
Mostow’s Lattices and Cone Metrics on the Sphere

Richard K. Boadi,
Department of Mathematics,

Kwame Nkrumah University of Science and Technology,
Kumasi, Ghana

email: richardkbgh@hotmail.com

John R. Parker,
Department of Mathematical Sciences,

Durham University,
Durham DH1 3LE, U.K.

email: j.r.parker@durham.ac.uk

Abstract

In [8] Mostow constructed a family of lattices in PU(2, 1), the holo-
morphic isometry group of complex hyperbolic 2-space. These groups
are special cases of the lattices constructed by Deligne and Mostow [2]
using monodromy of hypergeometric functions. Thurston [12] reinter-
preted the work of Deligne and Mostow in terms of cone metrics on
the sphere. In this paper we use Thurston’s point of view to give a
direct construction of fundamental domains for Mostow’s lattices. Our
approach is a direct generalisation of Parker’s construction for Livné’s
lattices [10]. The details may be found in Boadi’s PhD thesis [1]. We
note that Deraux, Falbel and Paupert [3] have also constructed fun-
damental domains for Mostow’s groups. Our groups are different from
the ones considered in the main part of [3].

1 Introduction

A (Euclidean) cone metric on the sphere is a flat Euclidean metric on the
sphere with finitely many singularities. Each singularity locally looks like
the apex of a cone and may be formed by identifying the sides of a sector.
The angle between the sides of the sector, or equivalently at the apex of the
cone, is the cone angle. If the cone angle at a vertex v is 2π − α then α is
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the curvature at v. Then the sum of the curvatures at all vertices must be
4π.

For example, a cube is a cone metric on the sphere with eight singu-
larities. At each vertex three squares meet and so the cone angle is 3π/2.
Clearly the curvature at each vertex is π/2 and the sum over all eight vertices
gives a total curvature of 8 · π/2 = 4π.

In [12] Thurston considered the following construction. Suppose we are
given a fixed number of cone singularities with prescribed cone angles (cho-
sen so the sum of the curvatures is 4π). Keeping these angles fixed but
varying the location of the singularities gives a moduli space of cone met-
rics. One may move the cone points in this space along a non-trivial closed
path in the moduli space (for example by performing a Dehn twist). In
doing so one naturally obtains a modular group. The area of the cone met-
ric is preserved by this group. Thurston observed that this area gives an
indefinite Hermitian form and one may embed the (projectivised) moduli
space into complex hyperbolic space. For certain good choices of cone an-
gle, the resulting group is a complex hyperbolic lattice. (See Weber [13] for
an alternative point of view.)

Thurston’s construction is an alternative point of view on the lattices
constructed by Deligne and Mostow [2] via monodromy of hypergeometric
functions in several variables. Thurston’s good choices of angles correspond
to what Deligne and Mostow call ball N -tuples satisfying the condition
ΣINT. Among these groups are two families, one constructed by Mostow
in [8] and the other constructed by Livné in [7]. In [10], Parker constructed
Livné’s lattices from first principles using Thurston’s construction and he
then went on to use this explicit construction to build fundamental domains
for these groups. In his PhD thesis [1], Boadi extended Parker’s construc-
tion to include some of Mostow’s lattices. This paper is an account of this
construction. We refer to [1] for many of the details.

Specifically, we consider cone metrics on the sphere with five cone points
with cone angles

(π − θ + 2φ, π + θ, π + θ, π + θ, 2π − 2θ − 2φ). (1)

The angles θ and φ satisfy θ > 0, φ > 0 and θ + φ < π. In particular,
we consider the following values of θ and φ which Thurston showed yield
discrete groups [12]:

θ 2π/3 2π/3 2π/3 2π/4 2π/4 2π/5 2π/5 2π/6 2π/6
φ π/4 π/5 π/6 π/3 π/4 π/2 π/3 π/2 π/3

(2)
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Note that Mostow only considered the groups with θ = 2π/p for p = 3, 4, 5.
He also considered other values of φ and fundamental domains for these
groups were constructed by Deraux, Falbel and Paupert [3] (see also Parker
[11]). The groups with θ = 2π/5 or 2π/6 and φ = π/2 are on Livné’s list.
In fact the group corresponding to (θ, φ) = (2π/6, π/2) is the Eisenstein-
Picard modular group considered by Falbel and Parker in [5]. Also, the
group corresponding to (θ, φ) = (2π/3, π/6) is the so called “sister” of the
Eisenstein-Picard modular group considered by Zhao [14]. The fundamental
domains we construct are different from the ones constructed in [5] and [14].
Further relationships between these groups can be found in Parker’s survey
paper [11].

Certain automorphisms of our cone metrics yielded unitary matrices R1,
R2 and A1. (The naming of these automorphisms follows Mostow, see his
survey paper [9] for example.) Our goal is to show that the group Γ generated
by these automorphisms is discrete. To do so, we construct a polyhedron
D. The vertices of D come from degenerate cone metrics where some of
the cone points have coalesced. The boundary of D is made up of sides
contained in bisectors. The maps R1, R2 and A1 lead to side paring maps
for D. Then finally we prove in Theorem 5.1, using Poincaré’s polyhedron
theorem, that the group Γ generated by the side pairings of D is a discrete
subgroup of PU(1, 2) with fundamental domain D and presentation:

Γ =
〈
J, P,R1, R2 :

J3 = Rp1 = Rp2 = (P−1J)k = I,
R2 = PR1P

−1 = JR1J
−1, P = R1R2

〉
.

The integers p and k are defined by θ = 2π/p and φ = π/k where θ and φ
are given in (2). Equivalently, in terms of R1, R2 and A1 the presentation
is

Γ =
〈
R1, R2, A1 :

Rp1 = Rp2 = Ak1 = (R1R2A1)3 = I,
R1R2R1 = R2R1R2, R1A1 = A1R1

〉
.

These presentations should be compared to the discussion in Mostow [9],
particularly equation (5.3) and page 244. One may also write Γ as a two
generator group. For example, as Mostow observes, it is easy to see that R1

and J will generate Γ (which Mostow calls Γµ) but then the presentation is
not so clean.

The paper is arranged as follows: Section 2 looks at the construction
giving the fundamental domain for the cone structure. Section 3 looks at
the construction of bisectors and vertices; Section 4 looks at the construc-
tion of the complex hyperbolic polyhedron D which sets the stage for the
final Section 5 which is a summary of the proof that D is a fundamental
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polyhedron for the group. Details of the work can be found in Boadi’s thesis
[1].

2 Construction of the Polygons and Automorphisms

2.1 The Fundamental Domain for the Cone Structures

0

2π−2θ−2φ

π+θ

π+θ

π+θ

π−θ+2φv0

v1

v2

v3

Figure 1: The doubled pentagon. Note that the angles indicated are the cone
angles, which are twice the internal angles of the pentagon. The octagon Π
is obtained by cutting along the bold lines.

We consider Euclidean cone metrics on the sphere with five cone points
with cone angles given by (1) where θ and φ are given in the table (2). Our
goal is to try to find a unified construction for all these angles (and to verify
that these angles correspond to discrete groups). If we cut the sphere open
along a path through the five cone points, we obtain a Euclidean polygon
Π. Conversely, if we glue the sides of Π together, we can reconstruct our
cone metric on the sphere. We give an explicit parametrisation of such
polygons in terms of three complex parameters (z1, z2, z3). We show that,
in terms of these parameters, the area of the polygon gives a Hermitian form
of signature (1, 2). Thurston [12] and Weber [13] describe different ways of
doing this. We follow Parker’s method from [10] which is different from the
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methods of Thurston and Weber.
We begin by looking at the case where the cone manifold is the double

of a Euclidean pentagon. Cut the pentagon along four of its sides, as in
Figure 1, with the first cut at the cone point with angle 2π − 2θ − 2φ,
then moving along the boundary of the pentagon through the three cone
points v3, v2 and v1 with cone angle π + θ, ending at the cone point v0

with cone angle π − θ + 2φ. When we cut the double pentagon this way,
we get an octagon, which we call Π; see Figure 2. This octagon has a
reflection symmetry. Using this symmetry to identify the boundary points
reconstructs the doubled pentagon with which we began.

We now show how to construct Π geometrically. We start with a big
triangle T3 with angles θ, π− θ− φ and φ. This will only work when θ > 0,
φ > 0 and θ+φ < π. We then take off two smaller triangles T1 with angles φ,
π/2+θ/2−φ and π/2−θ/2; and T2 with angles θ, π/2−θ/2 and π/2−θ/2.
The corners of the triangles T1 and T3 with angles φ are the same. The
corners of the triangles T2 and T3 with angles θ are the same. The base
vectors of T1, T2 and T3 are ie−iφz1, ie−iφz2 and ie−iφz3. See Figure 2 for
the construction.

The vertices of the triangle T1 are as follows:

v0 =
−i sin θ

sin(θ + φ)
z3 +

i sin θ
sinφ+ sin(θ − φ)

z1,

x0 =
−i sin θ

sin(θ + φ)
z3,

v1 = ie−iφz1 −
i sin θ

sin(θ + φ)
z3.

