LOCAL DEFORMATION RINGS FOR 2-ADIC REPRESENTATIONS OF $G_{\mathbb{Q}_{l}}, l \neq 2$.

JACK SHOTTON

Let l and p be distinct primes. Let L / \mathbb{Q}_{p} be a finite extension with ring of integers \mathcal{O}, uniformiser ϖ and residue field k. Let F / \mathbb{Q}_{l} be a finite extension with absolute Galois group G_{F}, inertia group I_{F}, and wild inertia group P_{F}. Let \tilde{P}_{F} be the kernel of the maximal pro-l quotient of I_{F}. Let q be the order of the residue field of F. We assume that L contains all $\left(q^{2}-1\right)$ th roots of unity. Choose a pro-generator σ of I_{F} / \tilde{P}_{F} and $\phi \in G_{F} / \tilde{P}_{F}$ lifting the arithmetic Frobenius element of G_{F} / I_{F}. Then we have the relation

$$
\begin{equation*}
\phi \sigma \phi^{-1}=\sigma^{q} \tag{1}
\end{equation*}
$$

If $\bar{\rho}: G_{F} \rightarrow G L_{2}(k)$ is a continuous homomorphism, let $R_{\bar{\rho}}^{\square}$ be the universal framed deformation ring for $\bar{\rho}$ parametrising lifts with coefficients in \mathcal{O}-algebras. By [Sho16a] Theorem 2.5, $R_{\bar{\rho}}^{\square}$ is a reduced, \mathcal{O}-flat complete intersection ring of relative dimension 4 over \mathcal{O}.

If $\tau: I_{F} \rightarrow G L_{2}(L)$ is a continuous semisimple representation that extends to G_{F}, let $R_{\bar{\rho}}^{\square}(\tau)$ be the maximal reduced, p-torsion free quotient of $R_{\bar{\rho}}^{\square}$ such that, for every \mathcal{O}-algebra homomorphism $x: R_{\bar{\rho}}^{\square} \rightarrow \bar{L}$, the corresponding representation $\rho_{x}: G_{F} \rightarrow G L_{2}(\bar{L})$ satisfies $\left(\left.\rho_{x}\right|_{I_{F}}\right)^{s s} \cong \tau$.

The goal of this appendix is to prove:
Theorem 0.1. For any $\bar{\rho}$ and τ as above, the ring $R_{\bar{\rho}}^{\square}(\tau)$ is either Cohen-Macaulay or zero.

If $p>2$, then this is the content of section 5.5 of [Sho16b]. If $p=2$ and $\left.\bar{\rho}\right|_{\tilde{P}_{F}}$ is non-scalar, then the proof of proposition 5.1 of [Sho16b] shows that $R_{\bar{\rho}}^{\square}$ is a completed tensor product of deformation rings of characters, all of whose irreducible components are formally smooth, and that $R_{\bar{\rho}}^{\square}(\tau)$ is an irreducible component of $R_{\bar{\rho}}^{\square}$; thus $R_{\bar{\rho}}^{\square}(\tau)$ is formally smooth in this case. From now on, then, we assume that $p=2$ and that $\left.\bar{\rho}\right|_{\tilde{P}_{F}}$ is scalar; by twisting, we may and do assume that $\left.\bar{\rho}\right|_{\tilde{P}_{F}}$ is trivial. In this case, we may list the semisimple inertial types τ for which $R_{\bar{\rho}}^{\square}(\tau)$ may be non-zero. They are determined by the eigenvalues of $\tau(\sigma)$, which must be of 2-power order and either fixed or interchanged by raising to the power q. Writing $a=v_{2}(q-1)$ and $b=v_{2}\left(q^{2}-1\right)$, if $R_{\bar{\rho}}^{\square}(\tau)$ is non-zero then either

- $\tau=\tau_{\zeta}$ is the inertial type in which the eigenvalues of $\tau(\sigma)$ are both equal to an 2^{a} th root of unity, ζ;
- $\tau=\tau_{\zeta_{1}, \zeta_{2}}$ is the inertial type in which the eigenvalues of $\tau(\sigma)$ are equal to distinct 2^{a} th roots of unity ζ_{1} and ζ_{2};
- $\tau=\tau_{\xi}$ is the inertial type in which the eigenvalues of $\tau(\sigma)$ are equal to ξ and ξ^{q} for ξ an 2^{b} th root of unity with $\xi \neq \xi^{q}$ (equivalently, with ξ not an 2^{a} th root of unity).

We also give a version with fixed determinant:
Corollary 0.2. If ψ is any lift of $\operatorname{det} \bar{\rho}$ to \mathcal{O}^{\times}such that $\left.\psi\right|_{I_{F}}=\operatorname{det} \tau$, let $R_{\bar{\rho}}^{\square, \psi}(\tau)$ be the universal framed deformation ring with determinant ψ and type τ. Then $R_{\bar{\rho}}^{\square, \psi}(\tau)$ is Cohen-Macaulay.

