ∈ Ω})
λQν (Bν(T ))

for any y ∈ EΩ.

Recall that we chose p0 ∈ Sf such that Hp0 is non-compact. Moore’s ergodicity result
will allow us to apply Birkhoff’s Theorem:

Lemma 8.3.7. Consider a finite set of primes S = {∞} ∪ Sf and d ≥ 3. Let HS be
the orthogonal group of a non-degenerate quadratic form on Qd

S, and suppose that Hν0 is
non-compact for some ν0 ∈ S. Let Uν0 be a one-parameter unipotent subgroup of Hν0 with
non-trivial projection to each simple factor of Hν0

5. The action of Uν0 on any closed H◦S-orbit
in X1

d,S is ergodic.

Our proof of Lemma 8.3.7 relies on the next useful result, which we’ll call the Howe-Moore
phenomenon6.

5In fact Hν0 is always simple, except possibly when d = 4. In that case Hν0 can be locally isomorphic to
SL(2,Qν0)× SL(2,Qν0).

6Another (perhaps more widely used) name for this is Mautner’s phenomenon, like in the article [Moo80]
of C. Moore.
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Lemma 8.3.8. Consider the group of Qν-points J of a semisimple Qν-group. Let π be
a unitary representation of J and let J◦ be the subgroup of J generated by the unipotent
elements. If v ∈ Hπ is fixed by a unipotent element with non-trivial projection to each simple
factor of J , then v is J◦-invariant.

Proof. The case J = SL(2,R) is done in [Ben09, Proposition 3.4], and the proof extends to
SL(2,Qν). Now consider a general J .

We prove first that a vector v ∈ Hπ is J◦-invariant if it is fixed by a hyperbolic element7

h ∈ J with non-trivial projection to each simple factor of J . We take an h-invariant vector
v of unit length. Consider the subgroup

U+
h =

{
g ∈ J | lim

n→∞
hngh−n = e

}
.

Since π(h)v = v, then
〈π(g)v, v〉 = 〈π(hngh−n)v, v〉

for any n ∈ Z. If g is in U+
h , we obtain that 〈π(g)v, v〉 = 1 by letting n→∞, so v is fixed by

g. This proves that v is U+
h -invariant. In a similar way we see that v is U−h -invariant, where

U−h =
{
g ∈ J | lim

n→∞
h−nghn = e

}
.

The groups U±h have non-trivial projection to each simple factor of J since h has this property.
Then J◦ is generated by U+

h and U−h —see [Mar91, Proposition 1.5.4 (ii)]—, so v is J◦-
invariant.

Suppose now that v is fixed by a non-trivial unipotent element u of J . By Jacobson-
Morozov’s Theorem u is in the image of a group morphism ψ : SL(2,Qν) → J with finite
kernel. The vector v is then SL(2,Qν)-invariant because it is fixed by a non-trivial unipotent
element of SL(2,Qν). The image of ψ has non-trivial projection to each simple factor of J
because it’s generated by conjugates of u, which have this property. Since ψ(SL(2,Qν)) has
non-trivial hyperbolic elements, v is J◦-invariant thanks to the previous paragraph.

We are ready to prove that unipotent groups act ergodically on closed H◦S-orbits.

Proof of Lemma 8.3.7. Let Y = H◦Sgx
1
d,S be a closed H◦S-orbit in X1

d,S. Since HS is non-
compact, then g−1HSg = O(QS,QS) for some non-degenerate integral quadratic form in d
variables by Lemma 6.1.2. Let JS = g−1HSg, Y ′ = JSx

1
d,S and U ′ν0 = g−1Uν0g. We’ll prove

that U ′ν0 y Y ′ is ergodic.
Let π be the unitary representation of J◦S on L2(Y ′). Suppose that ϕ ∈ L2(Y ′) is U ′ν0-

invariant. Then ϕ is J◦ν0-invariant by Lemma 8.3.8 because Uν0 has non-trivial projection
in each simple factor of Hν0 . To see that ϕ is J◦S-invariant, consider the function Φ : J◦S →
C, h 7→ ϕ(hx1

d,S). Φ is (J◦S ∩ Γd,S)-invariant on the right and J◦p0-invariant on the left. Since
J◦p0 is normal in J◦S, then Φ is also J◦p0-invariant on the right. By the Strong Approximation
Theorem—see [PR94, Theorem 7.12]—J◦p0(J

◦
S ∩ Γd,S) is dense in J◦S, so Φ is J◦S-invariant on

the right. This proves that ϕ is µY ′-almost surely constant, thus the action of U ′p0 on Y ′ is
ergodic.

7h ∈ J is hyperbolic if Ad(h) : Lie(J)→ Lie(J) is diagonalizable over Qν .
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Before giving the statement of effective recurrence of unipotent flows, we extend the
definition of covolume of a lattice of Qd

S to discrete ZS-submodules of Qd
S whose rank is not

necessarily d, and we prove a finiteness lemma for these. Let ∆′ be a discrete ZS-submodule of
Qd
S. The covolume cov ∆′, of ∆′ is the volume of V/∆′, where V 8 is the QS-module generated

by ∆′. We give an explicit formula to calculate cov (∆′) that we’ll use later. Let e1, . . . , ed be
the standard basis of Qd and let I = (i1, . . . , ik) be a k-tuple of integers 1 ≤ i1 < · · · < ik ≤ d.
We denote ei1 ∧ · · · ∧ eik simply by eI . On

∧k Rd we consider the only euclidean norm || · ||euc
such that (eI)I is an orthonormal basis, and on

∧kQd
p we consider the ultrametric norm given

by ∣∣∣∣∣
∣∣∣∣∣∑
I

aIeI

∣∣∣∣∣
∣∣∣∣∣
p

= max
I
|aI |p.

Let v1, . . . , vk ∈ Qd
S be a ZS-basis of ∆′. Then

cov ∆′ = ||(v1 ∧ · · · ∧ vk)∞||euc
∏
p∈Sf

||(v1 ∧ · · · ∧ vk)p||p. (8.4)

For ∆ ∈ Xd,S, we denote by Σ(∆) the set of non-zero ZS-submodules of ∆ and

Σ<1(∆) = {∆′ ∈ Σ(∆) | cov ∆′ < 1}.

Lemma 8.3.9. Let S = {∞} ∪ Sf be a finite set of primes and let ∆ be a lattice of Qd
S.

Then Σ<1(∆) is finite.

Proof. For any ∆′ ∈ Σ(∆), let W∆′ be the QS-submodule of Qd
S generated by ∆′ and consider

W = {W∆′ | ∆′ ∈ Σ<1(∆)}.

For W ∈ W , let ∆′W = ∆ ∩W . We’ll show that the map Σ<1(∆) → W ,∆′ 7→ W∆′ is finite
to one and that W is finite.

Take W ∈ W and ∆′ ∈ Σ<1(∆) such that W∆′ = W . Then ∆′ is contained in ∆′W , so

[∆′W : ∆′] =
cov ∆′

cov ∆′W
<

1

cov ∆′W
.

To conclude note that ∆′W has finitely many subgroups Λ of index, say N > 0. Indeed, any
such Λ contains N∆′W , and ∆′W/(N∆′W ) is finite9.

Let’s prove that W is finite. It suffices to see that the subset Wk of elements of W of
QS-rank k is finite for 1 ≤ k ≤ d− 1. If W ∈ Wk, let v1, . . . , vk be a ZS-basis of ∆′W . Then
v1∧· · ·∧vk belongs to

∧k ∆ and its S-height is cov ∆′W < 1. Since ∆ is a lattice in Qd
S,
∧k ∆

is a lattice in
∧kQd

S. Moreover, Z×S (v1 ∧ · · · ∧ vk) doesn’t depend on the chosen ZS-basis of

∆′W and the map Wk → Z×S \
∧k ∆ is injective. To conclude note that there are finitely many

Z×S v ∈ Z×S \
∧k ∆ with HS(v) < 110.

8We choose a Haar measure on V as follows: on V∞ we take λV∞ = k∗λRk , where k ∈ O(d,R) sends
Rk × {0} to V∞, and on Vp we choose λVp so that λVp(Vp ∩ Zdp) = 1.

9Because ZS/NZS is finite.
10This is a fact valid for any lattice Λ in QmS . Take v ∈ Λ− {0} with HS(v) < 1. We’ll see that Z×S v has

a representative in the finite set A = Λ ∩ ([−1, 1]×
∏
p∈Sf Zp). We showed in the proof of Lemma 8.3.2 that

vν 6= 0 for ν ∈ S, so ||v||Sf =
∏
p∈Sf ||vp||p is a unit in ZS ↪→ QS . We set v′ = ||v||Sf v. Note that ||v′p||p = 1

for p ∈ Sf and ||v′∞||∞ = HS(v) < 1, hence v′ is in A.
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If ν is a prime and d ≥ 2, we define

Cν,d =

{
32dd32d+2 if ν =∞,
32dd3p2d+1 if ν = p,

and ϑd = 1
(d−1)2

. Here is the statement of recurrence of unipotent flows.

Proposition 8.3.10. Let S = {∞}∪Sf be a finite set of primes, ν ∈ S and d ≥ 2. Consider
a one-parameter unipotent subgroup Uν = (ut)t of SL(d,Qν) and a covolume 1 lattice ∆ of
Qd
S. Suppose that Uν doesn’t preserve the QS-submodule generated by any Λ ∈ Σ<1(∆). There

is T0 = T0(Uν ,∆) such that for any T ≥ T0 and 0 < ε < 1,

λQν ({t ∈ Bν(T ) | α1(ut∆) < ε}) ≤ Cν,dε
ϑdλQν (Bν(T )).

Proposition 8.3.10 follows from results in the article [KT07] of Kleinbock and Tomanov.
To state the latter we need several new definitions, so we postpone the proof of Proposition
8.3.10 to Subsection 8.3.4 to avoid a big detour here.

The last result we need to prove Lemma 8.3.5 says that for a fixed ∆, the hypothesis of
Proposition 8.3.10 is verified by almost any conjugate of Uν .

Lemma 8.3.11. Consider a prime ν and d ≥ 3. Let Hν be the orthogonal group of a non-
degenerate isotropic quadratic form on Qd

ν and let Uν be a one-parameter unipotent subgroup
of Hν with non-trivial projection to each simple factor of Hν. For any proper linear subspace
V of Qd

ν, the subset
{h ∈ Hν | h−1Uνh preserves V }

of Hν has measure 0.

Proof. We denote C (V ) the set in the statement. Since C (V ) is Zariski-closed, it has measure
0 or it contains a Zariski-connected component of Hν . We’ll show that the latter case implies
V = 0 or V = Qd

ν . Let H ′ be the Zariski-connected component of the identity of Hν . If C (V )
contains h0H

′, then V is stable under the groups

(h′)−1(h−1
0 Uνh0)h′

with h′ ∈ H ′. Let Z be an infinitesimal generator of h−1
0 Uνh0. V is invariant under Adh′(Z)

for h′ ∈ H ′. Note that the lie algebra hν of Hν is generated by the Adh′(Z)′s for h′ ∈ H ′
since Z has non-trivial projection to each simple factor of hν . Thus V is hν-invariant. Then
V = 0 or V = Qd

ν because the natural action of hν on Qd
ν is irreducible.

We are ready to prove that Od,S meets at least half of any closed HS-orbit.

Proof of Lemma 8.3.5. Since HS is non-compact, we take ν0 ∈ S with Hν0 non-compact. Let
C = Cν0,d and ϑ = ϑd be as in Proposition 8.3.10. Recall that

Od,S = {∆ ∈ X1
d,S | α1(∆) ≥ εd,S},

and

εd,S ≤ εν0,d =
1

2
·
(

1

2C

)ϑ−1

.
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Let ε1 = 2εν0,d. Then 0 < εd,S < ε1 < 1 and Cεϑ1 = 1
2
.

Let’s see that Od,S does the job. Once more, a closed HS-orbit in X1
d,S breaks into finitely

many closed H◦S-orbits, so we work with the latter. Let Y be such a closed H◦S-orbit and take
∆ ∈ Y . Let Uν0 be a one-parameter unipotent subgroup of Hν0 whose conjugates generate
H◦ν0 . The action of Uν0 on Y is ergodic by Lemma 8.3.7. By Birkhoff’s Theorem 8.3.6 there
is a co-null subset E of H◦S such that for any h ∈ E,

µY (Od,S ∩ Y )

µY (Y )
= lim

T→∞

λQν0 ({t ∈ Bν0(T ) | uth∆ ∈ Od,S})
λQν0 (Bν0(T ))

= lim
T→∞

λQν0 ({t ∈ Bν0(T ) | h−1uth∆ ∈ h−1Od,S})
λQν0 (Bν0(T ))

.

Notice that
Sd,S(ε1) = {Λ ∈ X1

d,S | α1(Λ) ≥ ε1)}

is contained in the interior of Od,S because εd,S < ε1. We choose h0 ∈ E close enough to Id so
that Sd,S(ε1) is still contained in h−1

0 Od,S. Moreover, we ask that h−1
0 Uν0h0 does not preserve

the QS-module generated any ∆′ ∈ Σ<1(∆). This is possible since, by Lemma 8.3.11, the
h ∈ Hν0 such that h−1Uν0h preserve 〈∆′〉QS form a null subset of Hν0 , and Σ<1(∆) is finite
by Lemma 8.3.9. Thus

λQν0 ({t ∈ Bν0(T ) | h−1
0 uth0∆ ∈ h−1

0 Od,S})
λQν0 (Bν0(T ))

≥
λQν0 ({t ∈ Bν0(T ) | h−1

0 uth0∆ ∈ Sd,S(ε1)})
λQν0 (Bν0(T ))

.

By Proposition 8.3.10, for T � 1 we have

λQν0 ({t ∈ Bν0(T ) | h−1
0 uth0∆ ∈ Sd,S(ε1)})

λQν0 (Bν0(T ))
≥ 1− Cεϑ1 =

1

2
,

so µY (Od,S ∩ Y ) ≥ 1
2
µY (Y ).

8.3.3 The main proof

Now we combine the results of 8.3.1 and 8.3.2 to show that Ωd,S meets at least half of any
closed HS-orbit.

Proof of Lemma 8.3.5. Recall that Ωd,S = Ωd,S(Edp2d4

S ) if Sf 6= ∅ and Ω∞,d = Ω∞,d(Ed2d
4
),

where Ed = 2d
3 · 32d4d3d3 . Take ∆ ∈ Od,S. By Lemma 8.3.3 we can write ∆ as gZdS for some

g ∈ SL±(d,R)×
∏
p∈Sf

GL(d,Zp)

with

||g∞||∞ <
√
d

(
2√
3

) (d−1)2

2

ε
−(d−1)
d,S ≤

{
Edp2d4

S if Sf 6= ∅,
Ed2d

4
if S = {∞}.
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This shows that Od,S is contained in Ωd,S. Let Y be a closed HS-orbit. Then

µY (Y ∩ Ωd,S) ≥ µY (Y ∩Od,S) ≥ 1

2
µY (Y )

by Lemma 8.3.5.

8.3.4 Effective recurrence of unipotent flows

The purpose of this subsection is to explain how to obtain Proposition 8.3.10 from the fairly
general [KT07, Theorem 9.3] of Kleinbock and Tomanov. We’ll introduce three new concepts
needed to state the result of Kleinbock and Tomanov and we’ll establish the auxiliary results
for the proof of Proposition 8.3.10, which is given at the end of the subsection.

Let Z be a metric space. We denote by BZ(z, r) the open ball with center z ∈ Z and
radius r. We say that Z is a Besicovitch space if there exist a positive integer NZ with the
following property:

• Besicovitch property:For any bounded subset A of Z and any function r : A →
(0,∞), there is a finite or countable subset B of

Br := {BZ(a, r(a)) | a ∈ A} (8.5)

that still covers A, and such that any point of Z belongs to at most NZ elements of B.

For example, Qp—more generally any ultrametric space—is a Besicovitch space with
NQp = 1. Indeed, for any pair of open balls in Qp, either they are disjoint or one is contained
in the other. Consider a bounded subset A of Qp and a positive function r on A. If r is
unbounded, let a0 ∈ A with r(a0) > diam(A). We can choose B = {BZ(a0, r(a0))}. If r is
bounded, any point of A is in a unique maximal—with respect to the inclusion—element of
Br. We take B as the subset of maximal elements of Br. Notice that B is at most countable
because any two distinct elements of it are disjoint and Qp is second-countable.

As a second example, Rd with its standard metric is a Besicovitch space according to
Besicovitch’s Covering Theorem. For a proof see [Mat95, p. 30]. It’s easy to see that if three
intervals of R meet, one of them is contained in the union of the other two, so NR = 2.

Next, we introduce a measure-theoretic analog of Besicovitch spaces. We say that a Borel
measure λ on a metric space Z is doubling if for any c > 1

Dλ(c) = sup

{
λ(BZ(z, cr))

λ(BZ(z, r))
| z ∈ supp λ, r > 0

}
(8.6)

is finite.

The Haar measure of R is doubling since DλR(c) = c. Let’s see that the Haar measure λQp
of Qp is also doubling. We take the standard normalization λQp(Zp) = 1. Then the measure
of a closed ball of radius pn is p−n for any n ∈ Z. It follows that

rp−1 ≤ λQp(BQp(z, r)) < r
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for any z ∈ Qp and any r > 0, so

λQp(BQp(z, cr))

λQp(BQp(z, r))
< cp (8.7)

for any c > 1. This shows that DλQp
(c) ≤ cp.