The vertices of triangle T2 are as follows:

v2 = −ie−iφz2 +
i sinφ e−iθ−iφ

sin(θ + φ)
z3,

x1 =
i sinφ e−iθ−iφ

sin(θ + φ)
z3,

v3 = −ie−iθ−iφz2 +
i sinφ e−iθ−iφ

sin(θ + φ)
z3.
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Figure 2: The octagon Π when z1, z2 and z3 are all real. Here ψ = (π−θ)/2.
Note that the arrows are zjie

−iφ.

The vertices of triangle T3 are also as follows:

0,

x1 =
i sinφ e−iθ−iφ

sin(θ + φ)
z3,

x0 =
−i sin θ

sin(θ + φ)
z3.

We have constructed a pentagon whose vertices are the vertex of T3 and
the two vertices of each of T1 and T2 not shared by one of the other triangles.
This has one edge in common with each of T1 and T2. Consider the edge of
this pentagon joining the vertices of T1 with angle π+θ/2−φ and the vertex
of T3 with angle π− θ− φ. Reflect the pentagon across this side to form an
octagon, see Figure 2. The image of the triangle T1 under this reflection will
be a new triangle T−1. Similarly, the images of T2 and T3 will be triangles
T−2 and T−3. The images of vertices v1, v2 and v3 will be v−1, v−2 and
v−3 respectively. Our resulting octagon is preserved by reflection in the
imaginary axis and we label its vertices so that this reflection interchanges
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vj and v−j . Moreover, gluing points of the boundary Π to their image under
this reflection reconstructs the doubled pentagon we begun with. Below are
the vertices of the octagon.

v0 =
−i sin θ

sin(θ + φ)
z3 +

i sin θ
sinφ+ sin(θ − φ)

z1,

v1 = ie−iφz1 −
i sin θ

sin(θ + φ)
z3,

v2 = −ie−iφz2 +
i sinφ e−iθ−iφ

sin(θ + φ)
z3,

v3 = −ie−iθ−iφz2 +
i sinφ e−iθ−iφ

sin(θ + φ)
z3,

v−1 = ieiφz1 −
i sin θ

sin(θ + φ)
z3,

v−2 = −ieiφz2 +
i sinφ eiθ+iφ

sin(θ + φ)
z3,

v−3 = −ieiθ+iφz2 +
i sinφ eiθ+iφ

sin(θ + φ)
z3.

The vertices of T−1 are v0, x0 and v−1; the vertices of T−2 are v−2, x−1 and
v−3 and the vertices of T3 are 0, x−1 and x−2. We remark that substituting
φ = π/2 we recover the octagon from [10].

In the above construction, the octagon was formed by cutting a dou-
bled pentagon along four of its edges. We now consider how to build an
octagon associated with a more general cone metric on the sphere with five
cone points whose angles are given by (1). We do this by following the
above construction but with complex parameters z1, z2, z3 in place of the
real parameters x1, x2, x3. A typical example of an octagon with com-
plex parameters is shown in Figure 3. The triangles T1, T−1, T3 and T−3

share the vertex x0, the triangles T2 and T3 share the vertex x1 and the
triangles T−2 and T−3 share the vertex x−1. The base of the triangle T1 is
still v1 − x0 = ie−iφz1, the base of T2 is x1 − v2 = ie−iφz2 and the base
of T3 is x1 − x0 = ie−iφz3. In general these are no longer real multiples of
each other. Similarly, the bases of T−1, T−2 and T−3 are v−1 − x0 = ieiφz1,
x−1 − v−2 = ieiφz2 and x−1 − x0 = ieiφz3 respectively. Note that v−j is no
longer the image of vj under reflection in the imaginary axis.
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Figure 3: The octagon Π with complex z1, z2 and z3. Again ψ = (π − θ)/2
and the arrows are zjie

−iφ.

Simple geometry shows that the areas of the triangles are as follows:

Area(T1) =
sin θ sinφ

2(sinφ+ sin(θ − φ))
|z1|2 ,

Area(T2) =
1
2

sin θ |z2|2 ,

Area(T3) =
sin θ sinφ

2 sin(θ + φ)
|z3|2 .

When the parameters zj are real it is easy to see that the area of octagon
Π is

Area(Π) = 2Area(T3)− 2Area(T1)− 2Area(T2).

When the zj are complex, one can show by a simple cut and paste argument
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that this formula still holds. Therefore:

Area(Π) = 2Area(T3)− 2Area(T1)− 2Area(T2)

= sin θ
(
− sinφ

(sinφ+ sin(θ − φ))
|z1|2 − |z2|2 +

sinφ
sin(θ + φ)

|z3|2
)

= sin θ
[
z1 z2 z3

] 
− sinφ(

sinφ+sin(θ−φ)
) 0 0

0 −1 0
0 0 sinφ

sin(θ+φ)


z1

z2

z3


= z∗Hz,

where H is the Hermitian matrix:

H = sin θ

− sinφ/
(
sinφ+ sin(θ − φ)

)
0 0

0 −1 0
0 0 sinφ/ sin(θ + φ)

 . (3)

We observe that the area gives a Hermitian form of signature (1,2) on C3.
This leads to a complex hyperbolic structure on the moduli space of such
polygons. This is a special case of Proposition 3.3 of Thurston [12].

There is a natural way to construct a particular Euclidean cone manifold
from Π. The following, σj , are edge pairing maps of Π, which are Euclidean
isometries which preserve orientation and so are completely determined on
each edge by their value on the vertices vj ,vj+1. The maps are:

σ1(0) = 0, σ1(v3) = v−3; σ2(v3) = v−3, σ1(v2) = v−2;
σ3(v2) = v−2, σ3(v1) = v−1; σ4(v1) = v−1, σ4(v0) = v0.

Let M be the Euclidean cone manifold given by identifying the edges of Π
using the maps σj . It is clear that M is homeomorphic to a sphere and
has five cone points corresponding to 0, v0, v±1, v±2, v±3 with cone angles
π− θ+ 2φ, π+ θ, π+ θ, π+ θ, 2π− 2θ− 2φ respectively. These are the cone
angles given in (1).

2.2 Moves on the cone structure

We define automorphisms which we call moves on such polygons in the spirit
of Thurston [12]. These generalise the moves constructed by Parker in [10]
in an obvious way.

We define them as follows. Our cone manifold has five cone points. The
two corresponding to 0 and v0 have cone angles 2π− 2θ− 2φ and π+φ− θ,
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𝑣2 

𝑣3 

Figure 4: The cut for move R1.

respectively. The other three vertices have the same cone angle, which is
π + θ. In cutting our cone manifold to get back our octagon, there is no
canonical ordering of these three vertices, hence we can change the order of
the cut. This results in the moves we will consider namely R1 and R2. We
introduce a third move A1 which generalises Thurston’s butterfly moves.

• The move R1 The move R1 fixes the vertex 0, v0 and v±1 and then
interchanges v±2 and v±3. This corresponds to a Dehn Twist along a
simple closed curve through v±2 and v±3 that does not separate the
other cone points. This is described on page 242 of Mostow’s survey
article [9]. When cutting open the cone manifold, one must begin
cutting from 0 and then to v±2, then to v±3, and then to v±1 and v0;
see Figure 4. When we cut open the double pentagon, we obtain an
octagon, shown in Figure 5.

Using cut and paste, one can obtain the new octagon from the old.
The cut goes from 0 directly to v2. Then the triangle 0, v2, v3 must be
glued back on along the edge 0, v−3 according to the side identification
σ1. In the same way, the triangle v−1, v−2, v−3 must be glued by σ−1

3

to the side v1, v2; see Figure 5.
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Figure 5: The octagon obtained after performing move R1.

We now find the new parameters w1, w2, w3 for the new polygon by
analysing the vertices. We write the new vertices as v′j . Then: v′0 = v0,
v′1 = v1, v′3 = v2. Thus:

−i sin θ w3

sin(θ + φ)
+

i sin θ w1

sinφ+ sin(θ − φ)
=
−i sin θ z3

sin(θ + φ)
+

i sin θ z1

sinφ+ sin(θ − φ)
,

ie−iφw1 −
i sin θ w3

sin(θ + φ)
= ie−iφz1 −

i sin θ z3

sin(θ + φ)
,

−ie−iθ−iφw2 +
i sinφ e−iθ−iφw3

sin(θ + φ)
= −ie−iφz2 +

i sinφ e−iθ−iφ z3

sin θ + φ)
.

Solving these simultaneous equations give you the following:

w1 = z1, w2 = eiθz2, w3 = z3.
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In a matrix form, R1 is:

R1 =

1 0 0
0 eiθ 0
0 0 1

 . (4)

Since R1 preserves the area of the octagon, it is unitary with respect to
the Hermitian form H, that is R∗1HR1 = H. This can also be verified
directly. (Recall H is given in equation (3).)

 

𝑣0 

𝑣1 

𝑣2 

𝑣3 

𝑜 

Figure 6: The cut for move R2

• The move R2 The move R2 is, in principle, very similar to R1.
However, in terms of coordinates it is more complicated. This move
fixes 0, v0 and v±3 but interchanges v±1 and v±2. This corresponds to
a Dehn Twist along a simple closed curve through v±1 and v±2 that
does not separate the other cone points. We obtain the octagon by
cutting from 0 to v±3, then to v±1, to v±2 and finally to v0; see Figure
6.

