Minimal mutation-infinite quivers

John Lawson

Durham University

Workshop on Cluster Algebras
and finite dimensional algebras
Introduction

Mutations on quivers studied following the introduction of cluster algebras by Fomin and Zelevinsky in 2002.

This work follows:

★ Classification of minimal infinite-type diagrams by Seven published in 2007
★ Classification of mutation-finite quivers by Felikson, Shapiro and Tumarkin published in 2012
Quivers

directed (multi-)graphs with no loops or 2-cycles
Adjacency matrix
\[A = (a_{i,j}) \text{ where } a_{i,j} = \#(i \rightarrow j) - \#(j \rightarrow i) \]
Mutations

Mutation is a function on the quiver which acts at a vertex k through 3 steps:

1. For each pair of arrows $i \to k \to j$ add an arrow $i \to j$.
2. Reverse direction of arrows adjacent to k.
3. Remove any 2-cycles created in step (1).
Mutation examples
mutate at top vertex
Mutations are involutions.
Mutation at vertex k takes an adjacency matrix $B = (b_{i,j})$ to $B' = (b'_{i,j})$ where

$$b'_{i,j} = \begin{cases}
-b_{i,j} & \text{if } i = k \text{ or } j = k \\
 b_{i,j} + \frac{|b_{i,k}b_{k,j} + b_{i,k}b_{k,j}|}{2} & \text{otherwise}
\end{cases}$$
Mutation-equivalent
if there is a sequence of mutations
Mutation-finite
or conversely mutation-infinite
Partial ordering
on mutation-infinite quivers given by inclusion
Minimal mutation-infinite quivers
Mutations do not preserve
minimal mutation-infinite property
Any quiver containing a minimal mutation-infinite subquiver is necessarily mutation-infinite.

A complete classification would give a systematic approach to check whether any given quiver is mutation-infinite or not.
Ahmet Seven’s classification
of minimal infinite-type diagrams

Seven classified all the infinite-type diagrams such that removing a vertex yielded a finite-type diagram.
In their paper on classifying mutation-finite quivers, FST proved that there were no minimal mutation-infinite quivers with more than 10 vertices.
Distinguished family of minimal mutation-infinite quivers which are orientations of simply-laced Coxeter diagrams of hyperbolic Coxeter simplices.
Coxeter simplex
convex hull of $n + 1$ points

Considered inside spherical, Euclidean or hyperbolic space.

$n + 1$ hyper-planes H_i with dihedral angles $\frac{\pi}{k_{ij}}$ (or possibly 0) between H_i and H_j.
Coxeter diagram
from simplex bounded by H_i with angles $\frac{\pi}{k_{ij}}$

* vertex i for each H_i
* edge $i - j$ with no weight when $k_{ij} = 3$
* edge $i - j$ with weight k_{ij} when $k_{ij} > 3$
A Coxeter group can be constructed from a Coxeter diagram through the following presentation

\[\langle s_i \mid s_i^2 = 1 = (s_i s_j)^{k_{ij}} \rangle. \]
Simply-laced Coxeter diagram
only have $k_{ij} = 2$ or 3

Coxeter diagram with no weighted edges.

Choosing an orientation of the edges gives a quiver.
Simply-laced Spherical Coxeter diagrams are Dynkin diagrams of type A, D or E.

- A_n: \[\bullet \quad \bullet \quad \cdots \quad \bullet \quad \quad \underset{n}{\bullet} \quad \bullet \ \bullet \]
- D_n: \[\bullet \quad \bullet \quad \cdots \quad \bullet \quad \underset{n-2}{\bullet} \quad \bullet \]
- E_6: \[\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \]
- E_7: \[\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \]
- E_8: \[\bullet \quad \bullet \]

n, $n - 2$.
Simply-laced Euclidean Coxeter diagrams are affine Dynkin diagrams of type \tilde{A}, \tilde{D} or \tilde{E}.

\tilde{A}_n: \[
\begin{array}{c}
\dot{\bullet} \\
\bullet \quad \bullet \quad \ldots \quad \bullet \\
\bullet
\end{array}
\]

\tilde{D}_n: \[
\begin{array}{c}
\dot{\bullet} \\
\bullet \quad \bullet \quad \ldots \quad \bullet \\
\bullet \quad \bullet \quad \ldots \quad \bullet
\end{array}
\]

\tilde{E}_6: \[
\begin{array}{c}
\bullet \\
\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \\
\bullet
\end{array}
\]

\tilde{E}_7: \[
\begin{array}{c}
\bullet \\
\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet
\end{array}
\]

\tilde{E}_8: \[
\begin{array}{c}
\bullet \\
\bullet \quad \bullet
\end{array}
\]
Simply-laced Hyperbolic Coxeter simplices give diagrams satisfying:

* any subdiagram is either a Dynkin diagram or an affine Dynkin diagram, but the diagram itself is not.
Felikson, Shapiro and Tumarkin classified all mutation-finite quivers - (almost all) orientations of simply-laced Hyperbolic Coxeter diagrams do not lie in this classification.
Mutation-finite orientations
of hyperbolic Coxeter diagrams
Orientations of simply-laced Hyperbolic Coxeter diagrams are \textit{minimal} mutation-infinite quivers.

Orientations of Dynkin diagrams and affine Dynkin diagrams are mutation-finite.

Orientations of simply-laced Hyperbolic Coxeter diagrams are mutation-infinite.
Are these all?
Are these all?

For minimal mutation-infinite quivers with 4 and 5 vertices:

Yes
Patterns among the quivers
Moves
replace a subquiver while staying minimal mutation-infinite
Another example
and many more
A sink-source mutation does not affect the underlying unoriented graph of a quiver and does not change the mutation class of any subquivers.
Any minimal mutation-infinite quiver can be transformed through sink source mutations and at most 10 moves to either

★ a hyperbolic Coxeter simplex diagram
★ a double arrow quiver
★ an exceptional quiver
Any minimal mutation-infinite quiver can be transformed through sink-source mutations and at most 5 moves to either

★ a hyperbolic Coxeter simplex diagram
★ a double arrow quiver
★ an exceptional quiver
Double arrow quivers
Exceptional cases
Hyperbolic Coxeter diagrams
Any minimal mutation-infinite quiver can be transformed through sink source mutations and at most 10 moves to either

★ a hyperbolic Coxeter simplex diagram
★ a double arrow quiver
★ an exceptional quiver