Lastly, we are interested in a class of functions that can’t take small values for a long
time. Let’s formalize this intuition. Let Z be a metric space and let K be a field endowed
with an absolute value | · |. Consider a non-empty subset B of Z and a measurable function
F : Z → K. We define

B(F, ε) = {b ∈ B | |F (b)| < ε} (8.8)

for any ε > 0. If λ is a Borel measure on Z and B meets supp λ, we define

||F ||B,λ = sup{|F (b)| | b ∈ B ∩ supp λ}.

Let C, ϑ > 0. We say that F is (C, ϑ)-good with respect to λ if

λ(B(F, ε)) ≤ C

(
ε

||F ||B,λ

)ϑ
λ(B)

for any open ball B of Z centered at a point in supp λ. When Z is a completion Qν of Q,
we’ll simply call (C, ϑ)-good a (C, ϑ)-good function with respect to the Haar measure λQν .
We will write|| · ||B instead of || · ||B,λQν .

The main example of (C, ϑ)-good functions are polynomial maps. The next result for real
polynomials is due to Kleinbock and Margulis in [KM98, Proposition 3.2].

Lemma 8.3.12. Consider a non-zero polynomial q(t) ∈ R[t] of degree d. If d ≤ d0, then q(t)

defines a
(
d0(d0 + 1)

1
d0 , 1/d0

)
-good function on R.

We prove now a p-adic analog of this result.

Lemma 8.3.13. Consider a non-zero polynomial q(t) ∈ Qp[t] of degree d. If d ≤ d0, then
q(t) defines a (d2

0p, 1/d0)-good function on Qp.

We break the proof of Lemma 8.3.13 into three easy lemmas. We fix a non-zero polynomial
q(t) of degree d with coefficients in Qp. Let m be a positive integer. We define Im(ε) as the
set of integers 0 ≤ a ≤ pm − 1 such that (pmZp + a) ∩ Zp(q, ε) is non-empty.

Lemma 8.3.14. Let m ≥ 0. If #Im(ε) ≥ d+ 1, then

||q||Zp ≤ εpd(m−1).

Proof. Consider pairwise different elements a0, . . . , ad in Im(ε) and ti ∈ ai + pmZp with
|q(ti)|p < ε. Notice that

|ai − aj|p ≥ p−(m−1).

Using Lagrange’s Interpolation Formula we write q(t) as

q(t) =
d∑
i=0

q(ti)
∏
j 6=i

t− tj
ti − tj

.
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For any z ∈ Zp and any i we have∣∣∣∣∣q(ti)∏
j 6=i

z − tj
ti − tj

∣∣∣∣∣
p

≤ εpd(m−1),

hence |q(z)|p ≤ εpd(m−1).

Lemma 8.3.15. For any m ≥ 1 and any ε > 0 we have

λQp(Zp(q, ε)) ≤ p−m#Im(p).

Proof. The measure of Zp(q, ε)—defined in (8.8)—less or equal than the measure of⋃
a∈Im(ε)

a+ pmZp

because the first set is contained in the second.

Lemma 8.3.16. Suppose that q(t) ∈ Qp[t] is non-zero and has degree ≤ d0. Then

λQp(Zp(q, ε)) ≤ d2
0p

(
ε

||q||Zp

) 1
d0

.

Proof. We choose m0 ≥ 1 such that

pm0−1 < d0 + 1 ≤ pm0 .

Then pm0−1 ≤ d0 and pm0 ≤ d0p.
If λQp(Zp(q, ε)) = 0 the inequality we want is true. Suppose now that λQp(Zp(q, ε)) is

positive and choose m ≥ 1 such that

p−m <
λQp(Zp(q, ε))

d0

≤ p−(m−1).

By Lemma 8.3.15 we have

λQp(Zp(q, ε)) ≤ p−(m+m0)#Im+m0(ε),

and we also know that d0p
−(m+m0) < λQp(Zp(q, ε)), thus

#Im+m0(ε) ≥ d0 + 1,

so we can use now Lemma 8.3.14:

||q||Zp ≤ εpd0m0pd0(m−1) ≤ ε(d0p)
d0

(
d0

λQp(Zp(q, ε))

)d0
.

This is equivalent to the inequality of the statement.

We are ready to prove that polynomial maps on Qp are (C, ϑ)-good.
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Proof of Lemma 8.3.13. Let B be a ball in Qp. We write it as z + pnZp with z ∈ Qp and
n ∈ Z. The degree of Q(t) = q(z + pnt) is also d and ||Q||Zp = ||q||B. By Lemma 8.3.16 we
have

λQp(Zp(Q, ε)) ≤ d2
0p

(
ε

||q||B

) 1
d0

. (8.9)

From the equality
B(q, ε) = z + pn(Zp(Q, ε))

we deduce that

λQp(Zp(Q, ε)) = pnλQp(B(q, ε)) =
λQp(B(q, ε))

λQp(B)
,

which combined with (8.9) yields

λQp(B(q, ε)) ≤ d2
0p

(
ε

||q||B

) 1
d0

λQp(B).

We need two simple property of (C, ϑ)-good functions.

Lemma 8.3.17. Consider two measurable functions F, F1 : Qν → Qν.

(i) If F and F1 are (C, ϑ)-good, then max{|F |ν , |F1|ν} is (C, ϑ)-good.

(ii) If F 2 is (C, ϑ)-good, then F is (C, 2ϑ)-good.

Proof. We start with (i). Set Fm = max{|F |ν , |F1|ν} and let B be a ball in Qν . It’s easy to
see that

B(Fm, ε) = B(F, ε) ∩B(F1, ε),

and ||Fm||B = max{||F ||B, ||F1||B}. Suppose that ||Fm||B = ||F ||B. Since B(Fm, ε) is con-
tained in B(F, ε) and F is (C, ϑ)-good, then

λQν (B(Fm, ε)) ≤ λQν (B(F, ε)) ≤ C

(
ε

||F ||B

)ϑ
λQν (B).

Thus F is (C, ϑ)-good.
We pass to (ii). Notice that ||F 2||B = ||F ||2B and B(F 2, ε2) = B(F, ε) for any ε > 0.

Since F 2 is (C, ϑ)-good, then

λQν (B(F, ε)) = λQν (B(F 2, ε2)) ≤ C

(
ε2

||F 2||B

)ϑ
λQν (B)

= C

(
ε

||F ||B

)2ϑ

λQν (B),

so F is (C, ϑ)-good.

Here is finally [KT07, Theorem 9.3] of Kleinbock and Tomanov. Recall that if ∆ is a
lattice of Qd

S we denote by Σ(∆) the set of non-zero ZS-submodules of ∆.
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Theorem 8.3.18. Consider a Besicovitch metric space Z, a doubling measure λ on Z and
a finite set S = {∞} ∪ Sf of primes. Let B = BZ(z0, r), B̃ = BZ(z0, 3

dr), and let F be a

continuous function B̃ → GL(d,QS). Suppose that the real numbers C, ϑ > 0 and ρ ∈ (0, 1)
verify the following: for every ∆′ ∈ Σ(ZdS)

(i) The map ψ∆′ : z 7→ cov(F (z)∆′) is (C, ϑ)-good with respect to λ on B̃;

(ii) ||ψ∆′ ||B,λ ≥ ρ.

Then, for any 0 < ε ≤ ρ one has

λ({z ∈ B | α1(F (z)ZdS) < ε}) ≤ dC(NZDλ(3)2)d
(
ε

ρ

)ϑ
λ(B),

with NZ and Dλ(3) as in (8.5) and (8.6), respectively.

The effective recurrence of unipotent flows—Proposition 8.3.10—follows easily from The-
orem 8.3.18.

Proof of Proposition 8.3.10. We write ∆ as gZdS for some g ∈ G1
d,S and we define F (t) = utg

for t ∈ Qν . Since ut = exp(tv) for some nilpotent d× d matrix v, then

F (t)ν = (qij(t))1≤i,j≤d

for polynomials qij(t) with coefficients in Qν , of degree at most d− 1. Take any ∆′ ∈ Σ(ZdS)
and a basis v1, . . . , vk of it. By (8.4) we have

ψ∆′(t) = cov(F (t)∆′) = cov(∆′, S − {ν}) · ||(F (t)v1)ν ∧ · · · ∧ (F (t)vk)ν ||ν ,

where cov(∆′, S − {ν}) is the constant∏
ν∈S−{ν}

||(gv1)ν ∧ · · · (gvk)ν ||ν .

Writing the (F (t)vi)ν in terms of the canonical basis e1, . . . , ed of Qd
ν and expanding the

wedge product we see that

(F (t)v1)ν ∧ · · · ∧ (F (t)vk)ν =
∑
J

QJ(t)ej1 ∧ · · · ∧ ejk

for QJ(t) ∈ Qν [t] of degree at most (d − 1)2, with at least one QJ(t) 6= 0. Here J runs over
all the k-tuples of integers (j1, . . . , jk) with 1 ≤ j1 < . . . < jk ≤ d. Hence

ψ∆′ =

{
(
∑

J QJ(t)2)
1
2 if ν =∞,

maxJ |QJ(t)|p if ν = p.

Lemmas 8.3.12, 8.3.13 and 8.3.17 imply that ψ∆′ is 11{
(22(d− 1)2, ϑd)-good if ν =∞,
((d− 1)2p, ϑd)-good if ν = p.

11In the case ν = ∞ we replace the factor (d0 + 1)
1
d0 of Lemma 8.3.12 by 2, which is bigger for d0 ≥ 2.

Here d0 = 2(d− 1)2.
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Take ε ∈ (0, 1). We apply Theorem 8.3.18 to Z = Qν , λ = λQν , and F . Consider ρ ∈ (ε, 1)
and

B = Bν(T ) := {z ∈ Qν | |z|ν < T}.

We already showed that condition (i) of Theorem 8.3.18 holds for any ∆′ ∈ Σ(ZdS). Now
we’ll show that (ii) holds if T is big enough. If F (0) = cov(g∆′) ≥ 1 we are done. Otherwise
g∆′ belongs to the finite set12

Σ<1(∆) = {g∆′1, . . . , g∆′`}.

We write

ψ∆′i
=

{
(
∑

J Qi,J(t)2)
1
2 if ν =∞,

maxJ |Qi,J(t)|p. if ν = p.

for some polynomials Qi,J(t). Since (ut) does not preserve the QS-module generated by g∆′i,
some Qi,J(t) is not constant. Thus there is ti ∈ Qν such that ψ∆′i

(ti) > 1. Let

T0 = T0((ut),∆) = max
1≤i≤`

|ti|ν .

Conditon (ii) is satisfied if T ≥ T0. Recall that

Dλ(3)

{
= 3 if ν =∞,
≤ 3p if ν = p.

The Besicovitch constants of R and Qp are 2 and 1, respectively. Theorem 8.3.18 implies
that

λ({z ∈ Bν(T ) | α1(ut∆) < ε})
λ(Bν(T ))

≤

{
d(22(d− 1)2)(2 · 32)d (ε/ρ)ϑd if ν =∞,
d((d− 1)2p)(3p)2d (ε/ρ)ϑd if ν = p.

Making ρ tend to 1 we obtain

λ({z ∈ Bν(T ) | α1(ut∆) < ε})
λ(Bν(T ))

≤

{
32dd32d+2εϑd if ν =∞,
32dd3p2d+1εϑd if ν = p,

as claimed.

8.4 Transversal recurrence of closed HS-orbits

Let HS be the orthogonal group of a non-degenerate, isotropic diagonal quadratic form on
Qd
S. In this section we prove a transversal recurrence phenomenon for closed HS-orbits in

X1
d,S—Lemma 8.1.3—for d ≥ 3. The idea of the proof is simple: Let Wd,S be a transversal to

HS in G1
d,S. If no point of Y returns to Y under a non-trivial element of (Wd,S)−1Wd,S, then

the volume βd,S(Wd,SY )13 of the box Wd,SY is equal to the product of the volumes of Wd,S

12It is finite because for any 1 ≤ k < d, the set {w1 ∧ · · · ∧ wk | wi ∈ ∆} is discrete in
∧k QdS .

13Recall that βd,S is the G1
d,S-invariant measure on X1

d,S .



100 CHAPTER 8. VOLUME OF CLOSED HS-ORBITS

and Y . Since βd,S(Wd,SY ) is at most βd,S(X1
d,S), Wd,S can’t be too big. The objective of this

section is to formalize these ideas. It is divided into five parts: first we give a convenient
description of X1

d,S and we fix the Haar measures on various groups we’ll work with in 8.4.1.
The transversal Wd,S will be constructed working separately in each Gd,ν . In 8.4.2 we do
ν = ∞, and ν = p in 8.4.3. These results are put together in 8.4.4 to get Wd,S. Finally, we
prove Lemma 8.1.3 in 8.4.5.

8.4.1 Preliminary remarks

First we give a description of X1
d,S better suited for this section, changing the group G1

d,S—a
semi-direct product—by a direct product G′d,S. If ν is a prime, we define

G′d,ν = {g ∈ Gd,ν | | det g|ν = 1},

and G′d,S =
∏

ν∈S G
′
d,ν . Let’s see that G′d,S acts transitively on X1

d,S, which justifies the
identification of this space with G′d,S/Γ

′
d,S, where Γ′d,S = Γd,S ∩G′d,S. If g is in G1

d,S,

| det g∞|∞ ·
∏
p∈Sf

| det gp|p = HS(det g) = 1,

so det g∞ is a unit in ZS. Then

diag(det g−1
∞ , 1, . . . , 1)

is in GL(d,ZS). Let γg be the diagonal image of this matrix in Γd,S. Then gx1
d,S = (gγg)x

1
d,S

and gγg is in G′d,S.

We fix now the Haar measures λG′ν of the groups G′d,ν . As explained in Appendix A, a
basis of the Lie algebra g′d,ν determines naturally a normalization of λG′ν . Let (x1, . . . , xd) be

the coordinates on Qd of the canonical basis e1, . . . , ed, and let e∗1, . . . , e
∗
d ∈ (Qd)∗ be the dual

basis. We denote by Eij the matrix of ei ⊗ e∗j and Fk = Ekk − Edd. On g′d,∞ = sl(d,R) we
take

(F1, . . . , Fd−1, E12, E23, . . . , Ed−1,d, E13, . . . , Ed−2,d, . . . , E1d,E21, . . . , Ed,d−1,

E31, . . . , Ed,d−2, . . . , Ed,1).
(8.10)

On g′d,p = gl(d,Qp) we consider the basis Eij, 1 ≤ i, j ≤ d. We endow G′d,S with the Haar
measure ⊗ν∈SλG′ν and X1

d,S with the G′d,S-invariant measure βd,S induced by λG′S .

Let ν be a prime and consider the orthogonal group Hν of the non-degenerate diagonal
quadratic form a1x

2
1 + · · · + adx

2
d. We’ll work with the Haar measure λHν of Hν determined

by the basis

βd,Hν = (H12, H23, . . . , Hd−1,d, H13, . . . , Hd−2,d, . . . , H1d), (8.11)

of hν , where Hij = Eij−aia−1
j Eji. If S is a finite set of primes and HS =

∏
ν∈S Hν , we define

λHS = ⊗ν∈SλHν .
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8.4.2 The transversal in the real factor

Let P∞(x) = a1x
2
1 + · · · + adx

2
d with a1, . . . , ad ∈ R×, and H∞ = O(P∞,R). Consider the

subgroupWd,∞ of lower-triangular matrices of G′d,∞ with positive entries in the main diagonal.
Here we’ll show that H∞ and Wd,∞ are transversal, and we’ll estimate the volume of small
neighborhoods of Id in Wd,∞.

First we fix the Haar measure λW∞ on Wd,∞ given by the basis

βd,W = (F1, . . . , Fd−1, E21, E32, . . . , Ed,d−1, E3,1, . . . , Ed,d−2, . . . , Ed1) (8.12)

of its Lie algebra wd,∞. We prove now that Wd,∞ is transversal to H∞ and that λG′∞ decom-
poses nicely on Wd,∞H∞.

Lemma 8.4.1. Let H∞ be the orthogonal group of a non-degenerate diagonal real quadratic
form P∞(x) in d variables.

(i) The multiplication map Wd,∞×H∞ → G′d,∞ is injective and the image Wd,∞H∞ is open
in G′d,∞.

(ii) On Wd,∞H∞ we have λG′∞ = λW∞ ⊗ λH∞.

Proof. Since P∞(x) is diagonal, the only lower-triangular matrices in H∞ are those of the
form diag(±1, . . . ,±1). Hence H∞ ∩Wd,∞ = 1. Take w1, w2 ∈ Wd,∞ and h1, h2 ∈ H∞. Then

w1h1 = w2h2 ⇔ w−1
2 w1 = h2h

−1
1 ,

but this last element is in H∞ ∩ Wd,∞, so the equality holds if and only if w1 = w2 and
h1 = h2. This proves that the multiplication map M : Wd,∞ ×H∞ → Wd,∞H∞ is injective.