Using cut and paste to obtain the new octagon from the old, we pro-
ceed as follows. The slit goes from 0 to v3 and then directly to v1.
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Hence the triangle v1, v2, v3 should be glued by σ2 to v−2, v−3. We
also analyse the vertices to find the new coordinates; v′0 = v0, v′2 = v1,
v′3 = v3 as before:

 

𝑣−2 

𝑣−1 

𝑣0 

𝑣1 

𝑣2 

𝑣3 
𝑣−3 

Figure 7: The octagon obtained after performing move R2.

−i sin θ w3

sin(θ + φ)
+

i sin θ w1

sinφ+ sin(θ − φ)
=
−i sin θ z3

sin(θ + φ)
+

i sin θ z1

sinφ+ sin(θ − φ)
,

−ie−iφw2 +
i sinφ e−iθ−iφw3

sin θ + φ)
= ie−iφz1 −

i sin θ z3

sin(θ + φ)
,

−ie−iθ−iφw2 +
i sinφ e−iθ−iφw3

sin(θ + φ)
= −ie−iθ−iφz2 +

i sinφ e−iθ−iφ z3

sin(θ + φ)

Solving these simultaneously results in the following matrix R2 as the
solution:

(1− e−iθ) sin(φ)R2

=

− sin(θ)e−iφ − sin(φ)− sin(θ − φ) sin(φ) + sin(θ − φ)
− sin(φ) − sin(φ)e−iθ sin(φ)
− sin(θ + φ) − sin(θ + φ) sin(φ) + sin(θ)eiφ

 .(5)

Again, R2 preserves area and so us unitary with respect to H.

• The move A1 The third move is a generalisation of the ‘butterfly’
move discussed by Thurston [12] and generalises the move I1 in Parker
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Figure 8: The octagon obtained after performing move A1.

[10]. In terms of monodromy, it is defined in equations (5.2) and
(5.3) and illustrated in Figure 1.5 of Mostow [9]. Thurston’s butterfly
operation moves one edge of the pentagon across a butterfly-shaped
quadrilateral of zero signed area, yielding a new polygon of the same
area. In our case, fix v±2, v±3 and we rotate the triangle T1 so that
v′1 = v−1. The resulting octagon has a point of self intersection, but
by using signed area we still preserve H. The move A1 preserves the
triangles T2 and T3 and so it fixes z2 and z3. The triangle T1 is rotated
by 2φ and so z1 is sent to e2iφz1. That is, as a matrix, A1 is given by:

A1 =

e2iφ 0 0
0 1 0
0 0 1

 . (6)

Our goal will be to consider the group Γ = 〈R1, R2, A1〉 generated by
the moves R1, R2 and A1. We view these moves as the matrices given in
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(4), (5) and (6). All these moves preserve the (signed) area of Π and so the
matrices are all unitary with respect to the Hermitian form given by the
matrix H given in (3). We will show that Γ is discrete for the various values
of θ and φ given in table (2).

3 Construction of Bisectors and Vertices

3.1 Introduction

In this section, we show how the collection of polygons Π (cone metrics on
the sphere) can be parametrised by a subset of complex hyperbolic space
and we discuss how the moves (automorphisms) R1, R2 and A1 act as com-
plex hyperbolic isometries. We will actually be looking at the geometry of
the action of the isometries. We construct a polyhedron D whose sides are
contained in bisectors and whose vertices correspond to certain cone met-
rics which have degenerated. This degeneration is obtained either from the
collision of three cone points or from the collision of two pairs of cone points.

3.2 New Coordinates

Complex hyperbolic space can be defined to be the projectivisation of those
points in the space for which the Hermitian form form is positive. We achieve
the projectivisation by considering the section for which z3 = 1. Using the
definition of H in (3), we see that our model of complex hyperbolic space is
defined as follows:

H2
C =

{
z : 〈z, z〉 = z∗Hz > 0

}
.

Equivalently:

H2
C =


z1

z2

1

 :
− |z1|2 sin θ sinφ(
sinφ+ sin(θ − φ)

) − |z2|2 sin θ +
sin θ sinφ
sin(θ + φ)

> 0

 . (7)

There will be two elements of the group Γ = 〈R1, R2, A1〉 that are of
particular interest to us, namely P = R1R2 and J = PA1 = R1R2A1. Using
the matrices for R1, R2 and A1 in equations (4), (5) and (6), we find the
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following matrices for P and J :

(1− e−iθ) sin(φ)P

=

− sin(θ)e−iφ − sin(φ)− sin(θ − φ) sin(φ) + sin(θ − φ)
− sin(φ)eiθ − sin(φ) sin(φ)eiθ

− sin(θ + φ) − sin(θ + φ) sin(φ) + sin(θ)eiφ

 , (8)

(1− e−iθ) sin(φ) J

=

 − sin(θ)eiφ − sin(φ)− sin(θ − φ) sin(φ) + sin(θ − φ)
− sin(φ)ei(2φ+θ) − sin(φ) sin(φ)eiθ

− sin(θ + φ)e2iφ − sin(θ + φ) sin(φ) + sin(θ)eiφ

 .(9)

Note that tr(J) = 0 and so J has order 3. Also, we have put the scalar
factor of (1 − e−iθ) sin(φ) (which comes from R2) on the left hand side of
the equation. In our application we are only interested in projective classes
of matrices. Therefore this factor may be dropped. We denote projective
equality by ∼.

We remark that, using the action of R1 and R2 on the cone points, as
discussed above, we can summarise the action of P on the cone points as
follows:

Lemma 3.1 The map P = R1R2 fixes the cone points 0 and v0 and maps
the other cone points as follows:

P : v±1 7−→ v±3, P : v±2 7−→ v±1, P : v±3 7−→ v±2.

We now define our second set of coordinates denoted by w, which is the
preimage under P of the first set of coordinates. Geometrically, the wj-
parameters have the following meaning. Before cutting the sphere to form
an octagon, cyclically permute the cone points v±j as described in Lemma
3.1. The resulting octagon may be built up from three triangles in just
the same way that Π was built up from the triangles T1, T2 and T3. The
coordinates w1, w2 and w3 are then the bases of the new triangles. We
consider the section with w3 = 1.

In terms of parameters, the new coordinates are given by:

w =

w1

w2

1

 =
[
P−1(z)

]

∼

 − sin(θ)eiφ −
(
sin(φ) + sin(θ − φ)

)
e−iθ sin(φ) + sin(θ − φ)

− sin(φ) − sin(φ) sin(φ)
− sin(θ + φ) − sin(θ + φ)e−iθ sin(φ) + sin(θ)e−iφ

z1

z2

1

 .
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Hence finding w1 and w2 as rational functions of z1 and z2, we obtain

w1 =
− sin(θ)eiφz1 −

(
sin(φ) + sin(θ − φ)

)
e−iθz2 + sin(φ) + sin(θ − φ)

− sin(θ + φ)z1 − sin(θ + φ)e−iθz2 + sin(φ) + sin(θ)e−iφ
,(10)

w2 =
− sin(φ)z1 − sin(φ)z2 + sin(φ)

− sin(θ + φ)z1 − sin(θ + φ)e−iθz2 + sin(φ) + sin(θ)e−iφ
. (11)

By a similar procedure, we obtain z1 and z2 in terms of w1 and w2:

z =

z1

z2

1

 =
[
P (w)

]

∼

− sin(θ)e−iφ − sin(φ)− sin(θ − φ) sin(φ) + sin(θ − φ)
− sin(φ)eiθ − sin(φ) sin(φ)eiθ

− sin(θ + φ) − sin(θ + φ) sin(φ) + sin(θ)eiφ

w1

w2

1

 .
and hence

z1 =
− sin(θ)e−iφw1 −

(
sin(φ) + sin(θ − φ)

)
w2 + sin(φ) + sin(θ − φ)

− sin(θ + φ)w1 − sin(θ + φ)w2 + sin(φ) + sin(θ)eiφ
,(12)

z2 =
− sin(φ)eiθw1 − sin(φ)w2 + sin(φ)eiθ

− sin(θ + φ)w1 − sin(θ + φ)w2 + sin(φ) + sin(θ)eiφ
. (13)

Our reason of keeping track of two coordinates is that it gives a simple
description of the polyhedron D in terms of the arguments of z1, z2, w1 and
w2.

3.3 Vertices

In this section, we obtain some distinguished points of H2
C which will be

the vertices of our polyhedron. It will be useful to give these points in the
two sets of coordinates w and z constructed in the previous section. The
distinguished points (cone structures) are obtained by letting some of the
cone points approach each other until in the limit they coalesce, and then
result in a new point. The complementary angle (curvature) of this new cone
point (that is 2π minus the cone angle) is the sum of the complementary
angles of the cone points that have coalesced. Considering this from the
view point of the octagon Π considered in Section 2, obtaining the new cone
points is the same as either expanding or contracting the triangles T1 and T2

till some of the vertices become the same point. If such vertices are adjacent
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Figure 9: Degenerate octagons corresponding to to vertices of D.

to each other then the edge between them has degenerated to a point. We
define the following vertices by where various cone points coalesce, and we
give the cone angle at the resulting new vertex.