We prove now that Wd,∞H∞ is open. The group Wd,∞ ×H∞ acts on G′d,∞ by

(w, h) · g = wgh−1,

and Wd,∞H∞ is an orbit, thus it suffices to prove that Wd,∞H∞ contains an open neighbor-
hood of Id in G′d,∞. This follows from the Inverse Function Theorem: The derivative

DM(Id,Id) : wd,∞ × h∞ → sl(d,R)

is the map (v1, v2) 7→ v1 + v2, which is a linear isomorphism. This completes the proof of (i).
We pass to (ii). An homogeneous space of the form G0/H0 with G0 and H0 locally

compact groups and H0 compact admits a unique (up to multiplication by a positive scalar)
Radon measure—see [Wei40, p. 45]. Thus λW∞ ⊗ λH∞ is the only (Wd,∞ × H∞)-invariant
measure on Wd,∞H∞. Since G′d,∞ is unimodular, λG′∞ is Wd,∞ invariant on the left and
H∞-invariant on the right, hence

λG′∞ = c(λW∞ ⊗ λH∞)

for some c > 0. To prove that c = 1 is suffices to see that the two measures are defined

by the same—up to sign—multilinear map in
∧d2−1(sl(d,R))∗—see the conventions we made

right before the statement of this lemma. The base-change matrix from the concatenation of
the bases in (8.12) and (8.11) to the one of (8.10) has determinant 1 because it is unipotent,
upper-triangular, so we are done.
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For the volume comparison argument in the proof of Lemma 8.1.3 we’ll replace Wd,∞ by
a neighborhood of Id in Wd,∞. We use the following estimation of its volume, proved in A.3.1
of Appendix A. Let’s fix notation: consider on gl(d,R) the operator norm || · ||op with respect
to the norm || · ||∞ on Rd. The exponential map is a bijection between wd,∞ and Wd,∞. For
any r > 0 we define

Bw∞(r) = {v ∈ wd,∞ | ||v||op < r}
and

Wd,∞(r) = exp(Bw∞(r)).

Recall that cd = d(d+1)
2
− 1.

Lemma 8.4.2. For any 0 < r < 1
2

we have

V −d r
cd < λW∞(Wd,∞(r)) < V +

d r
cd ,

where V −d = 2d−1

d2cd
and V +

d = 2d
2−1.

8.4.3 The transversal in the p-adic factor

Let Hp = O(P,Qp) for a diagonal quadratic form P (x) = a1x
2
1 + . . .+ adx

2
d with a1, . . . , ad ∈

Q×p . Consider also the subgroup Wd,p of lower-triangular matrices of Gd,p = GL(d,Qp). Now
we’ll see that Hp and an open subgroup of Wd,p are transversal. We also compute the volume
of small neighborhoods of Id in Wd,p.

We’ll work with the Haar measure λWp on Wd,p determined by the basis

(E11, . . . , Edd, E21, E32, . . . , Ed,d−1, . . . , Ed1)

of its Lie algebra wd,p.
This time Wd,p×Hp → Gd,p is not injective, but it has finite kernel, and λGp also decom-

poses nicely on Wd,pHp.

Lemma 8.4.3. Let Hp = O(P,Qp) with P as above.

(i) The image Wd,pHp of the multiplication map Wd,p ×Hp → Gd,p is open in Gd,p.

(ii) On Wd,pHp we have λGp = λWp ⊗ λHp.
Proof. The derivative at (Id, Id) of Wd,p ×Hp → Gd,p is the addition map

wd,p × hp → gl(d,Qp), (v1, v2) 7→ v1 + v2,

which is a linear isomorphism. By the Inverse Function Theorem—see [Ser92, p. 73] for a
proof that works also in the p-adic case—we get that Wd,pHp is a neighborhood of Id in Gd,p.
Thus Wd,pHp is open in Gd,p since it’s a (Wd,p ×Hp)-orbit in Gd,p.

We denote
Λ = {(g, g−1) | g ∈ W∞ ∩H∞},

and we identify Wd,pHp with (Wd,p×Hp)/Λ. It admits a (Wd,p×Hp)-invariant Radon measure,
unique up to multiplication by a positive constant, because Λ is finite. This traduces to a
unique measure on Wd,pHp that is Wd,p-invariant on the left and Hp-invariant on the right.
λWp ⊗ λHp and λGp verify this condition, hence they differ by multiplication by some c > 0.
To see that c = 1 we use the same argument as in the proof of Lemma 8.4.1.
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In the next lemma—proved in A.3.2 of Appendix A—ee shrink Wd,p to obtain a strict
transversal to Hp, and we compute the volume of small compact-open subgroups of Wd,p. We
define

Wd,p(r) = {w ∈ Wd,p | ||w − Id||p ≤ r, ||w−1 − Id||p ≤ r}

for any r > 0. Recall that cd = d(d+1)
2
− 1.

Lemma 8.4.4. Let p be a prime number. We set `p = 1 if p is odd and `p = 2 if p = 2. The
multiplication map Wd,p(p

`p)×Hp → Gd,p is injective, Wd,p(p
−`p)Hp is open in Gd,p and

λWp(Wd,p(p
−n)) = p−(cd+1)n

for any n ≥ 3.

8.4.4 The S-adic transversal

Let S = {∞} ∪ Sf be a finite set of primes. Consider P (x) = a1x
2
1 + · · · + adx

2
d with

a1, . . . , ad ∈ Q×S and let HS = O(P,QS). Now we combine the results of the previous two
sections to get the transversal to HS in G′d,S. The structure is the same as in the last two
subsections.

We define
Wd,S = W∞,d ×

∏
p∈Sf

Wd,p(p
−3),

and
Wd,S(r) = W∞,d(r)×

∏
p∈Sf

Wd,p(p
−3)

for any r > 0. We endow HS and Wd,S with their respective (left for WS) Haar measures

λHS = ⊗ν∈SλHν , λWS
= ⊗ν∈SλWν ,

with the normalizations chosen before in each factor.
For future reference we state here the fact that Wd,S is transversal to HS and the relation

between the Haar measures of Wd,S, HS and G′d,S. This follows directly from lemmas 8.4.1,
8.4.3 and A.3.4.

Lemma 8.4.5. Let S = {∞} ∪ Sf be a finite set of primes and let HS be the orthogonal
group of a non-degenerate diagonal quadratic form on Qd

S.

(i) The multiplication map Wd,S ×HS → G′d,S is injective and Wd,SHS is open in G′d,S.

(ii) On Wd,SHS we have
λG′S = λWS

⊗ λHS .

Now we estimate the volume of Wd,s(r).

Lemma 8.4.6. Let S = {∞} ∪ Sf be a finite set of primes. For any 0 < r < 1
2

we have

V −d p
−3(cd+1)
S rcd < λWS

(Wd,S(r)) < V +
d p
−3(cd+1)
S rcd ,

where V −d = 2d−1

d2cd
and V +

d = 2d
2−1.
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Proof. By Lemma 8.4.4 we have

λWS
(Wd,S(r)) = λW∞(W∞,d(r)) ·

∏
p∈Sf

λWp(Wd,p(p
−3)) = λW∞(W∞,d(r))p

−3(cd+1)
S ,

hence the result follows from the bounds for λW∞(W∞,d(r)) of Lemma 8.4.2, which hold when
r is in

(
0, 1

2

)
.

8.4.5 The proof of Lemma 8.1.3

Here we’ll finally prove the transversal recurrence for closed HS-orbits after presenting the
two last intermediate results we’ll use.

Let d ≥ 3. We consider P (x) = a1x
2
1+· · ·+adx2

d with a1, . . . , ad ∈ Q×S and HS = O(P,QS).
Suppose that HS is non-compact. Let Ωd,S be the compact subset of X1

d,S of Lemma 8.1.2.
Let Y be a closed HS-orbit in X1

d,S. The proof of Lemma 8.1.3 is based on two observations:

1. If no point of Y ∩ Ωd,S lands back in Y under any w ∈ Wd,S(r) − {Id}, the volume of
the box is λWd,S

(Wd,S(r))µY (Y ∩ Ωd,S).

2. the volume of the box Wd,S(r)(Y ∩ Ωd,S) is less or equal than the volume of X1
d,S

Here are the last two intermedidate results we’ll use in the main proof. We denote by Ψr
Y

the map

Wd,S(r)× (Y ∩ Ωd,S)→ X1
d,S, (w, y) 7→ wy.

Recall that Vd,∞ = β∞,d(X
1
∞,d). For the next lemma we define

Bd =
2Vd,∞

1
cd

d(d− 1)
.

Lemma 8.4.7. Let d ≥ 3 and let Y be a closed HS-orbit in X1
d,S. If Ψr

Y is injective and

r < 1
2
, then

r < Bdp
4
SµY (Y )

− 1
cd .

Proof. Since d is fixed, to simplify the notation we’ll omit the d in the subindices of X1
d,S,Wd,S

and Ωd,S. Let y0 be a base point in Y ∩ΩS and let Ỹ be a measurable subset of HS such that

Ỹ → Y ∩ ΩS, h 7→ hy0

is bijective. If Ψr
Y in injective, then

WS(r)Ỹ → X1
d,S, wh 7→ why0

is also injective, hence

β(WS(r)(Y ∩ ΩS)) = λG′S(WS(r)Ỹ ).
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We know that λG′S = λWS
⊗ λHS on WSHS—see Lemma 8.4.5—, so

λG′S(WS(r)Ỹ ) = λWS
(WS(r))λHS(Ỹ )

= λWS
(WS(r))µY (Y ∩ ΩS)

>
(
V −d p

−3(cd+1)
S rcd

)(µY (Y )

2

)
.

To obtain the last inequality we used Lemma 8.4.6 and Lemma 8.1.2. The volume of
WS(r)(Y ∩ ΩS) is strictly smaller than 2βS, d(X1

d,S) and βd,S(X1
d,S) < Vd,∞ by Corollary

A.4.2, hence
V −d
2
p
−3(cd+1)
S µY (Y )rcd < 2Vd,∞.

We finally get

r <

(
2d+1

(d(d− 1))cd
p

3(cd+1)
S Vd,∞µY (Y )−1

) 1
cd

< Bdp
4
SµY (Y )

− 1
cd .

Lemma 8.4.8. We have
e2r − 1 < 4r

for any r ∈
(
0, 1

2

)
.

Proof. The function 1
r
(e2r − 1) is increasing on (0,∞), so

e2r − 1

r
< 2(e− 1) < 4

if 0 < r < 1
2
.

We are ready to prove the transversal recurrence of closed HS-orbits.

Proof of Lemma 8.1.3. Let Y be a closed HS-orbit in X1
d,S. Recall that

Ad =

(
4

d(d− 1)

)cd
Vd,∞ and Bd =

2V
1
cd
d,∞

d(d− 1)
.

We define
rY = Bdp

4
SµY (Y )

− 1
cd .

Notice that rY < 1
2

if and only if µY (Y ) > Adp
4cd
S . Suppose that this is the case. Then

ΨrY
Y isn’t injective by Lemma 8.4.7. Take w 6= w′ in Wd,S(rY ) and y, y′ ∈ Y ∩ Ωd,S such

that w−1w′y = y′. We set u = w−1w′. Then u(Y ∩ Ωd,S) meets Y . We have wν 6= w′ν for
some ν ∈ S, hence uν /∈ Hν by (i) of Lemma 8.4.1 or Lemma 8.4.3 if ν = ∞ or ν = p,
respectively. Thus u is not in HS. Notice that ||up||p = 1 for any p ∈ Sf because up is in
Wd,p(p

−3) ⊆ GL(d,Zp). To conclude we estimate ||u∞ − Id||∞. By definition of W∞,d(rY ),

w = exp v, w′ = exp v′
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for some v, v′ ∈ wd,∞ with ||v||op, ||v′||op < rY . Then

||u∞ − Id||∞ ≤ ||w−1
∞ w′∞ − Id||op

≤ ||w−1
∞ w′∞ − w′∞||op + ||w′∞ − Id||op

≤ ||w−1
∞ − Id||op||w′∞||op + ||w′∞ − Id||op

< (erY − 1)erY + (erY − 1)

= e2rY − 1

< 4rY = C
(4)
d p4

SµY (Y )
− 1
cd ,

where C
(4)
d =

23V
1
cd
d

d(d−1)
. This completes the proof.



Chapter 9

Generating sets of S-integral
orthogonal groups

This chapter is based on a classical result of Siegel in his landmark article [Sie72]: The
integral orthogonal group of an integral quadratic form is finitely generated. Here we’ll obtain
an effective S-adic extension of this fact. The case S = {∞} was treated by Li and Margulis
in [LM16, Theorem 2]. Before giving their result, let’s recall some notation: if Q is an integral
quadratic form in d variables, bQ is its matrix in the standard basis of Qd, ||Q||∞ = ||bQ||∞
and δQ = det bQ.

Theorem 9.0.1. For any d ≥ 3 there is a constant Bd with the following property: Let Q be
a non-degenerate integral quadratic form in d ≥ 3 variables. Then O(Q,Z) is generated by
the γ ∈ O(Q,Z) with

||γ||∞ ≤ Bd||Q||3d
4

∞ |δQ|d
6

∞.

Consider now a finite set S = {∞} ∪ Sf of primes. Our statements treat the interest-
ing case, namely integral quadratic forms Q isotropic over QS

1 We formulate our results
separately for R-isotropic and R-anisotropic quadratic forms, as we did for our criteria of
ZS-equivalence. For the explicit values of the constants Kd,F1,d and F2,d in the next two
theorems, see Appendix C.

Theorem 9.0.2. Consider a non-degenerate R-isotropic integral quadratic form Q in d ≥ 3
variables and a finite set S = {∞} ∪ Sf of primes with Sf 6= ∅. The group O(Q,ZS) is
generated by the ξ ∈ O(Q,ZS) with

||ξ||∞ < Kdp20d7

S ||Q||d4∞ |δQ|3d
5

∞ ,

||ξ||p < p2d+2|δQ|
− 1

2
p for p ∈ Sf .

Theorem 9.0.3. Consider an R-anisotropic integral quadratic form Q in d ≥ 3 variables
and a finite set S = {∞}∪Sf of primes. Suppose that Q is Qp0-isotropic for some p0 > 2 in

1When Q is anisotropic over QS , O(Q,ZS) is finite because it is a discrete subgroup of the compact group
O(Q,QS).

107
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Sf . The group O(Q,ZS) is generated by the ξ ∈ O(Q,ZS) with

||ξ||p0 ≤ F1,dp
14d7

S ||Q||
1
2
d4

∞ |δQ|d
5

∞,

||ξ||p ≤ p2d+2|δQ|
− 1

2
p for p ∈ Sf − {p0},

||ξ||∞ ≤ F2,dp
4d3

S ||Q||
d
2
∞|δQ|d

3

∞.

We establish these two results adapting the strategy of Li and Margulis for S = {∞}.
Here is the basic notation we’ll use: let Q be a non-degenerate integral quadratic form in d
variables. We denote by HQ the orthogonal group of Q. If S = {∞} ∪ Sf is a finite set of

primes, we denote by ΓQS the diagonal copy of O(Q,ZS) in HQ
S . We’ll work with ΓQS instead

of O(Q,ZS).

The chapter is organized as follows: In Section 9.1 we prove a lemma that constructs a
generating set G Q

S of ΓQS from a generating set MQ
S of HQ

S and a fundamental set UQ
S of ΓQS in

HQ
S . Then, we give MQ

S and UQ
S respectively in Section 9.2 and Section 9.3. The description

of UQ
S depends on a certain finite subset T Q

S of Γd,S which will be carefully chosen in Section
9.4. We conclude with the proofs of the main results of the chapter in Section 9.5.

9.1 The basic lemma

The proofs of the two main results use the next lemma that gives a generating set of a
subgroup Γ0 of a group H0.

Lemma 9.1.1. Let Γ0 be a subgroup of a group H0. Suppose that M and U are subsets of
H0 such that

H0 =
⋃
n≥1

Mn = UΓ0.

Then Γ0 is generated by (U−1MU) ∩ Γ0.

Proof. Let An = U−1MnU for any positive integer n. Since H0 = ∪n≥1An, to show that
Λ := 〈A1 ∩ Γ0〉 coincides with Γ0 it suffices to prove that An ∩ Γ0 is contained in Λ for any
n ≥ 1. We show this by induction on n. This is true for n = 1 by the definition of Λ. Suppose
now that A` ∩ Γ0 ⊆ Λ for 1 ≤ ` ≤ n and consider γn+1 ∈ An+1 ∩ Γ0. Take u1, u2 ∈ U and
m1, . . . ,mn+1 ∈M such that

γn+1 = u−1
1 m1 · · ·mn+1u2.

We write mn+1u2 as u3γ1 for some u3 ∈ U and γ1 ∈ Γ0. Then γ1 and γn = u−1
1 m1 · · ·mnu3

are respectively in A1 ∩ Γ0 and An ∩ Γ0. By the inductive hypothesis, γ1, γn belong to Λ,
hence γn+1 = γnγ1 as well.

When H0 = UΓ0 as in Lemma 9.1.1 we’ll say that U is a fundamental set of Γ0 in H0.
Lemma 9.1.1 builds a generating set of Γ0 in terms of a generating set of the ambient group
H0 and a fundamental set of Γ0.
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9.2 A generating set of HQ
S

Here we give a generating set of HQ
S . Since HQ

S is conjugated to the orthogonal group HS

of a standard quadratic form on Qd
S, the task reduces to finding a generating set Mν of Hν

for ν ∈ S. When ν =∞, we take M∞ as any subset of H∞ with non-empty interior meeting
every connected component of H∞.

For Hp we’ll do something similar, replacing the connected components by H◦p -cosets of
Hp. Recall that H◦p is the image in Hp of the corresponding Spin group.

Lemma 9.2.1. Consider a prime p > 2 and an integer d ≥ 3. Any orthogonal group Hp of
a standard quadratic form on Qd

p is generated by the h ∈ Hp with ||h||p ≤ p2.

Proof.

9.3 A fundamental set of ΓQS in HQ
S

Now we construct a fundamental set UQ
S of ΓQS in HQ

S by analogy with the classical case
S = {∞}, first treated by Siegel in [Sie39]. His argument relies on the reduction theory of
real quadratic forms2, which in turn is based on the concept of Siegel sets of GL(d,R). This
section has two parts: in 9.3.1 we introduce the Siegel sets of GL(d,QS), which we use in
9.3.2 to construct UQ

S .

9.3.1 Siegel sets of GL(d)

We denote by Gd the Q-group GL(d). Let S = {∞} ∪ Sf be a finite set of primes. We

introduce here the Siegel sets S α,β
d,S of Gd,S, a family of subsets of Gd,S that depends on two

positive parameters α, β. They play a key role in the study of S-arithmetic groups because
any lattice in Qd

S is of the form gZdS for g ∈ S α,β
d,S when α and β are big enough.

Let’s start with S = {∞}. Consider the following subgroups of Gd,∞:

K = O(d,R)

A = {diag(a1, · · · , ad) ∈ Gd,∞ | ai > 0 for every 1 ≤ i ≤ d},
N = {unipotent, upper-triangular matrices in Gd,∞}.

For α, β > 0 we define

Aα = {diag(a1, · · · , ad) ∈ A | ai ≤ αai+1 for 1 ≤ i ≤ d− 1},
Nβ = {n ∈ N | ||n− Id||∞ ≤ β}.

The (α, β)-Siegel set of Gd,∞ is defined as

S α,β
d,∞ = KAαNβ.

2See Appendix B for the basic definitions and [Bor69, Chapitre I; §2, §5] for a complete discussion.
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For a general S = {∞} ∪ Sf we define the (α, β)-Siegel set of Gd,S as

S α,β
d,S = S α,β

d,∞ ×
∏
p∈Sf

GL(d,Zp).

Recall that Γd,S is the diagonal copy of GL(d,ZS) in Gd,S. The standard way to give a
fundamental set of Γd,S in Gd,S is using the Siegel sets.

Proposition 9.3.1. Consider a finite set of primes S = {∞} ∪ Sf and d ≥ 2. If α ≥ 2√
3

and β ≥ 1
2
, then

Gd,S = S α,β
d,S Γd,S.

See [Ben09, Lemma 2.2] and [PR94, Proposition 5.7 ] for the proofs for S = {∞} and
GL(d,Q) ⊆ GL(d,A), respectively. The same argument gives Proposition 9.3.1.

9.3.2 Construction of UQ
S

Let’s see how to describe a fundamental set of ΓQS in HQ
S . We’ll use some ideas from the

reduction theory of quadratic forms on Qd
S.

Let S = {∞} ∪ Sf be a finite set of primes. We say that a quadratic form R on Qd
S is

(α, β)-reduced if we can write it as P ◦ s for a standard quadratic form3 P on Qd
S and some

s ∈ S α,β
d,S . If B is a quadratic form on Qd, we write BS when we consider it as quadratic

form on Qd
S via the diagonal embedding Q → QS. We say that B is (S, α, β)-reduced if BS

is (α, β)-reduced. Here are some basic properties of reduced quadratic forms.

Lemma 9.3.2. Let S = {∞} ∪ Sf be a finite set of primes. Consider an (S, 2, 1)-reduced
quadratic form R in d ≥ 3 variables with coefficients in ZS, and an integral quadratic form
Q in d variables. Then:

(i) R is integral and p−2 ≤ |δR|p ≤ 1 for p ∈ Sf .

(ii) If Q = R ◦ γ for some γ ∈ GL(d,ZS), then |δR|∞ ≤ p2
S|δQ|∞,

p−1
S ≤ | det γ|∞ ≤ |δQ|

1
2∞ and |δQ|

1
2
p ≤ | det γ|p ≤ p|δQ|

1
2
p

for p ∈ Sf .

Proof. Let bR, bQ ∈ GL(d,Q) be the matrices of R and Q in the canonical basis of Qd. Write
RS = P ◦ s for s ∈ S 2,1

d,S and a standard quadratic form P = (Pν)ν∈S on Qd
S. Let c ∈ Gd,S be

the matrix of P in the canonical basis of Qd
S.

Let’s prove (i). Recall that R = Pp ◦ sp and sp ∈ GL(d,Zp) for p ∈ Sf , so

|δR|p = | det sp|2p · |(δP )p|p = |(δP )p|p,

3Recall that this means that P = (Pν)ν∈S and that each Pν is a standard quadratic form on Qdν , which
are defined in Section 3.2 for ν =∞ and in Subsection 3.3.1 for ν = p.
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thus4 p−2 ≤ |δR|p ≤ 1. The matrix bR ∈Md(ZS) verifies

||bR||p ≤ || tsp||p||cp||p||sp||p ≤ 1

for any p ∈ Sf , so bR is integral.
Now suppose that we are in the situation of (ii). Since R and Q are ZS-equivalent,

HS(δR) = HS(δQ). Using (i) we get

p2
S|δR|∞ ≤HS(δR) = HS(δQ) ≤ |δQ|∞,

which proves the first inequality. For the second one, since tγbRγ = bQ and |δR|∞ ≥ 1
because R is integral, then

| det γ|∞ =

(
|δQ|∞
|δR|∞

) 1
2

≤ |δQ|
1
2∞ and | det γ|−1

∞ =

(
|δR|∞
|δQ|∞

) 1
2

≤ pS.

Let’s prove the third inequality. For p ∈ Sf we have

| det γ|p =

(
|δQ|p
|δR|p

) 1
2

,

so |δQ|
1
2
p ≤ | det γ|p ≤ p|δQ|

1
2
p by (i).

We denote by RQ
S the set of rational quadratic forms that are ZS-equivalent to Q and

(S, 2, 1)-reduced.

Lemma 9.3.3. Let Q be a non-degenerate integral quadratic form in d variables. The set
RQ
S is finite for any finite set S = {∞} ∪ Sf of primes.

Proof. Any R ∈ RQ
S is integral by Lemma 9.3.2, so

|δR|∞ ≤HS(δR) = HS(δQ).

Also, R is (2, 1)-reduced as real quadratic form because the real factor of S α,β
d,S is the (α, β)

Siegel set of GL(d,R). By Proposition B.3.1 there are finitely many (2, 1)-reduced integral
quadratic forms on Rd of bounded determinant.

Let’s see how to obtain a fundamental set of ΓQS in HQ
S from RQ

S and S 2,1
d,S . Any R ∈ RQ

S

is in fact integral by Lemma 9.3.2. We choose τR ∈ Γd,S such that RS ◦ τR = QS—in the next
section we’ll pick a convenient τR—and we define

T Q
S = {τR | R ∈ RQ

S },

which is finite since RQ
S is by Lemma 9.3.3.

4Since Pp is standard, then |(δP )p|p is either p−2, p−1 or 1.
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Lemma 9.3.4. Let Q be a non-degenerate integral quadratic form in d ≥ 2 variables. Con-
sider a finite set of primes S = {∞} ∪ Sf and the standard quadratic form P on Qd

S that is
QS-equivalent to QS. Set

UQ
S =

(
g−1S 2,1

d,ST Q
S

)
∩HQ

S ,

where g ∈ Gd,S takes P to QS. Then HQ
S = UQ

S ΓQS .

Proof. Take h ∈ HQ
S . By Proposition 9.3.1 we can write gh as sγ−1 for some s ∈ S 2,1

d,S and
γ = (γ0, . . . , γ0) ∈ Γd,S. Let R = Q ◦ γ0. From QS = P ◦ (gh) we obtain QS ◦ γ = P ◦ s, so R

is in RQ
S . Consider τ ∈ T Q

S such that RS ◦ τ = QS. Then τ−1γ−1 is in ΓQS because

QS ◦ γ = RS = QS ◦ τ−1.

Notice also that u = g−1sτ belongs to UQ
S , and h = u(τ−1γ−1), so we are done.

9.4 Choosing a small generating set

Recall that Lemma 9.1.1 gives a generating set G Q
S of ΓQS from a generating set MQ

S of HQ
S —

obtained in Section 9.2—and a fundamental set UQ
S of ΓQS in HQ

S . We described such an
UQ
S in Section 9.3 in terms of a subset T Q

S of Γd,S. Here, using our effective criteria of ZS-

equivalence of quadratic forms—theorems 5.1.1 and 5.1.2—, we choose a T Q
S that will allow

us to control the size of the elements of G Q
S in Section 9.5.

We state separately the results for R-isotropic and R-anisotropic quadratic forms.

Lemma 9.4.1. Consider a non-degenerate R-isotropic integral quadratic form Q in d ≥ 3
variables, a finite non-empty set Sf of odd primes and S = {∞}∪Sf . For any R ∈ RQ

S there
is γR ∈ GL(d,ZS) that takes R to Q with

||γR||∞ ≤ Gdp19d6+5d4

S ||Q||d3|δQ|2d
4+2d2

∞ ,

||γR||p ≤ p2 for p ∈ Sf .

Here Gd = 2d
5Ci,dW2,d

d3 with Ci,d as in Theorem 5.1.1 and W2,d as in Lemma B.3.1.

Proof. Any R ∈ RQ
S is integral by Lemma 9.3.2, so Theorem 5.1.1 shows there is γR ∈

GL(d,ZS) taking R to Q with

||γR||∞ < Ci,dp19d6

S (||R||∞||Q||∞)d
3|δRδQ|d

2

∞,

and ||γR||p ≤ p|δR|
− 1

2
p for p ∈ Sf .

We’ll replace the terms in R by terms in Q. Recall that |δR|∞ ≤ p2
S|δQ|∞—see Lemma

9.3.2. Note also that R is reduced as real quadratic form since RS is (2,1)-reduced and

S 2,1
d,S = S 2,1

d,∞ ×
∏
p∈Sf

GL(d,Zp).

Then, by Proposition B.3.1

||R||∞ ≤ 2d
2

W2,d|δR|2d∞ ≤ 2d
2

W2,dp
4d
S |δQ|2d∞.
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To conclude we bound the norms of γR:

||γR||∞ ≤ Ci,dp19d6

S (2d
2

W2,dp
4d
S |δQ|2d∞)d

3 ||Q||d3∞ (p2
S|δQ|2∞)d

2

≤ Gdp19d6+5d4

S ||Q||d3∞ |δQ|2d
4+2d2

∞ ,

where Gd = 2d
5Ci,dW d3

2,d with Ci,d and W2,d respectively as in Theorem 5.1.1 and Lemma B.3.1.
Also

||γR||p ≤ p|δR|
− 1

2
p ≤ p2

by Lemma 9.3.2, for p ∈ Sf .

Lemma 9.4.2. Consider an R-anisotropic integral quadratic form Q in d ≥ 3 variables and
a finite set S = {∞} ∪ Sf of primes with 2 /∈ S. Suppose that Q is Qp0 isotropic for some

p0 > 2 in Sf . For any R ∈ RQ
S there is γR ∈ GL(d,ZS) that takes R to Q with

||γR||p0 ≤ H1,dp
13d6+2d4

S ||Q||
1
2
d2(d−1)
∞ |δQ|d

3(d−1)+7
∞ ,

||γR||p ≤ p2 for p ∈ Sf ,
||γR||∞ ≤ H2,dp

2d(d−1)
S ||Q||

1
2
∞|δQ|d(d−1)

∞ .

Here H1,d = 2d
5Ca,dW2,d

1
2
d2(d−1) and H2,d = 2d

3
dd+1 · d!W2,d

d−1
2 with Ca,d as in Theorem

5.1.2 and W2,d as in Lemma B.3.1.

Proof. Any R ∈ RQ
S is integral, and the upper bounds for |δR|ν and ||R||∞ in the proof of

Lemma 9.4.1 remain valid in the current situation. Consider γR ∈ GL(d,ZS) taking R to Q
as in Theorem 5.1.2. We have

||γR||p0 ≤ Ca,dp13d6

S (||R||∞||Q||∞)
1
2
d2(d−1)|δRδQ|

7
2∞

≤ Ca,dp13d6

S (2d
2

W2,dp
4d
S ||Q||∞|δQ|2d∞)

1
2
d2(d−1)(p2

S|δQ|2∞)
7
2

≤ H1,dp
13d6+2d4

S ||Q||
1
2
d2(d−1)
∞ |δQ|d

3(d−1)+7
∞ ,

where H1,d = 2d
5Ca,dW

1
2
d2(d−1)

2,d , with Ca,d and W2,d respectively as in Theorem 5.1.2 and
Lemma B.3.1. For p ∈ Sf ,

||γR||p ≤ p|δR|
− 1

2
p ≤ p2,

and finally

||γR||∞ ≤ dd+1 · d!||R||
d−1
2
∞ ||Q||

1
2
∞

≤ H2,dp
2d(d−1)
S ||Q||

1
2
∞|δQ|d(d−1)

∞ ,

where H2,d = 2d
3
dd+1 · d!W

d−1
2

2,d .
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9.5 Proofs of the main theorems

Everything is now in place. We complete now the proofs of our effective results on generators
of O(Q,ZS). We start with the R-isotropic case.

Proof of Theorem 9.0.2. We write QS = P ◦ g for a standard quadratic form P on Qd
S and

g ∈ Gd,S. Set HS = O(P,QS), so H∞ is non-compact. For p ∈ Sf we define

Mp = {h ∈ Hp | ||h||p ≤ p2},

which generates Hp by Lemma 9.2.1. Consider

M∞ = {diag(a1, . . . , ad) | ai = ±1}

and
M∞(ε) = M∞ ∪ {h ∈ H∞ | ||h− Id||∞ < ε}.

Note that M∞(ε) generetes H∞ since it has non-empty interior and M∞ meets all the
connected components of H∞. Hence MS(ε) = M∞(ε) ×

∏
p∈Sf Mp generates HS and

MQ
S (ε) = g−1MS(ε)g generates HQ

S = g−1HSg for any ε > 0. For each R ∈ RQ
S we de-

fine τR = (γR, . . . , γR) ∈ Γd,S with γR taking R to Q as in Lemma 9.4.1, and we set

T Q
S = {τR | R ∈ RQ

S }.

Consider
UQ
S = (g−1S 2,1

d,ST Q
S ) ∩HQ

S .

Then HQ
S = UQ

S ΓQS by Lemma 9.3.4, and

G Q
S (ε) = ((UQ

S )−1MQ
S (ε)UQ

S ) ∩ ΓQS

generates ΓQS according to Lemma 9.1.1. Letting ε→ 0 we see that

G Q
S = ((UQ

S )−1MQ
S U

Q
S ) ∩ ΓQS

generates ΓQS
5, where MQ

S = g−1MSg. For any ξ̃ ∈ G Q
S , let ξ be the corresponding matrix in

GL(d,ZS). Let’s see that any ξ verifies the bounds of the statement. We write

ξ̃ = τ−1s−1g(g−1mg)g−1tη = τ−1s−1mtη

with τ, η ∈ T Q
S ,m ∈MS and s, t ∈ S 2,1

d,S . Let b′ = s−1mt = τ ξ̃η−1, so b′ is in Γd,S. For p ∈ Sf
we have

||b′p||p = ||s−1
p mptp||p ≤ p2,

so b := p2
Sb
′
∞ has integral coefficients. The equality s∞b = p2

Sm∞t∞
6 shows that S 2,1

d,∞b meets

S 2,1
d,∞, so

||b||∞ ≤ W3,d| det b|2d∞ (9.1)

5The reason for considering this set instead of GQ
S (ε) is that M∞ is contained in O(d,R), unlike MS(ε).

6Here is where we use that M∞ is contained in O(d,R).
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by Corollary B.2.11. Note that the determinant of ξ = τ−1
∞ b′∞η∞ is ±1 since it preserves Q,

so

| det b′∞|∞ =
| det τ∞|∞
| det η∞|∞

≤ pS|δQ|
1
2∞

by Lemma 9.3.2. Writing (9.1) in terms of b′ yields

||b′∞||∞ ≤ W3,dp
4d2−2
S | det b′|2d∞ ≤ W3,dp

8d2

S |δQ|d∞.

We are ready to bound ξ:

||ξ||∞ = ||τ−1
∞ b′∞η∞||∞ ≤ d2||τ−1

∞ ||∞||η∞||∞||b′∞||∞

≤ d · d!
||τ∞||d−1

∞ ||η∞||∞
| det τ∞|∞

||b′∞||∞

≤ d · d!pS(Gdp19d6+5d4

S ||Q||d3∞ |δQ|2d
4+2d2

∞ )d(W3,dp
8d2

S |δQ|d∞)

≤ Kdp20d7

S ||Q||d4∞ |δQ|3d
5

∞ ,

where Kd = d · d!GddW3,d with Gd and W3,d as in Lemma 9.4.1 and Corollary B.2.11, respec-
tively. We also have

||ξ||p = ||τ−1
p s−1

p mptpηp||p ≤ ||mp||p
||τp||d−1

p ||ηp||p
| det τp|p

≤ p2d+2|δQ|
− 1

2
p

for p ∈ Sf .

Proof of Theorem 9.0.3. Let HS be the orthogonal group of the standard quadratic form
P on Qd

S that is QS-equivalent to QS and consider g ∈ Gd,S taking P to QS. Since Q is
R-anisotropic and Qp0-isotropic, H∞ = O(d,R) and Hp0 is non-compact. Consider again

Mp = {h ∈ Hp | ||h||p ≤ p2},

which generate Hp by Lemma 9.2.1. As generating set of H∞ we take M∞ = H∞. Note

that MS =
∏

ν∈SMν generates HS and MQ
S = g−1MSg generates HQ

S = g−1HSg. For each

R ∈ RQ
S we define τR = (γR, . . . , γR) ∈ Γd,S with γR ∈ GL(d,ZS) taking R to Q as in Lemma

9.4.2. Consider T Q
S , U

Q
S and G Q

S as in the proof of Theorem 9.0.2. Once more, the ξ̃ ∈ G Q
S

generate ΓQS , so the corresponding ξ ∈ GL(d,ZS) generate O(Q,ZS).