Point Cone Points Angle Cone Points Angle
p1 v0, v±1 2φ v±2, v±3 2θ
p2 v0, v±3 2φ v±1, v±2 2θ
p231 v±1, v±2, v±3 3θ − π
p23 v0, v±2, v±3 θ + 2φ− π
p31 v0, v±1, v±2 θ + 2φ− π
p12 v0, v±1, v±3 θ + 2φ− π

One can notice from the above table that 3θ ≥ π and θ + 2φ ≥ π. This
will be the case for all the angles we are interested in; see Table (2). When
3θ = π the vertex p231 will be on the boundary of complex hyperbolic space.
Likewise, when θ + 2φ = π the vertices p12, p23 and p31 will be on the
boundary of complex hyperbolic space. We now describe the corresponding
degenerate octagons in detail; see Figure 9.

p1: When v0 and v±1 coalesce, the triangle T1 shrinks to a point and so
z1 = 0. Likewise, when v±2 and v±3 coalesce then T2 also shrinks to
a point and so z2 = 0. Thus p1 is given by z1 = z2 = 0. This is the
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origin in the z-coordinates. Putting z1 = z2 = 0 into (10) and (11)
gives:

w1 =
sinφ+ sin(θ − φ)
sinφ+ sin θe−iφ

, w2 =
sinφ

sinφ+ sin θe−iφ
.

p2: When v0 and v3 coalesce and v1 and v2 coalesce, the triangles T1 and
T2 share an edge. Also T−1 and T−2 share the vertex v−1 = v−2.
Alternatively, applying the map P permutes the cone points as in
Lemma 3.1. This has the effect of making us use the w-coordinates.
Therefore, we can repeat our argument for p1 to see that p2 corre-
sponds to w1 = w2 = 0. Putting this into equations (12) and (13)
gives:

z1 =
sinφ+ sin(θ − φ)

sinφ+ sin θeiφ
, z2 =

sinφeiφ

sinφ+ sin θeiφ
.

Note that (using z3 = 1) when v±1 and v±2 coalesce we have z1+z2 = 1.
Likewise, when v0 and v3 coalesce we have

ie−iφ =
i sin θ

sinφ+ sin(θ − φ)
z1 + ie−iθ−iφz2. (14)

These two equations yield the same solution for z1 and z2.

p231: In this case, the cone points v±1, v±2 and v±3 coalesce. Once again,
as v±1 and v±2 coalesce we have z1 + z2 = z3 = 1. Also, since v±2 and
v±3 coalesce, the triangle T2 shrinks to a point and we have z2 = 0.
Hence z1 = 1. Either using Lemma 3.1 or substituting directly, we see
that w1 = 1 and w2 = 0.

p23: In this case v0, v±2 and v±3 coalesce. Once again, when v±2 and v±3

coalesce we obtain z2 = 0 and when v0, v3 coalesce we have equation
(14). Putting this together gives

z1 =
sinφ+ sin(θ − φ)

sin θeiφ
, z2 = 0.

In terms of the w-coordinates, when v0 and v3 coalesce then w1 = 0
and when v2 and v3 coalesce we get w1 + e−iθw2 = 1. Hence w1 = 0
and w2 = eiθ.

p31: Here v0, v±1 and v±2 coalesce. Arguing as before, we have z1 = 0 and
z1 +z2 = 1. Hence z2 = 1. In terms of w-coordinates, we have w2 = 0.
A slightly more involved argument shows that

w1 =
sinφ+ sin(θ − φ)

sin θe−iφ
.
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p12: Here v0, v±1 and v±3 coalesce. The above arguments yield z1 = 0 and
z1 + z2 = eiθ. Thus z2 = eiθ. Also, w1 = 0 and w1 + w2 = 1. Hence
w2 = 1.

In coordinates (normalising so z3 = w3 = 1) we have

Point z1 z2 w1 w2

p1 0 0 sinφ+sin(θ−φ)
sinφ+sin θe−iφ

sinφ
sinφ+sin θe−iφ

p2
sinφ+sin(θ−φ)
sinφ+sin θeiφ

sinφeiθ

sinφ+sin θeiφ
0 0

p231 1 0 1 0
p23

sinφ+sin(θ−φ)
sin θ e−iφ 0 0 eiθ

p31 0 1 sinφ+sin(θ−φ)
sin θ eiφ 0

p12 0 eiθ 0 1

In concluding this section, we show that the collection of vertices de-
scribed above is symmetrical with respect to an involution. The polyhedron
D will also demonstrate this symmetry when we get to Section 4. Let us
consider the antiholomorphic isometry ι given by ι(z) = R1R2R1(z), which
is the same as ι(z) = PR1(z). In coordinates:

ι

z1

z2

1

 ∼

 w1

w2e
iθ

1

 . (15)

Notice that ∼ refers to projective equality. The following lemma deduced
from the above equation can be verified using the vertices obtained in the
above table of vertices.

Lemma 3.2 The isometry ι has order 2 and acts on the pj by

ι(p1) = p2, ι(p231) = p231, ι(p23) = p31, ι(p12) = p12.

Proof: This follows by direct calculation. For example to see that ι
fixes p231 observe

ι

1
0
1

 =
1

(1− e−iθ) sin(φ)

− sin(θ)e−iφ + sin(φ) + sin(θ − φ)
− sin(φ)eiθ + sin(φ)eiθ

− sin(θ + φ) + sin(φ) + sin(θ)eiφ

 ∼
1

0
1

 .
where we have used

sin(θ − φ)− sin θe−iφ = − cos θ sinφ+ i sin θ sinφ = − sin(θ + φ) + sin θeiφ.

20



Similarly to see that ι(p31) = p23 observe

ι

0
1
1

 =
1

(1− e−iθ) sin(φ)

 (1− eiθ)(sinφ+ sin(θ − φ))
0

sinφ+ sin θeiφ − sin(θ + φ)eiθ

 ∼
 sinφ+sin(θ−φ)

sin θeiφ

0
1


where we have used

sinφ+ sin θeiφ − sin(θ + φ)eiθ = sin θeiφ(1− eiθ).

The other identities follow similarly by substituting and then simplifying
using trigonometric formulae. 2

4 Construction of the Complex Hyperbolic Polyhedron
D

4.1 Introduction

In this section we construct a polyhedron D in complex hyperbolic space. In
the next section we will use Poincaré’s polyhedron theorem to demonstrate
that this is a fundamental polyhedron for Γ = 〈R1, R2, A1〉.

The vertices of D will be the five special cone manifolds p1, p2, p231,
p23, p31 and p12 constructed above in Section 3.3. Combinatorially, D is
almost as simple as it can be: it will be the union of two four-simplices. The
vertices of the first simplex are all the vertices except p2 and the vertices of
the second are all except p1.

The co-dimension 1 sides of D will be contained in bisectors. A bisector
B is the locus of points equidistant from a given pair of points. They have
been studied extensively and we will briefly summarise their properties. For
more detail see Mostow [8] or Goldman [6]. If the bisector B is equidistant
from points q1 and q2 then the complex line Σ = Σ(B) spanned by q1 and
q2 is called the complex spine of B. The geodesic σ = σ(B) in Σ equidistant
from q1 and q2 is called the spine of B. Bisectors are not totally geodesic
but are foliated by totally geodesic subspaces in two different ways. First, if
ΠΣ is orthogonal projection onto Σ then B = Π−1

Σ (σ). For each point s on
σ, the preimage Π−1

Σ (s) is a complex line, called a slice of Σ; see Mostow [8].
The slices foliate B. Secondly, B is the union of all totally real Lagrangian
planes containing σ. Such a plane is called a meridian; see Goldman [6].
We will use this structure very little. One property we will use is that each
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codimension 1 side of D will be a 3-simplex in a bisector with one edge in
σ, two faces in meridians and one face in a slice. We will see, in Proposition
4.8, this has the consequence that the 1-skeleton of D is made up of geodesic
arcs.