Let’s see that these ξ verify the inequalities of the statement. We write

ξ̃ = τ−1s−1mtη

with τ, η ∈ T Q
S , m ∈ MS and s, t ∈ S 2,1

d,S . We consider again b′ = s−1mt = τ ξ̃η−1 ∈ Γd,S. In
the present situation the inequality

||b′∞||∞ ≤ W3,dp
8d2

S |δQ|d∞
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still holds. We are ready to bound ξ:

||ξp0||p0 = ||τ−1
p0
s−1
p0
mp0tp0ηp0 ||p0 ≤ p2

0| det τp0|−1
p0
||τp0||d−1

p0
||ηp0||p0

≤ p2
0|δQ|

− 1
2

p0 (H1,dp
13d6+2d4

S ||Q||
1
2
d2(d−1)
∞ |δQ|d

3(d−1)+7
∞ )d

≤ F1,dp
14d7

S ||Q||
1
2
d4

∞ |δQ|d
5

∞,

where F1,d = Hd
1,d with H1,d and in Lemma 9.4.2. For p ∈ Sf − {p0} we have

||ξ||p ≤ p2|δQ|
− 1

2
p ||τp||d−1

p ||ηp||p ≤ p2d+2|δQ|
− 1

2
p .

An finally the ∞-norm:

||ξ||∞ ≤ d · d!
||τ∞||d−1

∞ ||η∞||∞
| det τ∞|∞

||b′∞||∞

≤ d · d!pS(H2,dp
2d(d−1)
S ||Q||

1
2
∞|δQ|d(d−1)

∞ )d(W3,dp
8d2

S |δQ|d∞)

≤ F2,dp
4d3

S ||Q||
d
2
∞|δQ|d

3

∞,

where F2,d = d · d!Hd
2,dW3,d with H2,d and W3,d respectively as in Lemma 9.4.2 and Corollary

B.2.11.



Appendix A

Volume computations

This appendix gathers volume computations on various Lie groups. The explicit constants
in our criteria of ZS-equivalence—theorems 5.1.1 and 5.1.2—depend on these.

There are four parts. Section A.1 explains how to choose a Haar measure on a real or
p-adic Lie group form a basis of its Lie algebra. Then, in Section A.2 we estimate the volume
of neighborhoods of the identity in orthogonal groups and we build bump functions on real
orthogonal groups. Section A.3 deals with volume estimates in groups of lower-triangular
matrices. Finally, we prove a formula for the volume of the space of covolume 1 lattices of
Qd
S in Section A.4.

A.1 Haar measure on Lie groups

We start with general remarks. Let ν be a prime and letH0 be a closed subgroup ofGL(d,Qν).
Let’s fix a choice of Haar measure on H0 and Lebesgue measure on its Lie algebra h0. Let
(y1, . . . , yk) be the coordinates on h0 with respect to a basis β on h0. We take λh0 such that

λh0({(y1, . . . , yk) ∈ h0 | |y1|ν , . . . , |yk|ν ≤ 1} =

{
2k if ν =∞,
1 if ν = p.

Let ω be the left-invariant volume form on H0 such that

ωId = (dy1 ∧ · · · ∧ dyk)0.

We denote by λH0 the left Haar measure on H0 given by integration with respect to ω. We’ll
say that a Haar measure νH0 on H0 and a Lebesgue measure νh0 on h0 are compatible if they
can be obtained from the same basis of h0.

A.2 Orthogonal groups

The aim of this section is to establish volume estimates for open neighborhoods of the identity
in real and p-adic orthogonal groups—Lemma A.2.1 and Lemma A.2.12, respectively. These
were used in the proof of the dynamical statements of Chapter 6 and Chapter 7.
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A.2.1 Real orthogonal groups

We treat first the case of real orthogonal groups. The goal of this subsection is to prove
Lemma A.2.1.

Let || · ||∞ be the norm on Md(R) of the maximum of the absolute values of the entries.
If P (x) is a non-degenerate quadratic form on Rd we denote by HP the group O(P,R). As
before, let bP be the matrix of P in the canonical basis e1, . . . , ed of Rd. Then

hP = {v ∈ gl(d,R) | tvbP + bPv = 0}.

If P (x) = a1x
2
1 + · · ·+ adx

2
d, we consider the basis of hP formed by

Hij = Eij − aia−1
j Eji (A.1)

with 1 ≤ i < j ≤ d. Here Eij is the matrix of e∗j ⊗ ei and e∗1, . . . , e
∗
d is the dual standard basis

of (Rd)∗. We’ll denote by λHP and λhP the Haar measures of HP and hP induced by this
basis. We’ll estimate the measure of small symmetric balls of HP centered at the identity:

HP (r) = {h ∈ HP | ||h− Id||∞ < r, ||h−1 − Id||∞ < r}.

Lemma A.2.1. For every d ≥ 3 there are positive constants Rd, Sd with the following property:
if P (x) = a1x

2
1 + · · ·+ adx

2
d with each ai ∈ {±1}, then

Rdr
1
2
d(d−1) < λHP (HP (r)) < Sdr

1
2
d(d−1)

if r ≤ 2
5d

.

In Lemma A.2.1 we can take

Rd =

(
1

3d

) d(d−1)
2

and Sd =

(
20d

3

) d(d−1)
2

.

The idea to prove Lemma A.2.1 is simple: if r is small, HP (r) is parametrized by via the
exponential map of HP . We’ll see that λHP (HP (r)) and λhP (exp−1HP (r)) are comparable.
We break the proof into several auxiliary lemmas.

Let G∞ = GL(d,R) and g∞ = gl(d,R). To compare the sizes of v ∈ g∞ and exp v ∈ G∞
it is convenient to work with a submultiplicative norm. Let || · ||op be the operator norm on
g∞ with respect to the norm || · ||∞ on Rd. For any linear subspace w of g∞ we define

w(r) = {v ∈ w | ||v||op < r}.

The next lemma gives open subset of g∞ and G∞ where exp restricts to a diffeomorphism.

Lemma A.2.2. For any d ≥ 2, the exponential map of G∞ is a diffeomorphism between
g∞(log 2) and an open subset of G∞.

Proof. The inverse of exp, that we’ll denote by log, is defined by the power series

log g =
∞∑
i=1

(−1)n+1

n
(g − Id)n,

that converges when ||g − Id||op < 1. If v is in g∞(log 2), then

|| exp(v)− Id||op < elog 2 − 1 = 1,

so we are done.
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The next result is useful to estimate the volume of G∞(r).

Lemma A.2.3. Let d ≥ 3. For any r ∈
(
0, 2

5d

]
we have

exp g∞

(
9

10
r

)
⊆ G∞(r) ⊆ exp g∞

(
5d

3
r

)
⊆ exp g∞(log 2).

To prove Lemma A.2.3 we use the next two simple inequalities. The first one is immediate.

Lemma A.2.4. If s ∈
[
0, 2

5

]
, then

s

1− s
≤ 5

3
s.

Lemma A.2.5. If s ∈
[
0, 2

15

]
, then

9

10
s ≤ log(1 + s).

Proof. Since log(1+s) is concave, the statement follows from the inequalities for s ∈ {0, 2/15}.

Proof of Lemma A.2.3. Take r ∈
(
0, 2

5d

]
and g = exp v ∈ G∞(r). We have

||g − Id||op ≤ d||g − Id||∞ ≤ dr < 1,

so log g =
∑

n≥1
(−1)n+1

n
(g − I3)n converges. Moreover

|| log g||op ≤
∑
n≥1

||g − Id||nop

≤ dr

1− dr
≤ 5d

3
r.

We used Lemma A.2.4 in the last line. This proves the inclusion

G∞(r) ⊆ exp g∞

(
5d

3
r

)
.

Since r ≤ 2
5d
≤ 2

15
, 5d

3
r ≤ 2

3
< log 2 = 0.693 . . ., so log is a diffeomorphism from G∞(r) to an

open subset of g∞—see Lemma A.2.2.
Now take v ∈ g∞(9r/10) and set g = exp v. Thanks to Lemma A.2.5 we have

||v||op ≤ log(1 + r),

so
||g − Id||∞ ≤ ||g − Id||op ≤ e||v||op − 1 < r.

The same argument with −v gives the same upper bound for ||g−1 − I3||∞. This proves the
inclusion

exp g∞

(
9

10
r

)
⊆ G∞(r).



120 APPENDIX A. VOLUME COMPUTATIONS

Now we recall the well-known relation between the Haar measures of a Lie group and its
Lie algebra near the identity. Let ψ(z) be the power series 1−e−z

z
.

Lemma A.2.6. Let H0 be a Lie subgroup of G∞ Suppose that νH0 and νh0 are compatible
Haar measures on H0 and h0. The map

DH0(v) = detψ(adh0v)

is a density of log∗ λH0 with respect to λh0 on h0(log 2).

Proof. Since νH0 and νh0 are compatible, there are coordinates (y1, . . . , yk) on h0 with respect
to a basis of h0 such that νH0 and νh0 are respectively given by the integration with respect to ω
and dy1∧· · ·∧dyk, where ω is the left-invariant volume form on H0 with ωId = (dy1∧· · ·∧dyk)0.
We just have to prove that

(exp∗ ω)v = DH0(v)(dy1 ∧ · · · ∧ dyk)v.

The derivative of exp : h0 → H0 at v—see [God17, p. 99]—is given by

D expv = Lh ◦ ψ(ad h0v),

where Lh : H0 → H0 is the left multiplication by h = exp v. Thus

(exp∗ ω)v = ψ(ad h0v)∗L∗hωh

= ψ(ad h0v)∗ωId
= detψ(ad h0v)(dy1 ∧ · · · ∧ dyk)0.

The next lemma gives positive lower and upper bounds of DHP near 0. Let nd be d(d−2)
2

if d is even and (d−1)2

2
if d is odd.

Lemma A.2.7. Let P be a non-degenerate quadratic form on Rd. For any v ∈ hP (1/2) we
have

5−nd < DHP (v) < 2nd .

We state a less sharp version of Lemma A.2.7 that we’ll use later.

Corollary A.2.8. Let P be a non-degenerate quadratic form on Rd. For any v ∈ hP (1/2)
we have

5−
1
2
d(d−1) < DHP (v) < 2

1
2
d(d−1).

Proof. The inequality follows from Lemma A.2.7 since nd <
d(d−1)

2
.

We introduce the function f(r) = 1
r
(er − 1− r). To prove Lemma A.2.7 we use the next

inequality.

Lemma A.2.9. For any z ∈ C with |z|∞ < r we have

1− f(r) < |ψ(z)|∞ < 1 + f(r).
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Proof. We have

|ψ(z)− 1|∞ =

∣∣∣∣∣
∞∑
n=1

(−1)n
zn

(n+ 1)!

∣∣∣∣∣
∞

≤
∞∑
n=1

|z|n∞
(n+ 1)!

= f(|z|∞) < f(r). (A.2)

By the triangle inequality we have

1− |ψ(z)− 1|∞ ≤ |ψ(z)|∞ ≤ 1 + |ψ(z)− 1|∞. (A.3)

The inequality of the statement follows from (A.2) and (A.3).

Proof of Lemma A.2.7. Note thatDHP (v) =
∏

η ψ(η), where η runs through all the eigenvalues—
with multiplicity—of adhP v. Since ψ(0) = 0, the η = 0 don’t contribute to DHP (v), so we’ll
neglect them. Each η is the sum of two eigenvalues of v. Let || · ||op be the operator norm on
gl(d,C) with respect to || · ||∞ on Cd. Suppose that v ∈ hP (1/2) and let λ be an eigenvalue
of v. Then

|λ|∞ ≤ ||v||op <
1

2
.

It follows that |η|∞ < 1 for any η, and

1

5
< 0.281 . . . = −f(1) ≤ |ψ(η)|∞ ≤ 1 + f(1) = 1.718 . . . < 2 (A.4)

by Lemma A.2.9. To obtain the inequality of the statement we multiply (A.4) for all η 6= 0.
There are at most nd of these1.

The last thing we need to prove the estimate of λHP (HP (r))—Lemma A.2.1—is an ap-
proximation of the volume of hP (1).

Lemma A.2.10. If P (x) = a1x
2
1 + . . .+ adx

2
d with each ai ∈ {±1}, then(

2

d

) d(d−1)
2

≤ λhP (hP (1)) ≤ 2
d(d−1)

2 .

Proof. We define
BP (r) = {v ∈ hP | ||v||∞ < r}.

Let v =
∑

i<j vijHij ∈ hP . Since ai = ±1 for every i, we have ||v||∞ = maxi<j |vij|∞. Then

λhP (BP (r)) = (2r)dimhP by our choice of λhP .
Note that

BP (1/d) ⊆ hP (1) ⊆ BP (1)

since 1
d
|| · ||op ≤ || · ||∞ ≤ || · ||op on gl(d,R). Comparing their volumes we obtain the inequality

of the statement.

1Since v is antisymmetric with respect to a non-degenerate symmetric bilinear form, the eigenvalues of v
come in pairs: ±λ1, . . . ,±λ d

2
if d is even and ±λ1, . . . ,±λ d−1

2
, 0 if d is odd.
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Proof of Lemma A.2.1. Since r ≤ 2
5d

, then

exp hP

(
9

10
r

)
⊆ HP (r) ⊆ exp hP

(
5dr

3

)
⊆ exp hP (log 2)

by Lemma A.2.3. Recall that

DHP (v) ≤ 2
d(d−1)

2

by Corollary A.2.8 since r ≤ 2
5d
< 1

2
. Thus

λHP (HP (r)) ≤ λHP

(
exp hP

(
5dr

3

))
=

∫
hP (5dr/3)

DHP (v)dλhP (v)

< 2
d(d−1)

2 λhP (hP (1))

(
5dr

3

) d(d−1)
2

≤
(

20d

3

) d(d−1)
2

r
d(d−1)

2 .

We used Lemma A.2.10 to obtain the last line. A similar argument gives the lower bound:

λHP (HP (r)) > 5−
d(d−1)

2 λhP

(
hP

(
9r

10

))
≥
(

1

3d

) d(d−1)
2

r
d(d−1)

2 .

A.2.2 p-adic orthogonal groups

Now we treat the p-adic case, where we’ll prove a formula—Lemma A.2.11—for the volume
of small balls in orthogonal groups, rather than a simple estimate as in the real case. If H0

is a Lie subgroup of Gd,p = GL(d,Qp), we define

H0(r) = {h ∈ H0 | ||h− Id||p ≤ r, ||h−1 − Id||p ≤ r}.

Let P (x) = a1x
2
1 + . . .+ adx

2
d with a1, . . . , ad ∈ Q×p and let HP = O(P,Qp). We consider here

also the Haar measures λH and λh of HP and hP induced by the basis Hij = Eij − aia−1
j Eji,

i < j of hP . We define

DP =
∏
i<j

min{1, |aia−1
j |p}.

Here is our volume formula.

Lemma A.2.11. Let p be a prime number and let P be a non-degenerate diagonal quadratic
form on Qd

p. For any integer n ≥ 3 we have

λH(HP (p−n)) = DP · p−
1
2
d(d−1)n.
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Corollary A.2.12. Let d ≥ 3 and let H be the orthogonal group of a standard quadratic
form on Qd

p. Then

λH(H(p−n)) = p−
1
2
d(d−1)n.

Proof. If P (x) = a1x
2
1 + · · · adx2

d is a standard quadratic form on Qd
p, then |ak|p = 1 for

k ≤ d− 2 and p−1 ≤ |ad−1|p, |ad|p ≤ 1. It follows that |aia−1
j |p ≥ 1 if i < j, so DP = 1.

We’ll compare again the measure of HP (p−n) with the measure of open balls in hP . The
strategy is the same as in the real case: we’ll determine neighborhoods U of 0 in hP and U
of Id in HP where exp : U→ U is bijective, we’ll establish the relation between log∗ λH and
λh on U and we’ll compute the volume of U.

Let gp = gl(d,Qp) ' Md(Qp) and let || · ||p be the norm on gp of the maximum of the
p-adic absolute values of the entries. For any linear subspace w of gp we define

w(r) = {v ∈ w | ||v||p ≤ r}.

Lemma A.2.13. Let p be a prime number and d ≥ 2. The exponential map is a bijection
between gp(p

−n) and Gd,p(p
−n) for any integer n ≥ 3.

One has to be careful because exp doesn’t converge in all of Qp. We handle this with the
next lemma.

Lemma A.2.14. Consider t ∈ Qp. If 0 < |t|p ≤ p−3, then:

(i)
∣∣ tm
m!

∣∣
p
< |t|p for any integer m > 1.

(ii) tm

m!
→ 0 as m→∞.

Proof. Notice that m
p−1

< 3(m− 1) for any integer m ≥ 2 and any prime number p. Then

3(m− 1) >
m

p− 1
=
∑
j≥1

m

pj
≥
∑
j≥1

⌊
m

pj

⌋
= − logp |m!|p,

so
|m!|−1

p < p3(m−1) ≤ |t|−(m−1)
p .

It follows that
∣∣ tm
m!

∣∣
p
< |t|p.

Since ∣∣∣∣ tmm!

∣∣∣∣
p

≤ p− logp |m!|pp−3m ≤ p
m
p−1p−3m = pm( 1

p−1
−3), (A.5)

and 1
p−1
− 3 < 0, the last term of (A.5), and hence also the first, tend to 0 as m→∞.

Proof of Lemma A.2.13. Consider n ≥ 3 and v ∈ gp with ||v||p ≤ p−n. By Lemma A.2.14 we
have ∣∣∣∣∣∣∣∣vmm!