4.2 The polyhedron D

We define the polyhedron D to be those points of H2
C for which the argu-

ments of z1, z2, w1 and w2 lie in the following intervals (compare Equation
(17) of Parker [10]):

D =
{
z = P (w) :

arg(z1) ∈ (−φ, 0), arg(z2) ∈ (0, θ),
arg(w1) ∈ (0, φ), arg(w2) ∈ (0, θ)

}
. (16)

We want to characterise D in terms of inequalities involving the Hermitian
form. The following lemma generalises Lemmas 4.4 and 4.6 of [10]

Lemma 4.1 Let 〈·, ·〉 be the Hermitian form given by H. Using the coordi-
nates z and w we have:

• Im (z1e
iφ) > 0 if and only if

∣∣〈z, p231〉
∣∣ < ∣∣〈z, J−1(p231)〉

∣∣;
• Im (z1) < 0 if and only if

∣∣〈z, p23〉
∣∣ < ∣∣〈z, P−1(p31)〉

∣∣;
• Im (z2) > 0 if and only if

∣∣〈z, p12〉
∣∣ < ∣∣〈z, R−1

1 (p31)〉
∣∣;

• Im (z2e
−iθ) < 0 if and only if

∣∣〈z, p31〉
∣∣ < ∣∣〈z, R1(p12)〉

∣∣;
• Im (w1) > 0 if and only if

∣∣〈w, p31〉
∣∣ < ∣∣〈w, P (p23)〉

∣∣;
• Im (w1e

−iφ) < 0 if and only if
∣∣〈w, p231〉

∣∣ < ∣∣〈w, J(p231)〉
∣∣;

• Im (w2) > 0 if and only if
∣∣〈w, p23〉

∣∣ < ∣∣〈w, R−1
2 (p12)〉

∣∣;
• Im (w2e

−iθ) < 0 if and only if
∣∣〈w, p12〉

∣∣ < ∣∣〈w, R2(p23)〉
∣∣.

Proof: We illustrate one case of this theorem. In z-coordinates

p231 =

1
0
1

 , J−1(p231) =

e−2iφ

0
1

 .
Therefore

〈z, p231〉 =
− sinφ

sinφ+ sin(θ − φ)
z1 +

sinφ
sin(θ + φ)

,

〈z, J−1(p231)〉 =
− sinφ

sinφ+ sin(θ − φ)
e2iφz1 +

sinφ
sin(θ + φ)

.

22



Hence
∣∣〈z, p231〉

∣∣ < ∣∣〈z, J−1(p231)〉
∣∣ if and only if −2Re (z1) < −2Re (z1e

2iφ).
This is true if and only if Im (z1e

iφ) > 0. This is the first part. The other
parts are all similar. 2

Corollary 4.2 The polyhedron D is defined by points p ∈ H2
C (which may

be written in z or w coordinates) satisfying the inequalities:∣∣〈p, p231〉
∣∣ < ∣∣〈p, J−1(p231)〉

∣∣, ∣∣〈p, p23〉
∣∣ < ∣∣〈p, P−1(p31)〉

∣∣,∣∣〈p, p12〉
∣∣ < ∣∣〈p,R−1

1 (p31)〉
∣∣, ∣∣〈p, p31〉

∣∣ < ∣∣〈p,R1(p12)〉
∣∣,∣∣〈p, p31〉

∣∣ < ∣∣〈p, P (p23)〉
∣∣, ∣∣〈p, p231〉

∣∣ < ∣∣〈p, J(p231)〉
∣∣,∣∣〈p, p23〉

∣∣ < ∣∣〈p,R−1
2 (p12)〉

∣∣, ∣∣〈p, p12〉
∣∣ < ∣∣〈p,R2(p23)〉

∣∣.
We refer to the codimension 1 facets of D as sides. Each side corresponds

to one of the eight inequalities in Lemma 4.1 being replaced with equality.
Therefore each of the eight sides of D is contained in a bisector. Moreover,
for each of of these bisectors B, we have:

(i) either the point p1 or p2 lies on B;

(ii) three of the four points p231, p23, p31 and p12 lie on B;

(iii) the fourth of these points lies on the complex spine Σ of B but not on
B;

(iv) the spine σ of B passes through one of p1 and p2 and one of p231, p23,
p31 or p12.

We name the bisectors B(X) where X is one of J , P , R1, R2 or their inverses
so that the isometry X will send B(X) to B(X−1). For example, B(R1) is
given by the equality ∣∣〈p, p12〉

∣∣ =
∣∣〈p,R−1

1 (p31)〉
∣∣.

Applying R1 sends p12 to R1(p12) and sends R−1
1 (p31) to p31. Therefore R1

sends B(R1) to the bisector defined by∣∣〈p,R1(p12)〉
∣∣ =

∣∣〈p, p31〉
∣∣.

This is B(R−1
1 ).
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The summary is:

Bisector Definition Equidistant from Points on spine Other points
B(J) Im (z1e

iφ) = 0 p231, J
−1(p231) p1, p23 p31, p12

B(J−1) Im (w1e
−iφ) = 0 p231, J(p231) p2, p31 p12, p23

B(P ) Im (z1) = 0 p23, P
−1(p31) p1, p231 p31, p12

B(P−1) Im (w1) = 0 p31, P (p23) p2, p231 p12, p23

B(R1) Im (z2) = 0 p12, R
−1
1 (p31) p1, p31 p23, p231

B(R−1
1 ) Im (z2e

−iθ) = 0 p31, R1(p12) p1, p12 p23, p231

B(R2) Im (w2) = 0 p23, R
−1
2 (p12) p2, p12 p31, p231

B(R−1
2 ) Im (w2e

−iθ) = 0 p12, R2(p23) p2, p23 p31, p231

We go through these properties in two cases. The others are similar; see
Boadi [1] for details.

(1) Example, we consider B(J). In z-coordinates this is given by

B(J) =
{

(x1e
−iφ, z2) ∈ H2

C : x1 ∈ R, z2 ∈ C
}
.

The spine σ(J) of B(J) has z-coordinates

σ(J) =
{

(x1e
−iφ, 0) ∈ H2

C : x1 ∈ R
}
.

The complex spine Σ(J) of B(J) has z-coordinates

Σ(J) =
{

(z1, 0) ∈ H2
C : z1 ∈ C

}
.

• p1 is given by (z1, z2) = (0, 0). This clearly lies in B(J) and σ(J).

• p231 is given by (z1, z2) = (1, 0) and J−1(p231) is given by (z1, z2) =
(e−2iφ, 0). These points clearly do not lie on B(J) but do lie on
Σ(J), and B(J) is equidistant from them.

• p23 is given by

(z1, z2) =
(

sinφ+ sin(θ − φ)
sin θ

e−iφ, 0
)
.

Since
(
sinφ+sin(θ−φ)

)
/ sin θ is real, this lies on B(J) and σ(J).

• p31 is given by (z1, z2) = (0, 1). This clearly lies on B(J) but
does not lie on σ(J).

• p12 is given by (z1, z2) = (0, eiθ). This clearly lies on B(J) but
does not lie on σ(J).
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(2) Next we consider B(R2). In w-coordinates this is given by

B(R2) =
{

(w1, y2) ∈ H2
C : w1 ∈ C, y2 ∈ R

}
.

The spine σ(R2) of B(R2) has w coordinates

σ(R2) =
{

(0, y2) ∈ H2
C : y2 ∈ R

}
.

The complex spine Σ(R2) of B(R2) has w coordinates

Σ(R2) =
{

(0, w2) ∈ H2
C : w2 ∈ C

}
.

• p2 is given by (w1, w2) = (0, 0). This clearly lies in B(R2) and
σ(R2).

• p231 is given by (w1, w2) = (1, 0). This clearly lies in B(R2) but
not in σ(R2).

• p31 is given by

(w1, w2) =
(

sinφ+ sin(θ − φ)
sin θ

eiφ, 0
)
.

This clearly lies on B(R2) but not on σ(R2).

• p12 is given by (w1, w2) = (0, 1). This lies on both B(R2) and
σ(R2).

• p23 is given by (w1, w2) = (0, eiθ) and R−1
2 (p12) is given by

(w1, w2) = (0, e−iθ). These points clearly do not lie on B(R2).
However, they do lie on Σ(R2), and B(R2) is equidistant from
them.

4.3 Some useful inequalities

When we give details of the faces of D we will need to use the following
lemmas which give inequalities satisfied by all points of H2

C.

Lemma 4.3 If z ∈ H2
C then

|z1| <
sinφ+ sin(θ − φ)

sin(θ + φ)
, |w1| <

sinφ+ sin(θ − φ)
sin(θ + φ)

.
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Proof: We prove this by contradiction. If |z1| ≥
(
sinφ + sin(θ −

φ)
)
/ sin(θ + φ) then

z∗Hz =
− sinφ

sinφ+ sin(θ − φ)
|z1|2 − |z2|2 +

sinφ
sin(θ + φ)

≤
− sinφ

(
sinφ+ sin(θ − φ)

)
sin2(θ − φ)

− |z2|2 +
sinφ

sin(θ + φ)

≤
sin2 φ

(
2 cos θ − 1

)
sin2(θ + φ)

− |z2|2 ≤ 0,

where we have used cos θ ≤ 1/2 on the last line. Thus z is not in H2
C. A

similar argument holds for w. 2

Lemma 4.4 If z ∈ H2
C then

|z1|, |w1| <
sin θ

sin(θ + φ)
, |z2|, |w2| <

sinφ
sin(θ + φ)

,

Proof: In order to prove the lemma, first observe from the combination
of φ and θ in Table (2) that we have θ + 2φ ≥ π and hence

π − (θ + φ) ≤ φ ≤ θ + φ.