∣∣∣∣∣∣∣∣
p

≤
||v||mp
|m!|p

< ||v||p

for any m ≥ 2, so

exp(v)− Id = v +
∑
m≥2

vm

m!
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converges and || exp(v)− Id||p = ||v||p. This shows that exp sends gp(p
−n) to Gd,p(p

−n).
Now consider g ∈ Gd,p(p

−n). We have∣∣∣∣∣∣∣∣(g − Id)mm

∣∣∣∣∣∣∣∣
p

≤
||g − Id||mp
|m|p

≤
||g − Id||mp
|m!|p

< ||g − Id||p

for m ≥ 2, so

log g = (g − Id) +
∑
m≥2

(−1)m+1

m
(g − Id)m

converges and || log g||p = ||g − Id||p. Thus log = exp−1 sends Gd,p(p
−n) to gp(p

−n), which
proves our claim.

The relation of log∗ λH and λh on hP (p−3) is very simple.

Lemma A.2.15. Consider a prime number p and d ≥ 2. Let H be the orthogonal group of
a non-degenerate diagonal quadratic form on Qd

p. Then log∗ λH = λh on h(p−3).

To prove Lemma A.2.15 we’ll use the explicit formula of the function relating the two
measures, which is proved in the same way as in the real case. Recall that ψ(z) is the power
series 1

z
(1− e−z).

Lemma A.2.16. Let H0 be a Lie subgroup of Gd,p with Lie algebra h0. Consider compatible
Haar measures νH0 and νh0 on H0 and h0. Then

DH0(v) = | detψ(adh0 v)|p

is a density of log∗ νH0 with respect to νh0 on H0(p−3).

Proof of Lemma A.2.15. Since λH and λh are compatible, then

d log∗ λH
dλh

(v) = | detψ(adhv)|p

on h(p−3) by Lemma A.2.16. Thus it suffices to prove that |ψ(η)|p = 1 for any eigenvalue η
of adhv when v ∈ hP (p−3).

Let’s fix v ∈ hP (p−3). Let K be a finite extension of Qp that has the eigenvalues λ of v.
The p-adic absolute value extends uniquely to an ultrametric absolute value on K that we
denote also by | · |p—see [Kob84, Theorem 11, chapter III]. On Kd we consider the norm

||(y1, . . . , yd)||p = max
i
|yi|p.

Let y ∈ Kd be an eigenvector of v corresponding to λ ∈ K with ||y||p = 1. Then

|λ|p = ||vy||p ≤ ||v||p ≤ p−3.

An eigenvalue η of adh v is the sum of two eigenvalues of v, hence |η|p ≤ p−3. By Lemma
A.2.14 |1− e−η|p = |η|p, so

|ψ(η)|p =

∣∣∣∣1− e−ηη

∣∣∣∣
p

= 1.
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Now we compute the volume of hP (1).

Lemma A.2.17. Let P (x) be a non-degenerate diagonal quadratic form on Qd
p. Then

λh(hP (1)) = DP .

Proof. We write P (x) = a1x
2
1 + · · · + adx

2
d. Recall that the matrices Hij = Eij − aia−1

j Eji,
i < j form a basis of hP . Take v =

∑
i<j vijHij ∈ hP . Consider the norm

||v||′ = max
i<j
|vij|p

and let
B′ = {v ∈ hP | ||v||′ ≤ 1}.

Then λh(B
′) = 1 by our choice of Haar measure on hP . The entries of v are vij and aia

−1
j vij

with i < j, in particular ||v||′ ≤ ||v||p. The ball hP (1) is an open subgroup of B′, hence

[B′ : hP (1)]λh(hP (1)) = 1.

Notice that v is respectively in B′ and hP (1) if and only if |vij|p ≤ 1 and |vij|p ≤ min{1, |aia−1
j |p}

for every i < j. Hence

1

[B′ : hP (1)]
=
∏
i<j

min{1, |aia−1
j |p} = DP .

We are ready to compute the volume of HP (p−n).

Proof of Lemma A.2.11. Let n ≥ 3. Then exp hP (p−n) = HP (p−n) by Lemma A.2.13. By
Lemma A.2.15 we know that log∗ λH = λh on hP (p−3), so

λH(HP (p−n)) = λh(hP (p−n)) = λh(hP (1))p−ndimHP = DP · p−
1
2
d(d−1)n.

A.2.3 Bump functions in real orthogonal groups

Let P (x) = a1x
d
1 + · · · + adx

2
d with ai ∈ {±1} and let H = O(P,R). In this section we

construct, for every small enough neighborhood U of Id in H, a smooth bump function ψU
on H supported at U . We’ll give explicit upper bounds of the L2-norms of ψU and its first
order derivatives in terms of the size of U . We’ll use the notation and conventions for the
Haar measures introduced in Subsection A.2.1.

Here is our main statement. We define Md = 10d
2
d

1
4

(d+2)2 .

Lemma A.2.18. Consider d ≥ 3. Let P (x) = a1x
2
1 + · · · + adx

2
d with each ai ∈ {±1} and

H = O(P,R). For any r ∈
(
0, 2

5d

]
there is a smooth function ψr : H → [0,∞) with support

in H(r) such that ||ψr||L1 = 1,

||ψr||L2 <Mdr
− 1

4
d(d−1),

and for any v ∈ h
||v(ψr)||L2 ≤Md||v||∞r−( 1

4
d(d−1)+1).
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The maps ψr will be obtained by precomposing with the logarithm map suitable smooth
functions in h. As usual, we’ll break the proof of Lemma A.2.18 into small auxiliary results—
four in this case.

In first lemma we forget about the orthogonal group, and work in an euclidean space.
The proof is straightforward, so we’ll omit it. Let m be a positive integer. We denote

Bm(r) = {x ∈ Rm | ||x||∞ < r}.

If F ′ is a map Rm → R, we define

F ′[r](x) = r−mF ′(r−1x).

We endow the space of linear maps Rm → R with the operator norm with respect to the
norms || · ||∞ on Rm and R.

Lemma A.2.19. Let F ′ : Rm → [0,∞) be a C1 function with support in Bm(1) and let r > 0.

(a) The map F ′[r] has support in Bm(r).

(b) ||F ′[r]||L1 = ||F ′||L1.

(c) ||F ′[r]||L2 = r−
m
2 ||F ′||L2.

(d) Suppose that r ≤ 1. Let V be a vector field on Bm(1). Then

||V (F ′[r])||L2 ≤ 2
m
2 MF ′MV r

−(m
2

+1),

where
MF ′ = sup

x∈Bm(1)

||DxF
′||op and MV = sup

x∈Bm(1)

||Vx||∞.

Let P (x) and H = O(P,R) be as in Lemma A.2.18. We give now the basic building block
to construct the ψr’s: a smooth bump function supported on the unit ball of h. Recall that
any y ∈ h is of the form

y =
∑
i<j

yijHij,

where Hij = Eij − aia−1
j Eji. We define F : h→ [0, 1] as

F (y) =
∏
i<j

b(yij),

where b : R → [0, 1] is a smooth function with support in [−1, 1],
∫ 1

−1
b(t)dt = 1 and

|b′(t)|∞ ≤ 2 for any t ∈ R. We consider once more

B(r) = {y ∈ h | ||y||∞ < r}.

The map F is smooth and has support in B(1). Let’s estimate MF—see Lemma A.2.19.

Lemma A.2.20. For any y ∈ h we have ||DyF ||op < d2.
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Proof. We have ∣∣∣∣ ∂F

∂yi0,j0

∣∣∣∣
∞

=

∣∣∣∣∣b′(yi0,j0)b(yi0,j0)

∏
i<j

b(yij)

∣∣∣∣∣
∞

≤ 2,

hence

|(DyF )v|∞ =

∣∣∣∣∣∑
i<j

∂F

∂yij
vij

∣∣∣∣∣
∞

≤
∑
i<j

2||v||∞ = d(d− 1)||v||∞.

The conclusion follows from this inequality.

Recall that || · ||op is the operator norm on gl(d,R) with respect to || · ||∞ on Rd and that

h(r) = {v ∈ h | ||v||op < r}.

For v ∈ h we denote by ṽ the vector field y 7→ Id−e−ad y
ad y

(v) on h. This is simply, near 0, the
left-invariant vector field determined by v in exponential coordinates. Let’s estimate Mṽ.

Lemma A.2.21. If v ∈ h and y ∈ h(1), then

||ṽy||∞ ≤ 5d||v||∞.

Proof. Recall that || · ||op is the operator norm on h with respect to || · ||∞ on Rd. We denote
also by || · ||op the operator norm on gl(h) with respect to || · ||op on h. Notice that

||ad y(y′)||op = ||yy′ − y′y||op ≤ 2||y||op||y′||op,

so ||ad y||op ≤ 2||y||op. We conclude as follows:

||ṽy||∞ ≤ ||ṽy||op ≤
∣∣∣∣∣∣∣∣Id− ad y

2!
+

(ad y)2

3!
− · · ·

∣∣∣∣∣∣∣∣
op

||v||op

≤
(

1 +
1

2
(e||ad y||op − 1)

)
||v||op

≤ 1

2
(e2 + 1)d||v||∞ ≤ 5d||v||∞.

For r ∈
(
0, 2

5d

]
we define ψ′r : H → [0,∞) as

ψ′r(h) = F[r1](log h)1H(r)(h),

where r1 = 9
10d
r. This function verifies almost all the properties we want in Lemma A.2.18.

Let Md,1 = 5d3(20d)
1
4
d(d−1)+1.

Lemma A.2.22. For any r ∈
(
0, 2

5d

]
the map ψ′r : H → [0,∞) is smooth, has support in

H(r) and:

(i) 5−
1
2
d(d−1) ≤ ||ψ′r||L1(H) ≤ 2

1
2
d(d−1),
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(ii) ||ψ′r||L2(H) ≤Md,1r
− 1

4
d(d−1),

(iii) ||v(ψ′r)||L2(H) ≤Md,1||v||∞r−( 1
4
d(d−1)+1) for any v ∈ h.

Proof. Since r ∈
(
0, 2

5d

]
, exp : h

(
9r
10

)
→ H(r) is injective by Lemma A.2.2. Note that

B(r1) ⊆ h
(

9r
10

)
since ||v||op ≤ d||v||∞. The map F[r1] : h→ [0,∞) is smooth and has support

in B(r1), so ψ′r is smooth and has support in expB(r1), which is contained in H(r).
In the computations that follow we’ll use the properties of F[r1] in Lemma A.2.19. By

Lemma A.2.6 we have ∫
H

ψ′r(h)dλH(h) =

∫
B(r1)

F[r1](v)DP (v)dλh(v),

so (i) results from the fact that 5−
1
2
d(d−1) < DP < 2

1
2
d(d−1) on h(1/2)—see Corollary A.2.8.

Now note that

||ψ′r||L2(H) =

(∫
B(r1)

F 2
[r1](v)DP (v)dλh(v)

) 1
2

≤ 2
1
4
d(d−1)||F[r1]||L2(h)

= (2r−1
1 )

1
4
d(d−1)||F ||L2(h).

We have ||F ||L2(h) = ||b||dimh
L2(R) ≤ 1 since b2 ≤ b and ||b||L1(R) = 1. Thus

||ψ′r||L2(H) ≤ (2r−1
1 )

1
4
d(d−1) =

(
20d

9

) 1
4
d(d−1)

r−
1
4
d(d−1) <Md,1r

− 1
4
d(d−1),

so (ii) is established. For v ∈ h we have

||v(ψ′r)||L2(H) ≤ 2
1
4
d(d−1)||ṽ(F[r1])||L2(h)

≤ 2
1
4
d(d−1)

(
2

1
4
d(d−1)MFMṽ · r

−( 1
4
d(d−1)+1)

1

)
= 2

1
2
d(d−1)

(
10d

9

) 1
4
d(d−1)

MFMṽ · r−( 1
4
d(d−1)+1).

Recall that MF < d2 and Mṽ ≤ 5d||v||∞ by lemmas A.2.20 and A.2.21, so

||v(ψ′r)||L2(H) <Md,1r
−( 1

4
d(d−1)+1).

To prove Lemma A.2.18 we just have to normalize ψ′r.

Proof of Lemma A.2.18. Consider r ∈
(
0, 2

5d

]
and ψ′r : H → [0,∞) as in Lemma A.2.22.

We set Ir = ||ψ′r||−1
L1(H) and ψr = Irψ

′
r. Then ||ψr||L1(H) = 1. By Lemma A.2.22 we have

Ir ≤ 5
1
2
d(d−1), thus

||ψr||L2(H) ≤ 5
1
2
d(d−1)Md,1r

− 1
4
d(d−1) <Mdr

− 1
4
d(d−1),

and for any v ∈ h

||v(ψr)||L2(H) ≤ 5
1
2
d(d−1)Md,1||v||∞r−( 1

4
d(d−1)+1) ≤Md||v||∞r−( 1

4
d(d−1)+1).
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A.3 Triangular groups

Let HS be the orthogonal group of a diagonal quadratic form on Qd
S. To prove the transversal

recurrence of closed HS-orbits in X1
d,S—Lemma 8.1.3—in Section 8.4, we thickened any such

orbit using a subgroup Wd,S =
∏

ν∈SWd,ν of lower-triangular matrices in GL(d,QS). Here we
prove the volume estimates for the open subsets Wd,ν(r) of Wd,ν that we introduced: Lemma
A.3.1 for ν =∞ and Lemma A.3.4 for ν = p.

A.3.1 Real triangular groups

The objective of this subsection is to prove Lemma A.3.1. The strategy we follow is the same
as for Lemma A.2.1 above.

Let Wd,∞ be the group of lower-triangular matrices in GL(d,R) with positive entries in
the main diagonal. The Haar measure of Wd,∞ determined by the basis

βd,W = (F1, . . . , Fd−1, E21, E32, . . . , Ed,d−1, E3,1, . . . , Ed,d−2, . . . , Ed1)

of its Lie algebra wd,∞ will be denoted by λW∞ . Recall that Fk = Ekk − Edd for 1 ≤ k < d.
The exponential map is a bijection between wd,∞ and Wd,∞. For any r > 0 we define

wd,∞(r) = {v ∈ wd,∞ | ||v||op < r}

and

Wd,∞(r) = exp(wd,∞(r)).

We introduce cd = d(d+1)
2
− 1.

Lemma A.3.1. For any 0 < r < 1
2

we have

V −d r
cd < λW∞(Wd,∞(r)) < V +

d r
cd ,

where V −d = 2d−1

d2cd
and V +

d = 2d
2−1.

To prove Lemma A.3.1 we’ll use the next two auxiliary results.

Lemma A.3.2. Let v =
∑

j<i vijEij ∈ wd,∞. The eigenvalues of ad v : wd,∞ → wd,∞ are 0
with multiplicity d− 1 and ηij = vii − vjj for 1 ≤ j < i ≤ d.

Proof. Consider

a =
d−1⊕
k=1

RFi and n =
⊕
i>j

REij.

Notice that wd,∞ = a⊕ n. Write v = v1 + v2 with v1 ∈ a and v2 ∈ n. The matrices of ad v1

and ad v2 in the basis βd,W are diagonal and strictly lower-diagonal. Hence the eigenvalues of
ad v are the diagonal entries of ad v1. Since [v1, Fk] = 0 for 1 ≤ k ≤ d− 1, 0 is an eigenvalue
with multiplicity (at least) d− 1. For i > j we have [v1, Eij] = (vii− vjj)Eij, which gives the
eigenvalues ηij.
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Lemma A.3.3. We have (
2

d2

)cd
≤ λwd,∞(wd,∞(1)) ≤ 2cd .

Proof. For

v =
d−1∑
k=1

vkkFk +
∑
i>j

vijEij =


v11 · · · 0 0
...

. . .
...

...
vd−1,1 · · · vd−1,d−1 0
vd1 · · · vd,d−1 −(v11 + · · ·+ vd−1,d−1)

 ∈ wd,∞

we define
||v||′ = max

i≥j
|vij|∞

and
B′(r) = {v ∈ wd,∞ | ||v||′ < r},

so λw∞(B′(1)) = 2cd by our choice of λw∞ . Notice that

|| · ||′ ≤ || · ||∞ ≤ || · ||op ≤ d|| · ||∞ ≤ d2|| · ||′,

so

B′
(

1

d2

)
⊆ wd,∞(1) ⊆ B′(1).

The comparison of the volumes of these balls gives the inequality of the statement.

We are ready to estimate the volume of Wd,∞(r).

Proof of Lemma A.3.1. We consider again the analytic map ψ(z) = 1
z
(1 − e−z). The expo-

nential map is a bijection wd,∞ → Wd,∞ and, like in the proof of Lemma A.2.6, the positive
function

D(v) = detψ(ad v)

is a density of log∗λW∞ with respect to λw∞ .
Consider v =

∑
i≥j vijEij ∈ wd,∞ with ||v||op < 1

2
. Aside from the 0 with multiplicity

d−12, the eigenvalues of ad v are ηij = vii− vjj for 1 ≤ j < i ≤ d according to Lemma A.3.2,
so

D(v) =
∏
i>j

ψ(ηij).

For i > j we have
|ηij|∞ = |vii − vjj|∞ ≤ 2||v||∞ ≤ 2||v||op < 1.

Since ψ3 is decreasing on R, we have

1

2
< 0.632 . . . = ψ(1) < ψ(ηij) < ψ(−1) = 1.718 . . . < 2,

2They don’t contribute to the density since ψ(0) = 1.
3From the identity z2ezψ′(z) = z + 1− ez we readily see that ψ′ < 0 on R×
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hence
2−

d(d−1)
2 ≤ D(v) ≤ 2

d(d−1)
2 .