Therefore sin(φ) ≥ sin(θ + φ).
Now we prove the inequality for z1. If |z1| ≥ sin(θ)/ sin(θ+φ) then from

the area

z∗Hz =
− sinφ

sinφ+ sin(θ − φ)
|z1|2 − |z2|2 +

sinφ
sin(θ + φ)

≤ sinφ
sin(θ + φ)

sin(θ + φ)
(
sinφ+ sin(θ − φ)

)
− sin2 θ

sin(θ + φ)
(
sinφ+ sin(θ − φ)

) − |z2|2

=
sinφ

sin(θ + φ)
sin(θ + φ) sinφ+ sin2 θ cos2 φ− cos2 θ sin2 φ− sin2 θ

sin(θ + φ)
(
sinφ+ sin(θ − φ)

) − |z2|2

=
sinφ

sin(θ + φ)
sin(θ + φ) sinφ− sin2 φ

sin(θ + φ)
(
sinφ+ sin(θ − φ)

) − |z2|2

= − sin2 φ

sin2(θ + φ)
sinφ− sin(θ + φ)
sinφ+ sin(θ − φ)

− |z2|2 ≤ 0.

This a contradiction. Hence |z1| < sin(θ)/ sin(θ+φ). Proving the inequality
for w1 is identical.
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Similarly, to prove the inequality for z2 assume that |z2| ≥ sinφ/ sin(θ+
φ). Then

z∗Hz =
− sinφ

sinφ+ sin(θ − φ)
|z1|2 − |z2|2 +

sinφ
sin(θ + φ)

≤ − sinφ
sinφ+ sin(θ − φ)

|z1|2 −
sin2 φ

sin2(θ + φ)
+

sinφ
sin(θ + φ)

≤ − sinφ
sinφ+ sin(θ − φ)

|z1|2 −
sinφ

sin(θ + φ)

(
sinφ

sin(θ + φ)
− 1
)

≤ 0,

as sinφ/ sin(θ + φ) ≥ 1. The inequality for w2 is similar. 2

4.4 Faces of the polyhedron

We refer to codimension 2 facets of the polyhedron D as faces. Each face
is contained in the intersection of two of the bisectors defining the sides
of D. The other bisectors determine further inequalities defining the edges
bounding each face so that the face becomes a triangle in this bisector in-
tersection. The faces come in three types: (a) faces contained in a common
slice of two of the bisectors; (b) faces contained in a common meridian of
two bisectors or (c) faces that are not contained in either a complex line
or a Lagrangian plane. In fact the intersections of type (c) are contained
in a Giraud disc, which is a particularly nice type of bisector intersection;
see Theorem 8.3.3 of Goldman [6]. We give representative examples of each
type. In Proposition 4.5 we give details of a face in a common slice, in
Proposition 4.6 consider a face in a common meridian and in Proposition
4.7 we give a face in a Giraud disc. For the complete list, see Boadi’s thesis
[1].

First we give a face contained in a complex line that is a common slice
of the two bisectors.

Proposition 4.5 A point in the face of D contained in B(J) ∩ B(P ) has
coordinates z = (0, x+ yeiθ) and w = (w1, w2) with

w1 =
(sin(φ) + sin(θ − φ))(1− e−iθx− y)

sinφ+ sin θe−iφ − sin(θ + φ)(e−iθx+ y)
,

w2 =
sinφ(1− x− eiθy)

sinφ+ sin θe−iφ − sin(θ + φ)(e−iθx+ y)
,
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where x, y are non-negative real numbers satisfying

0 ≤ sinφ(1− x− y)− sin(θ + φ)(x+ y − x2 − y2 − 2xy cos θ).

Proof: Since the point is on B(J) we have Im (z1e
iφ) = 0 and as it is on

B(P ) we have Im (z1) = 0. Hence the intersection of these bisectors is the
complex line z1 = 0, which is a common slice. The conditions Im (z2) ≥ 0
and Im (z2e

−iθ) ≤ 0 mean that if we write z2 = x + yeiθ then x ≥ 0 and
y ≥ 0. The expressions for w1 and w2 follow by substituting these values of
z1 and z2 into (10) and (11).

It is not hard to check that Im (w1e
−iφ) ≤ 0 if and only if Im (w2) ≥ 0 if

and only if

0 ≤ sinφ(1− x− y)− sin(θ + φ)(x+ y − x2 − y2 − 2xy cos θ).

Note that the curve given by equality in this expression intersects the line
y = 0 (respectively x = 0) at x = 1 and x = sinφ/ sin(θ + φ) (respectively
y = 1 and y = sinφ/ sin(θ + φ)). The latter points are outside complex
hyperbolic space, by Lemma 4.4. Therefore this curve and the lines x = 0,
y = 0 bound a triangle with vertices (x, y) = (0, 0), (1, 0) and (0, 1).

Finally, we must check that Im (w1) ≥ 0 and Im (w2e
−iθ) ≤ 0. It is easy

to check that Im (w1) ≥ 0 if and only if

0 ≤ 1− y + x− 2 cos θx.

If y = 1 + x− 2 cos θ then

sinφ(1−x−y)−sin(θ+φ)(x+y−x2−y2−2xy cos θ) = −2(1−cos θ)x(sinφ−sin(θ+φ)x).

Using Lemma 4.4 we see that sinφ > sin(θ + φ)x and so this expression is
negative. Hence Im (w1e

−iφ) ≤ 0 implies Im (w1) ≥ 0.
Also, Im (w2e

−iθ) ≤ 0 if and only if

0 ≤ (sinφ+ sin(θ − φ))(1− x+ y)− 2 cos θ sinφy.

A similar argument shows that Im (w2) ≥ 0 implies Im (w2e
−iθ) ≤ 0. We

leave this to the reader. 2

Now we give a face contained in a Lagrangian plane that is a common
meridian of the two bisectors.
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Proposition 4.6 A point in the face of D contained in B(J) ∩ B(R1) has
coordinates z = (xe−iφ, y) and w = (w1, w2) with

w1 =
− sin(θ)x−

(
sin(φ) + sin(θ − φ)

)
e−iθy + sin(φ) + sin(θ − φ)

− sin(θ + φ)e−iφx− sin(θ + φ)e−iθy + sin(φ) + sin(θ)e−iφ
,

w2 =
− sin(φ)e−iφx− sin(φ)y + sin(φ)

− sin(θ + φ)e−iφx− sin(θ + φ)e−iθy + sin(φ) + sin(θ)e−iφ
,

where x and y are non-negative real numbers satisfying

0 ≤ (sinφ+ sin(θ − φ))(1− y)− sin θx.

Proof: Since the point is on B(J) we have Im (z1e
iφ) = 0 and as it is

on B(R1) we have Im (z2) = 0. Hence the intersection of these bisectors is
on the Lagrangian plane where (z1, z2) = (xe−iφ, y) for real x and y. The
conditions Im (z1) ≤ 0 and Im (z2e

−iθ) ≤ 0 imply x ≥ 0 and y ≥ 0. The
expressions for w1 and w2 follow from (10) and (11).

It is not hard to check that Im (w1e
−iφ) ≤ 0 if and only if

0 ≤ (sinφ− sin(θ + φ)y)
(
(sinφ+ sin(θ − φ))(1− y)− sin θx

)
.

Similarly Im (w2e
−iθ) ≤ 0 if and only if

0 ≤ (sin θ − sin(θ + φ)x)
(
(sinφ+ sin(θ − φ))(1− y)− sin θx

)
.

Using Lemma 4.4 we see that sin θ−sin(θ+φ)x > 0 and sinφ−sin(θ+φ)y > 0.
Finally, we must check Im (w1) ≥ 0 and Im (w2) ≥ 0. We leave this to the
reader. 2

Finally we give a face contained in a Giraud disc.

Proposition 4.7 A point on the face of D contained in z ∈ B(J)∩B(J−1)
has coordinates z = (xe−iφ, z2) and w = (ueiφ, w2) where

z2 = eiθ
xu sin(θ + φ)− u(eiφ sinφ+ sin θ)− x sin θ + sinφ+ sin(θ − φ)

sinφ+ sin(θ − φ)− ueiφ sin(θ + φ)
,

w2 =
xu sin(θ + φ)− x(e−iφ sinφ+ sin θ)− u sin θ + sinφ+ sin(θ − φ)

sinφ+ sin(θ − φ)− x sin(θ + φ)e−iφ
,

where x and u are non-negative real numbers satisfying

0 ≤ xu sin(θ−φ) sin(θ+φ)−(x+u) sin θ(sinφ+sin(θ−φ))+(sinφ+sin(θ−φ))2.
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Proof: Arguing as before, since the point is on B(J) we have z1 = xe−iφ

and as it is on B(J) we have w1 = ueiφ for real x and u. Since Im (z1) ≤ 0
and Im (w1) ≥ 0 we have x ≥ 0 and y ≥ 0. Substituting these in (12) and
(10) gives:

xe−iφ =
−u sin θ − (sinφ+ sin(θ − φ))w2 + sinφ+ sin(θ − φ)
−u sin(θ + φ)eiφ − sin(θ + φ)w2 + sinφ+ sin θeiφ

,

ueiφ =
−x sin θ − e−iθ(sinφ+ sin(θ − φ))z2 + sinφ+ sin(θ − φ)
−x sin(θ + φ)e−iφ − sin(θ + φ)e−iθz2 + sinφ+ e−iφ sin θ

.

Solving for w2 and z2 gives the expressions in the statement of the proposi-
tion. The condition Im (z2) ≥ 0 is equivalent to

0 ≤
(
sin θ − u sin(θ + φ)

)
p(u, x)

where

p(u, x) = xu sin(θ − φ) sin(θ + φ)− (x+ u) sin θ(sinφ+ sin(θ − φ))
+(sinφ+ sin(θ − φ))2.

The condition that Im (w2e
−iθ) ≤ 0 is equivalent to

0 ≤
(
sin θ − x sin(θ + φ)

)
p(u, x).

From Lemma 4.4 we see that sin θ − u sin(θ + φ) > 0 and sin θ − x sin(θ +
φ) > 0, thus we must have p(u, x) ≥ 0 as claimed. Finally we must check
Im (z2e

−iθ) ≤ 0 and Im (w2) ≥ 0. We leave this to the reader. 2

We conclude this section by listing all the faces. We use the notation
that F (X,Y ) is the face of D contained in the intersections of the bisectors
B(X) and B(Y ). In the following table, the letters S, M, G in the last
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column indicate whether the face is in a slice, a meridian or a Giraud disc.

Face Vertices Coordinates
F (J, J−1) p12, p23, p31 Im (z1e

iφ) = Im (w1e
−iφ) = 0 G

F (J, P ) p1, p31, p12 Im (z1e
iφ) = Im (z1) = 0 S

F (J,R1) p1, p31, p23 Im (z1e
iφ) = Im (z2) = 0 M

F (J,R−1
1 ) p1, p12, p23 Im (z1e

iφ) = Im (z2e
−iθ) = 0 M

F (J−1, P−1) p2, p12, p23 Im (w1e
−iφ) = Im (w1) = 0 S

F (J−1, R2) p2, p31, p12 Im (w1e
−iφ) = Im (w2) = 0 M

F (J−1, R−1
2 ) p2, p31, p23 Im (w1e

−iφ) = Im (w2e
−iθ) = 0 M

F (P,R1) p1, p31, p231 Im (z1) = Im (z2) = 0 M
F (P,R−1

1 ) p1, p12, p231 Im (z1) = Im (z2e
−iθ) = 0 M

F (P,R2) p12, p31, p231 Im (z1) = Im (w2) = 0 G
F (P−1, R−1

1 ) p12, p23, p231 Im (w1) = Im (z2e
−iθ) = 0 G

F (P−1, R2) p2, p12, p231 Im (w1) = Im (w2) = 0 M
F (P−1, R−1

2 ) p2, p23, p231 Im (w1) = Im (w2e
−iθ) = 0 M

F (R1, R
−1
1 ) p1, p23, p231 Im (z2) = Im (z2e

−iθ) = 0 S
F (R1, R

−1
2 ) p23, p31, p231 Im (z2) = Im (w2e

−iθ) = 0 G
F (R2, R

−1
2 ) p2, p31, p231 Im (w2) = Im (w2e

−iθ) = 0 S

4.5 Other facets of D

We have discussed the vertices and faces of D, that is the facets of dimension
0 and 2. In this section we discuss the rest of the facets of D. Figure 10
shows that sides of D. We begin with the edges, that is facets of dimension
1. We refer to the edge joining vertices pa and pb as γ(a, b).

Proposition 4.8 Each edge γ(a, b) of D is a geodesic segment joining a
pair of the vertices pa and pb.

Proof: Each edge will be contained in either three or four of the faces
listed in the previous section. We refer to faces contained in a common
slice, a common meridian or a Giraud disc as S-faces, M-faces or G-faces
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respectively. We now list the edges together with the faces containing them.

Edge S-face M-face M-face G-face G-face
γ(1, 12) F (J, P ) F (J,R−1

1 ) F (P,R−1
1 )

γ(1, 23) F (R1, R
−1
1 ) F (J,R1) F (J,R−1

1 )
γ(1, 31) F (J, P ) F (J,R1) F (P,R1)
γ(1, 231) F (R1, R

−1
1 ) F (P,R1) F (P,R−1

1 )
γ(2, 12) F (J−1, P−1) F (J−1, R2) F (P−1, R2)
γ(2, 23) F (J−1, P−1) F (J−1, R−1

2 ) F (P−1, R−1
2 )

γ(2, 31) F (R2, R
−1
2 ) F (J−1, R2) F (J−1, R−1

2 )
γ(2, 231) F (R2, R

−1
2 ) F (P−1, R2) F (P−1, R−1

2 )
γ(231, 12) F (P,R−1

1 ) F (P−1, R2) F (P,R2) F (P−1R−1
1 )

γ(231, 23) F (R1, R
−1
1 ) F (P−1, R−1

2 ) F (P−1R−1
1 ) F (R1, R

−1
2 )

γ(231, 31) F (R2, R
−1
2 ) F (P,R1) F (P,R2) F (R1, R

−1
2 )

γ(12, 23) F (J−1, P−1) F (J,R−1
1 ) F (J, J−1) F (P−1, R−1

1 )
γ(23, 31) F (J,R1) F (J−1, R−1

2 ) F (J, J−1) F (R1, R
−1
2 )

γ(31, 12) F (J, P ) F (J−1, R2) F (J, J−1) F (P,R2)

For each edge, at least two of these faces are totally geodesic, that is they
are contained in a complex line or Lagrangian plane. This means that the
edge is a geodesic segment. In particular:

(1) Each edge ending at either p1 or p2 is on one S-face and two M-faces.
Moreover, the two M-faces are contained in meridians of the same
bisector. Therefore this edge is a geodesic segment contained in the
spine of this bisector.

(2) Each edge of the other edges is in two G-faces and either in two M-faces
or an S-face and an M-face.

This completes the proof. 2

Let S(X) denote the side (that is codimension 1 facet) of D contained
in the bisector B(X). A consequence of the analysis we have done is:

Proposition 4.9 Each side S(X) of D is a 3-simplex (solid tetrahedron)
contained in the bisector B(X). It has one face contained in a slice of B(X)
and two faces contained in meridians of B(X), intersecting in an arc of the
spine σ(X). The fourth face is contained in a Giraud disc.

We also have a proposition describing the faces more precisely:
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Proposition 4.10 Each face F (X,Y ) of D is a 2-simplex (solid triangle)
homeomorphic to an open disc in R2 and the boundary of F (X,Y ) is made
up of three geodesic segments joining the vertices.

5 Proof that D is a fundamental Polyhedron for
the Group

5.1 Introduction

In this section we show that the group Γ generated by R1, R2 and A1 is
discrete group with fundamental polyhedron D. To do so, we use Poincaré’s
polyhedron theorem. For accounts of Poincaré’s polyhedron theorem see
Parker [10] or Mostow [8]. An account of Poincaré’s theorem in the constant
curvature setting is given by Epstein and Petronio [4]. Our proof is based on
Parker’s proof of a similar result for Livné’s lattices. Full details are given
in Boadi’s thesis [1]. We will indicate how the proof goes but we do not give
full details.

Our main theorem is

Theorem 5.1 Let R1, R2, P and J be given by (4), (5), (8) and (9) re-
spectively. The subgroup Γ of PU(H) generated by these maps is discrete
and the polyhedron D constructed in Section 4 is a fundamental polyhedron
for Γ. Moreover, Γ has the following presentation:

Γ =
〈
J, P,R1, R2 :

J3 = Rp1 = Rp2 = (P−1J)k = I,
R2 = PR1P

−1 = JR1J
−1, P = R1R2

〉
(17)

where the values of p and k are given by:

p 3 3 3 4 4 5 5 6 6
k 4 5 6 3 4 2 3 2 3

We remark that, since P = R1R2 and J = R1R2A1 the group Γ is the
same as 〈R1, R2, A1〉. Substituting this into the presentation (17) gives:

Γ =
〈
R1, R2, A1 :

Rp1 = Rp2 = Ak1 = (R1R2A1)3 = I,
R1R2R1 = R2R1R2, R1A1 = A1R1

〉
.

5.2 The side pairing maps

There are eight sides of D, namely S(J±1), S(P±1), S(R±1
1 ) and S(R±1

2 ) as
constructed in Section 4. These sides are paired by the maps J , P , R1 and
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R2 as described in the following proposition. Recall that D, as defined in
(16), is an open polyhedron. We use the convention that that sides, faces,
edges and vertices are closed sets.

Proposition 5.2 Let X be one of J±1, P±1, R±1
1 or R±1

2 . Then:

(i) X sends S(X) bijectively to S(X−1) sending vertices, edges and faces
to vertices, edges and faces respectively.

(ii) X−1(D) ∩D = ∅ and X−1(D) ∩D = S(X).

Proof: For each X the side S(X) is contained in a bisector B(X). By
the construction of B(X) in Section 4, for each X there are vertices pa and
pb so that pa is not on B(X) and B(X) is equidistant from pa and X−1(pb).
Moreover, D is contained in the half-space closer to pa than to X−1(pb).

Applying X we see that X
(
B(X)

)
is equidistant from X(pa) and pb.