For any 0 < r ≤ 1
2

we have

λW∞(Wd,∞(r)) =

∫
wd,∞(r)

D(v)dλw∞(v)

< 2
d(d−1)

2 λw∞(wd,∞(1))rcd

< 2d
2−1rcd .

We used Lemma A.3.3 to get the last line. In the same fashion we obtain

λW∞(Wd,∞(r)) > 2−
d(d−1)

2

(
2

d2

)cd
rcd =

2d−1

d2cd
rcd .

A.3.2 p-adic triangular groups

Here we work with the group Wd,p of lower-triangular matrices in GL(d,Qp). The main result
is Lemma A.3.4.

We endow Wd,p with the Haar measure λWp determined by the basis

(E11, . . . , Edd, E21, E32, . . . , Ed,d−1, . . . , Ed1)

of its Lie algebra wd,p. We’ll compute the measure of small compact-open subgroups of Wd,p

of the following form: For r > 0, set

Wd,p(r) = {w ∈ Wd,p | ||w − Id||p ≤ r, ||w−1 − Id||p ≤ r}.

We consider also the orthogonal group Hp of a non-degenerate diagonal quadratic form
P (x) = a1x

2
1 + · · ·+ adx

2
d on Qd

p.

Lemma A.3.4. Let p be a prime number. We set `p = 1 if p is odd and `p = 2 if p = 2.
The multiplication map Wd,p(p

`p)×Hp → Gd,p is injective, Wd,p(p
−`p)Hp is open in Gd,p and

λWp(Wd,p(p
−n)) = p−(cd+1)n

for any n ≥ 3.

To compute the volume of Wd,p(p
−n) we use the next two lemmas. The proof of the first

one is the same as in Lemma A.3.2.

Lemma A.3.5. Let wd,p = Lie(Wd,p). Consider v = (vij)1≤i,j≤d ∈ wd,p. The eigenvalues of
ad v : wd,p → wd,p are ηij = vii − vjj for 1 ≤ j < i ≤ d and 0 with multiplicity d.

We use once more the analytic function ψ(θ) = 1
θ
(1− e−θ).

Lemma A.3.6. Let p be a prime number. Then ψ(θ) converges for any θ ∈ p3Zp and
|ψ(θ)|p = 1.
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Proof. Notice that

ψ(θ) =
∞∑
j=0

(−1)j

(j + 1)!
θj.

We have ∣∣∣∣ (−1)j

(j + 1)!
θj
∣∣∣∣
p

<

∣∣∣∣ θj+1

(j + 1)!

∣∣∣∣
p

,

and the right-hand side term tends to 0 as j →∞ by (ii) of Lemma A.2.14, so ψ(θ) converges.
We also have ∣∣∣∣ (−1)j

(j + 1)!
θj
∣∣∣∣
p

< 1

for any j ≤ 1 by (i) of Lemma A.2.14, thus |ψ(θ)|p = 1.

We are ready to prove the main result of this subsection.

Proof of Lemma A.3.4. The matrices in Wd,p ∩ Hp are of the form diag(±1, . . . ,±1), so
Wd,p(p

−`p) ∩Hp = 1. This implies that Wd,p(p
−`p)×Hp → Gd,p is injective.

The exponential map is a bijection between

wd,p(p
−n) = {v ∈ wd,p | ||v||p ≤ p−n}

and Wd,p(p
−n) for any n ≥ 3 by Lemma A.2.13, and the map

D(v) = | detψ(ad v)|p
is a density of log∗ λWp with respect to λwp on wd,p(p

−n). If

v =
∑

1≤j≤i≤d

vijEij

then

D(v) =

∣∣∣∣∣∏
j≤i

ψ(vii − vjj)

∣∣∣∣∣
p

.

by Lemma A.3.5. When ||v||p ≤ p−3, D(v) = 1 by Lemma A.3.6. Hence

λWp(Wd,p(p
−n)) = λwp(wd,p(p

−n)) = p−(cd+1)n

for n ≥ 3.

A.4 The volume of X1
d,S

Here we prove a formula—Lemma A.4.1—for the volume of the space X1
d,S of covolume 1

lattices of Qd
S. From it we deduce the bound in Corollary A.4.2, which was used in Section

8.4.
As in that section, we identify X1

d,S with G′d,S/Γ
′
d,S. Recall that G′d,S =

∏
ν∈S G

′
d,ν ,

G′d,ν = {g ∈ GL(d,Qν) | | det g|ν = 1},

and Γ′d,S = G′d,S ∩ Γd,S. We work with the G′d,S-invariant measure βd,S on X1
d,S induced by

the Haar measure of G′d,S fixed in 8.4.1. We denote the volume of X1
d,S by Vd,S.
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Lemma A.4.1. For any finite set of primes S = {∞} ∪ Sf we have

Vd,S = Vd,∞
∏
p∈Sf

d∏
j=1

(
1− 1

pj

)
.

We record an immediate consequence of Lemma A.4.1.

Corollary A.4.2. For any finite set S = {∞}∪Sf of primes and any integer d ≥ 2 we have
Vd,S ≤ Vd,∞.

We’ll deduce Lemma A.4.1 from the next lemma. Let Γ be a lattice in a locally compact
group G. A measurable subset U of G is a fundamental domain of Γ in G if any g ∈ G can
be written as uγ with u ∈ U and γ ∈ Γ in a unique way.

Lemma A.4.3. Let S = {∞}∪Sf be a finite set of primes. Consider a fundamental domain
Ud,∞ for Γd,∞ in SL±(d,R). Then

Ud,S = Ud,∞ ×
∏
p∈Sf

GL(d,Zp)

is a fundamental domain of Γ′d,S in G′d,S.

Proof. First we’ll show that the group

G′′d,S = SL±(d,R)×
∏
p∈Sf

GL(d,Zp)

acts transitively on X1
d,S. Any lattice ∆ of Qd

S of covolume 1 is of the form g′ZdS for some
g′ ∈ G′d,S. Suppose that Sf = {p1, . . . , pk}. Since

GL(d,Qp) = GL(d,Zp)GL(d,Z[1/p])

for any prime p4, we write g′p1 = kp1γp1 with kp1 ∈ GL(d,Zp1) and γp1 ∈ GL(d,Z[1/p1]).
Note that det γp1 = det(k−1

p1
g′p1) ∈ Z×p , so γp1 is in SL±(d,Z[1/p1]). Then ∆ = g•ZdS,

where g• = g′γ̃p1
−1 and γ̃p1 = (γp1 , . . . , γp1) ∈ Γ′d,S. Remark that g• is still in G′d,S and

g′p1 ∈ GL(d,Zp1). Moreover, if g′i already was in GL(d,Zpi) for some i > 1, the same is true
for g•pi since γp1 ∈ GL(d,Zpi). Hence, continuing this process with p2, . . . , pk express ∆ as
g′′ZdS for some g′′ ∈ G′′d,S.

We identify X1
d,S with G′′d,S/Γ

′′
d,S, where Γ′′d,S = G′′d,S ∩ Γ′d,S—this is the diagonal copy of

Γd,∞ = GL(d,Z) in G′′d,S. We’ll see that Ud,S is a fundamental domain of Γ′′d,S in G′′d,S, which
is equivalent to our statement. Since SL±(d,R) = Ud,∞Γd,∞, then G′′d,S = Ud,SΓ′′d,S. Consider
now u, v ∈ Ud,S, γ1, γ2 ∈ Γd,∞ and γ̃i = (γi, . . . , γi) ∈ Γ′′d,S. If uγ̃1 = vγ̃2, comparing the real
coordinates we see that γ1 = γ2, so u = v.

4Since Z[1/p] and SL(d,Z[1/p]) are dense in Qp and SL(d,Qp), respectively.
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Proof of Lemma A.4.1. Consider a fundamental domain Ud,∞ of Γd,∞ in SL±(d,R) and

Ud,S = Ud,∞ ×
∏
p∈Sf

GL(d,Zp).

By Lemma A.4.3,

Vd,S = λGd,S(Ud,S) = Vd,∞ ×
∏
p∈Sf

λGd,p(GL(d,Zp)),

so the result follows from Lemma A.4.4

A.4.1 The volume of GL(d,Zp)
Lemma A.4.4. For any prime p and any integer d ≥ 2 we have

λGd,p(GL(d,Zp)) =
d∏
j=1

(
1− 1

pj

)
.

The proof of Lemma A.4.4 is based on three intermediate lemmas. The first one is a
formula for the volume of Gd,p(p

−n) for n ≥ 3. We omit the proof of the first one, since its
very similar to Lemma A.2.15.

Lemma A.4.5. Let p be a prime and consider n ≥ 3. Then

λGd,pGd,p(p
−n) = p−d

2n

To determine the volume of GL(d,Zp) = Gd,p(1) we just need to compute the index of
Gd,p(p

−n) in Gp,d(1), which is the cardinality of GL(d,Z/pnZ). We need a definition. Consider
positive integers d and N . A complete flag of (Z/NZ)d is a sequence

0 = A0 ⊆ A1 ⊆ . . . ⊆ Ad = (Z/NZ)d,

where Ai is a free Z/NZ-submodule of (Z/NZ)d of rank i. We denote by FN(d) the number
of complete flags of (Z/NZ)d. In the following lemma, ϕ(N) = #(Z/NZ)× is Euler’s phi
function.

Lemma A.4.6. For any prime p and any integers n, d > 0 we have

Fpn(d) =
p

1
2
d(d+1)n

ϕ(pn)d

d∏
j=1

(1− p−j).

Proof. We’ll prove the result by induction on d. The base case d = 1 is immediate.
Suppose that the formula holds for d− 1. The number of flags of Md = (Z/pnZ)d having

A1 equal to a fixed line ` of Md is Fpn(d − 1) since Md/` is a free (Z/pnZ)-module of rank
d− 1. Thus

Fpn(d) = #{lines in Md} · Fpn(d− 1).
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An element (a1, . . . , ad) of Md generates a line if some ai is invertible in Z/pnZ. There are
pdn − pd(n−1) such elements, thus

#{lines in Md} =
pdn

ϕ(pn)
(1− p−d),

since each line has ϕ(pn) generators. This proves the formula for Fpn(d).

Lemma A.4.7. For any prime p and any d ≥ 2 we have

#GL(d,Z/pnZ) = pd
2n

d∏
j=1

(
1− 1

pj

)
.

Proof. The group GL(d,Z/pnZ) acts transitively on the set of complete flags of Md =
(Z/pnZ)d. The stabilizer of

0 ⊆ 〈e1〉 ⊆ . . . ⊆ 〈e1, . . . , ed−1〉 ⊆Md,

where e1, . . . , ed is the standard basis of Md, is the subgroup of upper-triangular matrices in

GL(d,Z/pnZ), whose cardinality is5 ϕ(pn)dp
d(d−1)

2
n. Then

#GL(d,Z/pnZ) = ϕ(pn)dp
d(d−1)

2
nFpn(d),

and the formula follows from Lemma A.4.6.

Now we can compute the volume of GL(d,Zp).

Proof of Lemma A.4.4. Consider an integer n ≥ 3. We have

λGd,p(GL(d,Zp)) = [Gd,p(1) : Gd,p(p
−n)]λGd,p(Gd,p(p

−n))

= #GL(d,Z/pnZ)λGd,p(Gd,p(p
−n)),

so the formula is obtained from Lemma A.4.7 and Lemma A.4.5.

5The entries in the main diagonal are in (Z/pnZ)× and the entries above the main diagonal can be chosen
freely in Z/pnZ.
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Appendix B

Effective Reduction Theory

As we mentioned in Chapter 2, C. Hermite and H. Minkowski developed (probably motivated
by the Z-classification problem) a reduction theory for real and integral quadratic forms
building on the work of C.F. Gauss for binary quadratic forms. In this appendix we prove
quantitative versions with explicit constants of some of its classical results. The main one
is the bound of the norm of a reduced integral quadratic form in Proposition B.3.1, which
played an important role in the proofs of Lemma 9.4.1 and Lemma 9.4.2 in Chapter 9.

There are three sections: We reintroduce the Siegel sets of GL(d,R) and we recall when a
real quadratic form R is reduced in terms of these in Section B.1. The base of the reduction
theory over R is the case R definite positive, treated in Section B.2, where we discuss the
concept—introduced by Minkowski—of successive minima of R with respect to a lattice of
Rd. We close with the proof of Proposition B.3.1 in Section B.3. The proofs we give are
based on the exposition of reduction theory in the book of Cassels [Cas78, Chapter 12].

B.1 Basic definitions

We denote the group GL(d,R) by Gd,∞. Consider the following subgroups of Gd,∞:

K = O(d,R)

A = {diag(a1, · · · , ad) ∈ Gd,∞ | ai > 0 for 1 ≤ i ≤ d},
N = {unipotent, upper-triangular matrices in Gd,∞}.

For α, β > 0 we define

Aα = {diag(a1, · · · , ad) ∈ A | ai ≤ αai+1 for 1 ≤ i ≤ d− 1},
Nβ = {n ∈ N | ||n− Id||∞ ≤ β}.

The (α, β)-Siegel set of Gd,∞ is defined as

S α,β
d,∞ = KAαNβ.

Recall that S α,β
d,∞ is a fundamental set of Γd,∞ = GL(d,Z) in Gd,∞ if α ≥ 2√

3
and β ≥ 1

2
—see

Proposition 9.3.1.

137
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Let Qp,q be the quadratic form x2
1 + · · ·+ x2

q − x2
q+1 − · · · − x2

p+q and set d = p+ q. We’ll

say that a quadratic form R on Rd is (α, β)-reduced if R = Qp,q ◦ s for some s ∈ S α,β
d,∞, where

p, q is the signature of R.

B.2 Positive definite quadratic forms

The purpose of this section is to prove an upper bound of the norm of an integral matrix
that takes a positive definite reduced quadratic form to another.

Proposition B.2.1. For i ∈ {1, 2}, let Ri be an (αi, βi)-reduced positive definite quadratic
form on Rd, where αi, βi ≥ 1. If b is an integral d× d matrix such that R1 ◦ b = R2, then

||b||∞ ≤ Wdα
d−1
1 α

(d−1)2

2 βd1β
d(d−1)
2 | det b|2d∞,

where Wd = d
3d
2 (d!)d+1(d+ 1)d

2
.

Here is the main idea to prove Proposition B.2.1: A positive definite quadratic form R
on Rd determines a basis v1, . . . , vd ∈ Zd of Rd as follows: v1 is the R-shortest vector of Zd,
vj+1 is the R-shortest vector in Zd − (Rv1 ⊕ · · · ⊕ Rvj). In Lemma B.2.7 we’ll see that the
∞-norms of v1, · · · , vd are bounded in terms of α and β when R is (α, β)-reduced. A similar
thing is true if we replace Zd by any lattice ∆ ⊆ Zd of Rd—see Lemma B.2.3. Thanks to this
we’ll show that, if R1, R2 and b are as in Proposition B.2.1, bτ2 = bτ1 for some non-singular
τi ∈ Md(Z) with norm bounded in terms of αi and βi, from where the bound for b is easily
obtained.

This section has three parts. In B.2.1 we introduce extremal vectors of a lattice ∆ of Rd

with respect to a positive definite quadratic form R, and we prove in Lemma B.2.3 a bound
for these when R is reduced and ∆ ⊆ Zd. Then, in B.2.2 we define the succesive R-minima
of ∆ and we show in Lemma B.2.7 that if they are attained by a basis v1, . . . , vd ∈ ∆, the
v′is are R-extremal, hence the bound of Lemma B.2.3 applies when R is reduced. The proof
of Proposition B.2.1 is completed in B.2.3.

B.2.1 Extremal vectors in lattices

Consider a positive definite quadratic form R on Rd and a lattice ∆ of Rd. For r > 0 we define
E−r (∆, R) and E◦r (∆, r) as the respective linear spans of the v ∈ ∆ with R(v) ≤ r, R(v) < r.
A vector v ∈ ∆ is said to be R-extremal if v does not belong to E◦R(v)(∆, R). When R is

(α, β)-reduced, the norm of an R-extremal vector is bounded in terms of α and β.

Lemma B.2.2. Let R be a positive definite, (α, β)-reduced quadratic form on Rd, where
α, β ≥ 1. Any R-extremal vector v of Zd verifies

||v||∞ ≤
√
d · d!αd−1βd.

Proof. Consider a = diag(a1, · · · , ad) ∈ Aα and n = (nij) ∈ Nβ such that R = Qd,0 ◦ (an).
We set

w = nv = (w1, · · · , wd).
First we bound |wk|∞ for 1 ≤ k ≤ d. Consider two cases:
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• Case I: there is j ≤ k such that R(v) ≤ R(ej). Then

a2
kw

2
k ≤ R(v) ≤ R(ej),

which implies that

w2
k ≤

a2
1

a2
k

n2
1j + · · ·+

a2
j−1

a2
k

n2
j−1,j +

a2
j

a2
k

≤ (α2(k−1) + · · ·+ α2(k−j))β2

≤ dα2(d−1)β2.

Thus |wk|∞ ≤
√
dαd−1β.

• Case II: R(ej) < R(v) for every j ≤ k. Then, since v is an R-extremal vector of Zd,
R(v) ≤ R(v′) for every v′ of the form v + c1e1 + · · · + ckek with c1, · · · , ck ∈ Z. Set
w′ = nv′, and choose ck, ck−1, · · · , c1 so that |w′j| ≤ 1

2
for every j ≤ k. Since wi = w′i

for k < i ≤ d, from R(v) ≤ R(v′) we deduce that

w2
k ≤

a2
1

a2
k

(w′1)2 + · · ·+ a2
k

a2
k

(w′k)
2

≤ 1

4
(α2(k−1) + · · ·+ α2 + 1)

≤ d

4
α2(d−1) < dα2(d−1)β2,

so |wk|∞ <
√
dαd−1β.

Combining both cases we get
||w||∞ ≤

√
dαd−1β.

Now it’s easy to control the norm of v:

||v||∞ = ||n−1w||∞ ≤ d||n−1||∞||w||∞
≤ d((d− 1)!||n||d−1

∞ )(
√
dαd−1β)

≤
√
d · d!αd−1βd.

This completes the proof.

We need a slight generalization of Lemma B.2.2.

Lemma B.2.3. Let R be a positive definite, (α, β)-reduced quadratic form on Rd, where
α, β ≥ 1, and let ∆ ⊂ Zd be a lattice of Rd. Any R-extremal vector w of ∆ verifies

||w||∞ ≤ W1,dα
d−1βd[Zd : ∆]2d,

where W1,d = d
3
2 · d!(d+ 1)d.
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To prove Lemma B.2.3 we’ll use three easy intermediate results. The first one can be
proved easily by induction on `.

Lemma B.2.4. Let x1, · · · , x` be positive integers such that x1 · · ·x` = m. Then

x1 + · · ·+ x` ≤ m+ `− 1,

and the equality holds if and only if xj = m for some j and xi = 1 for i 6= j.

For the second result we need a definition: We say that a d × d matrix b with real
coefficients has big diagonal if bii ≥ |bij| for any 1 ≤ i, j ≤ d.

Lemma B.2.5. Let c be a non-singular d × d matrix with integral coefficients. There is
γ ∈ Γd,∞ such that cγ is an upper-triangular matrix with big diagonal.

Proof. Using repeatedly the euclidean algorithm, we transform c into an upper-triangular
matrix with big diagonal performing elementary column operations1, which correspond to
multiplying c on the right by some γ ∈ Γd,∞.

Lemma B.2.6. Consider an upper-triangular matrix b ∈ Md(Z) with big diagonal. Let

δ = | det b|∞ and take α > 0 and β ≥ 1. Then S α,β
d,∞b is contained in S αδ,β(δ+d)

d,∞ .

Proof. Take a ∈ Aα and n ∈ Nβ. It suffices to prove that anb = a′n′ for some a′ ∈ Aαδ and
n′ ∈ Nβ(δ+d). We set c = diag(b11, · · · , bdd). Then

a′ = ac = diag(a11b11, · · · , addbdd),

and
ai+1,i+1bi+1,i+1

aiibii
≤ αbi+1,i+1 ≤ αδ,

hence a′ is in Aαδ. Now, n′ = c−1nb so for i < j we have

|n′ij|∞ =
1

bii

∣∣∣∣∣
j∑

k=1

nikbkj

∣∣∣∣∣
∞

≤ β

j∑
k=1

|bkj|∞

≤ β

j∑
k=1

bkk < β(δ + d).

We used Lemma B.2.4 in the last step. This shows that n′ is in Nβ(δ+d).

We are ready to prove that R-extremal vectors in ∆ are small if R is (α, β)-reduced.

Proof of Lemma B.2.3. By Lemma B.2.5, we can write ∆ as bZd for some upper-triangular
matrix with a big diagonal b ∈ Md(Z). Then [Zd : ∆] = | det b|∞, which we denote by δ.

1These are permuting columns or adding to a column an integral multiple of another.
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Consider an R-extremal vector w = bv of ∆. Then v is an (R ◦ b)-extremal vector of Zd. The
positive definite quadratic form R ◦ b is (αδ, β(δ + d))-reduced by Lemma B.2.6, so

||v||∞ ≤
√
d · d!(αδ)d−1(β(δ + d))d

≤
√
d · d!(d+ 1)dαd−1βdδ2d−1

by Lemma B.2.2, and hence

||w||∞ ≤ d||b||∞||v||∞
≤ d

3
2 · d!(d+ 1)dαd−1βdδ2d.

B.2.2 Succesive minima of lattices

Consider a positive definite quadratic form R on Rd and a lattice ∆ of Rd. The dimensions
of E−r (∆, R) and E◦r (∆, R) will be respectively denoted by d−r (∆, R) and d◦r(∆, R). Let i be
an integer between 1 and d. The i-th R-minima of ∆ is defined as

Mi(∆, R) = inf{r > 0 | d−r (∆, R) ≥ i}.

We say that the vectors v1, · · · , vd ∈ ∆ realize the R-minima of ∆ if

R(vi) = Mi(∆, R),

for every 1 ≤ i ≤ d. In the proof of Proposition B.2.1 we’ll use the next lemma.

Lemma B.2.7. Let v1, · · · , vd be linearly independent vectors in ∆ realizing the R-minima
of ∆. Then each vi is an R-extremal vector of ∆.

Remark B.2.8. There are always linearly independent v1, . . . , vd ∈ ∆ realizing the R-minima
of ∆: we choose an R-shortest non-zero v1 ∈ ∆. If we already have v1, . . . , vj, we choose an
R-shortest vj+1 in ∆ − (Rv1 ⊕ · · · ⊕ Rvj). It’s possible to do this since any subset of ∆ is
closed.

Let’s prepare for the proof of Lemma B.2.7. For R and ∆ fixed, the subspaces E−r (∆, R)
form a (not necessarily complete) flag of Rd

{0} = E0 ( · · · ( E` = Rd.

Let di be the dimension of Ei for 0 ≤ i ≤ ` and let ri be the smallest non-negative real
number such that

Ei = E−ri(∆, R).

To lighten the notation we write Mj instead of Mj(∆, R) in the next lemma.

Lemma B.2.9. Let 1 ≤ j ≤ d and k ≥ 0 be integers such that dk < j ≤ dk+1. Then
E◦Mj

(∆, R) = Ek.
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Proof. From the definition of Mj follows that d◦Mj
(∆, R) < j. But d◦Mj

(∆, R) is one of the

d′is, hence its value cannot exceed dk. This means that E◦Mj
(∆, R) is contained in Ek. Now,

Ek = E−rk(∆, R) has dimension dk < j, hence rk < Mj. This implies that Ek is contained in
E◦Mj

(∆, R).

Proof of Lemma B.2.7. Consider any integer 1 ≤ j ≤ d and choose k ≥ 0 such that

dk < j ≤ dk+1.

Then E◦Mj
(∆, R) = Ek by Lemma B.2.9. Since Ek = E−rk(∆, R) has dimension dk, then

rk ≥ Mdk = R(vdk). It follows that v1, · · · , vdk belong to Ek. Since v1, . . . , vd are linearly
independent, (v1, · · · , vdk) is a basis of Ek and thus vj is not in Ek = E◦R(vj)

(∆, R). In other
words, vj is an R-extremal vector of ∆.

Corollary B.2.10. Let R be a positive definite, (α, β)-reduced quadratic form on Rd, where
α, β ≥ 1. Consider linearly independent vectors v1, · · · , vd in a lattice ∆ ⊂ Zd realizing the
R-minima of ∆. Then

||vi||∞ ≤ W1,dα
d−1βd[Zd : ∆]2d,

for every 1 ≤ i ≤ d, where W1,d = d
3
2 · d!(d+ 1)d.

Proof. Lemma B.2.7 tells us that each vi is an R-extremal vector of ∆, hence the desired
bound is given by Lemma B.2.3.

B.2.3 The main proof

Proof of Proposition B.2.1. Consider linearly independent vectors v1, · · · , vd ∈ Zd realizing
the R2-minima of Zd, and let τ2 = (v1, · · · , vd) ∈Md(Z). By Corollary B.2.10 we know that

||τ2||∞ ≤ W1,dα
d−1
2 βd2 .

Let ∆ be the lattice bZd of Rd and set wi = bvi. Since R1 ◦ b = R2, the linearly indepen-
dent vectors w1, · · · , wd realize the R1-minima of ∆. Let τ1 be the d × d integral matrix
(w1, · · · , wd). Using Corollary B.2.10 once more we get

||τ1||∞ ≤ W1,dα
d−1
1 βd1 | det b|2d∞.

Note that bτ2 = τ1, so

||b||∞ = ||τ1τ
−1
2 ||∞ ≤ d||τ1||∞||τ−1

2 ||∞
≤ d!(W1,dα

d−1
1 βd1 | det b|2d∞)(W1,dα

d−1
2 βd2)d−1

= (d
3d
2 (d!)d+1(d+ 1)d

2

)αd−1
1 α

(d−1)2

2 βd1β
d(d−1)
2 | det b|2d∞.

This concludes the proof.

We conclude with a reformulation of Proposition B.2.1 in terms of right translates of
Siegel sets by integral matrices.
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Corollary B.2.11. Let b be a d× d integral matrix. If S 2,1
d,∞b meets S 2,1

d,∞, then

||b||∞ ≤ W3,d| det b|2d∞,

where W3,d = 2d(d−1)d
3d
2 (d!)d+1(d+ 1)d

2
.

Proof. Take s1, s2 ∈ S 2,1
d,∞ such that s1b = s2. The positive definite quadratic form Ri =

Qd,0 ◦ si is (2, 1) reduced and b takes R1 to R2, so Proposition B.2.1 implies

||b||∞ ≤ Wd2
(d−1)2+d−1| det b|2d∞

= 2d(d−1)d
3d
2 (d!)d+1(d+ 1)d

2| det b|2d∞.

B.3 Reduced integral quadratic forms

The goal of this section is to establish the bound in Proposition B.3.1 of the norm of an
(α, β)-reduced integral quadratic form Q on Rd—we are not assuming Q positive definite—in
terms of α, β and δQ

2. It is a slight improvement of [Cas78, Lemma 12.3, p. 325] and [LM16,
Corollary 3, p. 902]. From it we recover in Corollary B.3.3 the main finiteness lemma of the
reduction theory of integral quadratic forms—see [Bor69, Lemme 5.7, p. 38].

Proposition B.3.1. Let Q be an integral, (α, β)-reduced quadratic form on Rd for some
α, β ≥ 1. Then

||Q||∞ ≤ W2,dα
d2β2d2|δQ|2d∞,

where W2,d = d
d
2 (d+ 1)d

2
(d!)2d+1.

The proof of Proposition B.3.1 is based on Proposition B.2.1 and the next lemma. We
denote by J = (Jij) the d× d matrix with entries Jij = δi+j,d+1.

Lemma B.3.2. Consider real numbers α > 0 and β ≥ 1. If s belongs to the Siegel set S α,β
d,∞,

then ts−1J is in S α,(d−1)!βd−1

d,∞ .

Proof. Write s = kan with k ∈ K, a = diag(a1, · · · , ad) ∈ Aα, and n ∈ Nβ. Then ts−1J =
(kJ)(Ja−1J)(J tn−1J). Note that kJ is in K,

Ja−1J = diag(a−1
d , · · · , a−1

1 )

is in Aα, and J tn−1J is in N(d−1)!β because it is unipotent, upper triangular and

||J tn−1J ||∞ = ||n−1||∞ ≤ (d− 1)!||n||d−1
∞ ≤ (d− 1)!βd−1.

2Recall that bQ is the matrix of Q in the canonical basis of Rd, and that ||bQ||∞ and det bQ are denoted
by ||Q||∞ and δQ, respectively.
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Proof of Proposition B.3.1. Consider s2 ∈ S α,β
d,∞ such that Q = Qp,q ◦ s2 and define

s1 = Ip,q
ts−1

2 J,

where Ip,q is the matrix of Qp,q in the canonical basis of Rd. Notice that s1 is in S α,(d−1)!βd−1

d,∞
by Lemma B.3.2. Then, the positive definite quadratic forms R1 = Qd,0◦s1 and R2 = Qd,0◦s2

are respectively (α, (d−1)!βd−1) and (α, β)-reduced. One easily checks that s2 = s1JbQ, hence
R1 ◦ (JbQ) = R2. Proposition B.2.1 gives

||Q||∞ = ||JbQ||∞ ≤ Wdα
d−1α(d−1)2((d− 1)!β(d−1))dβd(d−1)| det JbQ|2d∞

≤ d
3d
2 (d!)d+1((d− 1)!)d(d+ 1)d

2

αd
2

β2d2 |δQ|2d∞.

Now we easily obtain the next classical result.

Corollary B.3.3. Let m be a non-zero integer. There are finitely many Z-equivalence classes
of integral quadratic forms Q in d variables with δQ = m.

Proof. Any such class has a
(

2√
3
, 1

2

)
-reduced representative Q by Proposition 9.3.1, and there

are finitely many
(

2√
3
, 1

2

)
-reduced integral quadratic forms on Rd by Proposition B.3.1.
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Constants

C.1 Chapter 4

• D1 (not explicit)—Corollary 4.3.2

C.2 Chapter 5

• Ci,d = d3d2(d−1)+13d+1 · d!2d
2+1Cd(C

(2)
d )6—Theorem 5.1.1

• Ca,d = (d!)7d2d2(d−1)Fd(C
(2)
d )4—Theorem 5.1.2

C.3 Chapter 6

• Cd = 12 · 23d2(d−1)D6N 12
d d

2—Proposition 6.0.1

• D = 5
√
D1—Proposition 6.2.1

• Nd = 3(3d2 · d!)
1
4
d(d−1)+1Md—Lemma 6.3.3

C.4 Chapter 7

• Fd = (10Fd)4 · 2d2(d−1)—Proposition 7.0.1

• Fd = Rd
−1(3d2 · d!)

1
2
d(d−1)—proof of Proposition 7.0.1

C.5 Chapter 8

• C
(2)
d = (32d4d6d3+1)cdVd,∞—Proposition 8.0.1

• Ed = 2d
3 · 32d4d3d3—Section 8.1

• Ad =
(

4
d(d−1)

)cd
Vd,∞—Lemma 8.1.3
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• C
(4)
d =

23Vd,∞
1
cd

d(d−1)
—Lemma 8.1.3

• ε∞,d = 1
2
·
(

1
2·32dd32d+2

)(d−1)2
—Subsection 8.3.2

• εp,d = 1
2
·
(

1
2·32dd3p2d+1

)(d−1)2

—Subsection 8.3.2

• εd,S = minν∈S εd,ν—Subsection 8.3.2

• C∞,d = 32dd32d+2—Proposition 8.3.10

• Cp,d = 32dd3p2d+1—Proposition 8.3.10

• ϑd = 1
(d−1)2

—Proposition 8.3.10

• Bd =
2Vd,∞

1
cd

d(d−1)
—Lemma 8.4.7

C.6 Chapter 9

• Kd = d · d!GddW3,d—Theorem 9.0.2

• F1,d = H1,d
d—Theorem 9.0.3

• F2,d = d · d!H2,d
dW3,d—Theorem 9.0.3

• Gd = 2d
5Ci,dW2,d

d3—Lemma 9.4.1

• H1,d = 2d
5Ca,dW2,d

1
2
d2(d−1)—Lemma 9.4.2

• H2,d = 2d
3
dd+1 · d!W2,d

d−1
2 —Lemma 9.4.2

C.7 Appendix A

• Rd =
(

1
3d

) d(d−1)
2 —Lemma A.2.1

• Sd =
(

20d
3

) d(d−1)
2 —Lemma A.2.1

• nd = d(d−2)
2

if d is even or (d−1)2

2
if d is odd—Lemma A.2.7

• cd = d(d+1)
2
− 1—Lemma A.3.1, Lemma 8.4.2 Lemma 8.4.4 Lemma 8.4.6

• V −d = 2d−1

d2cd
—Lemma A.3.1, Lemma 8.4.2, Lemma 8.4.6

• V +
d = 2d

2−1—Lemma A.3.1, Lemma 8.4.6

• Md = 10d
2
d

1
4

(d+2)2—Lemma A.2.18



C.8. APPENDIX ?? 147

• Md,1 = 5d3(20d)
1
4
d(d−1)+1—Lemma A.2.22

• Vd,∞ = βd,∞(X1
d,∞)—Lemma A.4.1

C.8 Appendix B

• Wd = d
3d
2 (d!)d+1(d+ 1)d

2
—Proposition B.2.1

• W1,d = d
3
2 · d!(d+ 1)d—Lemma B.2.3

• W3,d = 2d(d−1)d
3d
2 (d!)d+1(d+ 1)d

2
—Corollary B.2.11

• W2,d = d
d
2 (d+ 1)d

2
(d!)2d+1—Proposition B.3.1
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de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et
Industrielles, No. 1341. Hermann, Paris, 1969.

[BS91] M. Burger and P. Sarnak. Ramanujan duals II. Inventiones Mathematicae,
106(1):1–11, December 1991.

[Cas78] J. W. S. Cassels. Rational quadratic forms, volume 13 of London Mathematical
Society Monographs. Academic Press, Inc. [Harcourt Brace Jovanovich, Publish-
ers], London-New York, 1978.

[CHH88] M. Cowling, U. Haagerup, and R. Howe. Almost L2 matrix coefficients. Journal
für die Reine und Angewandte Mathematik. [Crelle’s Journal], 387:97–110, 1988.

[CS99] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume
290 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences]. Springer-Verlag, New York, third edition, 1999.

149



150 BIBLIOGRAPHY

[CS14] Ted Chinburg and Matthew Stover. Small generators for S-unit groups of division
algebras. New York Journal of Mathematics, 20:1175–1202, 2014.

[CU04] Laurent Clozel and Emmanuel Ullmo. Équidistribution des points de Hecke. In
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Titre: Dynamique homogène et formes quadratiques S-adiques

Mots clés: Formes quadratiques entières, dynamique homogène, groupes de Lie S-adiques

Résumé: Soient S = {∞} ∪ Sf un ensem-
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