In other words, X
(
p(X)

)
= B(X−1). Moreover X(D) is contained in the

halfspace closer to X(pa) than to pb. This is the opposite halfspace to D.
Thus X(D) ∩D = ∅ and X(D) ∩D ⊂ B(X−1).

The rest of the proposition follows from the fact that D∩B(X) = S(X),
which comes out of our construction. 2

This proposition verifies the side pairing conditions (S.1), (S.2), (S.3)
and (S.4) of Poincaré’s theorem as given in Section 4.1 of Parker [10]. The
condition (S.5) is obvious and (S.6) is vacuous in this case.

5.3 Face cycles

For each face F (X,Y −1) = S(X) ∩ S(Y −1) we construct an element of Γ
called a cycle transformation as follows. Let X = X1. We know from
Proposition 5.2 that X = X1 sends faces of S(X1) to faces of S(X−1

1 ).
Suppose that X1

(
F (X1, Y

−1)
)

= F (X2, X
−1
1 ) = S(X2) ∩ S(X−1

1 ), a face of
S(X−1

1 ). We can repeat this process, and consider X2

(
F (X2, X

−1
1 )
)
, a face

F (X3, X
−1
2 ) of S(X−1

2 ). Eventually, we will find an n so that Xn = Y and
Y
(
F (Y,X−1

n−1)
)

= F (X,Y −1), the first face we considered. In other words
we have

F (X1, X
−1
n ) X1−→ F (X2, X

−1
1 ) X2−→ · · · Xn−1−→ F (Xn, Xn−1) Xn−→ F (X1, X

−1
n ).

The collection of faces F (Xi, X
−1
i−1), for i = 1 to n with X0 = Xn, is called

the face cycle associated to F (X1, X
−1
n ) = F (X,Y −1) and the composition

T = Xn ◦ · · · ◦ X2 ◦ X1 is called the cycle transformation associated to
F (X,Y −1).
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Proposition 5.3 For each face F (X1, X
−1
n ) with cycle transformation T =

Xn ◦ · · · ◦X2 ◦X1:

(i) There is an integer ` so that the restriction of T ` to F (X1, X
−1
n ) is the

identity.

(ii) There is an integer m so that T `m = (T `)m is the identity on the whole
space.

(iii) For i = 0, . . . , n − 1 and j = 0, . . . , `m − 1 the images T−j ◦X−1
1 ◦

· · · ◦ X−1
i (D) are disjoint. (Here i = 0 means the identity and so

T−j ◦X−1
1 ◦ · · · ◦X−1

i (D) = D when i = j = 0.)

(iv) The union over i = 0, . . . , n− 1 and j = 0, . . . , `m− 1⋃
i,j

T−j ◦X−1
1 ◦ · · · ◦X−1

i (D)

covers a neighbourhood of the interior of F (X1, X
−1
n ).

Proof: We list the face cycles and the cycle transformation associated
to the first face in the cycle and the integers l and m.

Face cycle Transformation ` m

F (J, J−1) J 3 1
F (J, P ) F (P−1, J−1) P−1J 1 k

F (J,R1) F (R2, J
−1) F (J−1, R−1

2 ) F (R−1
1 , J) R−1

1 J−1R2J 1 1
F (P,R1) F (R2, P

−1) F (P−1, R−1
2 ) F (R−1

1 , P ) R−1
1 P−1R2P 1 1

F (R1, R
−1
1 ) R1 1 p

F (R2, R
−1
2 ) R2 1 p

F (R1, R
−1
2 ) F (P−1, R−1

1 ) F (R2, P ) R2P
−1R1 1 1

This proves (i) and (ii). We now prove (iii) and (iv) in the cases where
F (X1, X

−1
n ) is contained in a Giraud disc, a slice and a meridian. We do a

single example in each case.
First consider faces contained in Giraud discs. We will give the details

for the face F (J, J−1). It is defined by∣∣〈p, p231〉
∣∣ =

∣∣〈p, J−1(p231)〉
∣∣ =

∣∣〈p, J(p231〉
∣∣.

There are three sectors around this face, each where one of these quantities
is smallest. First, using Corollary 4.2, D is contained in the sector with∣∣〈p, p231〉

∣∣ < ∣∣〈p, J−1(p231)〉
∣∣, ∣∣〈p, p231〉

∣∣ < ∣∣〈p, J(p231)〉
∣∣.
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Thus J(D) is contained in the sector where∣∣〈p, J(p231)〉
∣∣ < ∣∣〈p, p231〉

∣∣, ∣∣〈p, J(p231)〉
∣∣ < ∣∣〈p, J2(p231)〉

∣∣.
As J has order 3 we see that J2 = J−1. Likewise J−1(D) is contained in
the sector where∣∣〈p, J−1(p231)〉

∣∣ < ∣∣〈p, J(p231)〉
∣∣, ∣∣〈p, J−1(p231)〉

∣∣ < ∣∣〈p, p231〉
∣∣.

It is easy to see that these three sectors are disjoint and that their clo-
sures cover a neighbourhood of B(J) ∩ B(J−1). Adding the extra inequal-
ities defining the boundary of F (J, J−1), we see that D, J(D) and J−1(D)
cover a neighbourhood of the interior of F (J, J−1). This works because
p231 is the intersection of the complex spines Σ(J) and Σ(J−1) of B(J) and
B(J−1). For the other faces in Giraud discs we must modify the inequalities
in Corollary 4.2 accordingly.

Now consider the face F (J, P ) contained in the complex line z1 = 0. The
polyhedron D is contained in the sector where arg(z1) ∈ (−φ, 0). Also note
that D is contained in the sector 0 < arg(w1) < φ. since w = P−1(z), we see
P−1(D) is contained in the sector arg(z1) < (0, φ). Since P−1J = A1, which
multiplies z1 by e2iφ we see that J−1(D) = (P−1J)−1P−1(D) is contained
in the sector with arg(z1) < (−2φ,−φ). Continuing in this way we see see:

Image of D Sector containing arg(z1)
(P−1J)−j(D) (−2j − 1)φ < arg(z1) < −2jφ
(P−1J)−jJ−1(D) (−2j − 2)φ < arg(z1) < (−2j − 1)φ

Since φ = 2π/k, clearly these sectors are disjoint and the union as j varies
from 0 to k − 1 of their closures covers a neighbourhood of B(J) ∩ B(P ).
Adding in the other inequalities shows that a neighbourhood of the interior
of F (J, P ) is covered by

k−1⋃
j=0

(
(P−1J)−j(D) ∪ (P−1J)−jJ−1(D)

)
.

Now consider the face F (J,R1) contained in the Lagrangian plane where
Im (z1e

iφ) = 0 and Im (z2) = 0. Similar arguments to those given above show
that D is contained in the quadrant where Im (z1e

iφ) > 0 and Im (z2) > 0;
J−1(D) is contained in the quadrant where Im (z1e

iφ) < 0 and Im (z2) > 0;
J−1R−1

2 (D) is contained in the quadrant where Im (z1e
iφ) < 0 and Im (z2) <

0 and J−1R−1
2 J(D) is contained in the quadrant where Im (z1e

iφ) > 0 and
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Im (z2) < 0. Arguing as above, we see that these images of D are disjoint
and their closures cover a neighbourhood of the interior of F (J,R1). 2

Therefore we have proved the face conditions (F.1), which was done in
Proposition 4.10, (F.2) and (F.3) given in Section 4.1 of Parker [10].

We also have to be careful in the case where one of the vertices is on
the ideal boundary. In this case, we must show that there is a consistent
horosphere about this point; see Epstein and Petronio [4]. (This was not
necessary for the groups considered in [10] as the lattices were cocompact.)
In other words, there is a horoshpere based at this point that is preserved
under its stabiliser and mapped off itself by all other group elements. Since
we have finitely many faces, it will suffice to show that when a point is on
the boundary, its stabiliser is generated by elliptic maps.

(1) It is clear that p1 and p2 are never on the ideal boundary.

(2) The vertex p231 is on the ideal boundary exactly when θ = 2π/p = π/3
and so p = 6. The stabiliser of p231 is generated by R1 and R2. Since
these maps are elliptic they preserve all horospheres centred at p231.

(3) The vertices p12, p23 and p31 lie on the ideal boundary exactly when
θ+ 2φ = 2π/p+ 2π/k = π and so (p, k) is one of (3, 6), (4, 4) or (6, 3).
The stabiliser of p31 is generated by R2 and A1. Since these maps are
elliptic they preserve all horospheres centred at p231.

We have verified the hypotheses of Poincaré’s polyhedron theorem. Therefore
the group generated by the side pairing transformations J , P , R1 and R2 is
discrete, D is a fundamental polyhedron and the relations are generated by
the cycle relations T `m = I for each face F (X,Y −1) (there are no reflection
relations in this case). Therefore the relations are generated by

J3 = (P−1J)k = R−1
1 J−1R2J = R−1

1 P−1R2P = Rp1 = Rp2 = R2P
−1R1 = I.

It is clear that these may be rewritten to give the relations in (17). Therefore
we have proved Theorem 5.1.
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Figure 10: The side pairing maps. The solid lines denote edges in the spine
of the relevant bisector.
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