Proof. By Theorem 0.1, $R_{\bar{\rho}}^{\square}(\tau)$ is Cohen-Macaulay. If we impose a single equation additional $\operatorname{det} \rho(\phi)=\psi(\phi)$, then the ring will still be Cohen-Macaulay provided that $\operatorname{det} \rho(\phi)-\psi(\phi)$ is a non-zerodivisor - in other words, that it doesn't vanish on any irreducible components of $\operatorname{Spec} R_{\bar{\rho}}^{\square}(\tau)$. This is the case, since the action of \mathbb{G}_{m}^{\wedge} on Spec $R_{\bar{\rho}}^{\square}(\tau)$ given by making unramified twists preserves irreducible components but varies the determinant.

Let \mathcal{X} be the affine \mathcal{O}-scheme whose R points, for an \mathcal{O}-algebra R, are pairs

$$
\left\{(\Sigma, \Phi) \in G L_{2}(R) \times G L_{2}(R): \Phi \Sigma=\Sigma^{q} \Phi\right\}
$$

Then \mathcal{X} is a reduced, \mathcal{O}-flat complete intersection of relative dimension 4 over $\operatorname{Spec} \mathcal{O}$ by the proof of Theorem 2.5 of [Sho16a]. Let \mathcal{A} be the coordinate ring of \mathcal{X}. We write $\Sigma=\left(\begin{array}{cc}1+A & B \\ C & 1+D\end{array}\right)$ and $\Phi=\left(\begin{array}{cc}P & Q \\ R & T-P\end{array}\right)$, so that \mathcal{A} is a quotient of

$$
\mathcal{S}=\mathcal{O}[A, B, C, D, P, Q, R, T]\left[(\operatorname{det} \Sigma)^{-1},(\operatorname{det} \Phi)^{-1}\right]
$$

For any continuous $\bar{\rho}: G_{F} \rightarrow G L_{2}(k)$, the pair of matrices $\bar{\rho}(\sigma)$ and $\bar{\rho}(\phi)$ give rise to a closed point of \mathcal{X}, and so a maximal ideal \mathfrak{m} of \mathcal{A}. Then $R_{\bar{\rho}}^{\square}=\mathcal{A}_{\mathfrak{m}}^{\wedge}$. If \mathcal{C} is a conjugacy class in $G L_{2}(\bar{L})$, then there is a unique irreducible component of \mathcal{X} such that, for a dense set of geometric points of that component, the corresponding matrix Σ has conjugacy class \mathcal{C}. This provides a bijection between the irreducible components of \mathcal{X} and the conjugacy classes of $G L_{2}(\bar{L})$ that are preserved under the q-power map (by [Sho16a] Proposition 2.6). If τ is one of the above inertial types then we write $\mathcal{X}(\tau)$ for the union of those irreducible components corresponding to conjugacy classes with the same characteristic polynomial as $\tau(\sigma)$, with the reduced subscheme structure, and $\mathcal{A}(\tau)$ for its coordinate ring. Note that, since \mathcal{X} is \mathcal{O}-flat and $\mathcal{X}(\tau)$ is an irreducible component of $\mathcal{X}, \mathcal{X}(\tau)$ is also \mathcal{O}-flat, so that $\mathcal{A}(\tau)$ is ϖ-torsion free.

Lemma 0.3. If $\tau=\tau_{\zeta}, \tau_{\zeta_{1}, \zeta_{2}}$, or τ_{ξ}, then $\mathcal{A}(\tau)_{\mathfrak{m}}^{\wedge}=R_{\bar{\rho}}^{\square}(\tau)$.
Proof. Since \mathcal{A} is \mathcal{O}-flat and $\mathcal{A}(\tau)$ is the quotient of \mathcal{A} by an intersection of minimal prime ideals, it is also \mathcal{O}-flat. Thus $\mathcal{A}(\tau)_{\mathfrak{m}}^{\wedge}$ is also \mathcal{O}-flat, by flatness of localisation and completion. Since $\mathcal{A}(\tau)$ is of finite type over a DVR it is Nagata by [Sta17, Tag 0335]. Since $\mathcal{A}(\tau)$ is reduced, the completion $\mathcal{A}(\tau)_{\mathfrak{m}}^{\wedge}$ is also reduced by [Sta17, Tag $07 \mathrm{NZ}]$. The composite map $\mathcal{A} \rightarrow R_{\bar{\rho}}^{\square} \rightarrow R_{\bar{\rho}}^{\square}(\tau)$ factors through a map $\mathcal{A}(\tau) \rightarrow$ $R_{\bar{\rho}}^{\square}(\tau)$, since any function in \mathcal{A} that vanishes on all \bar{L}-points of type τ must vanish in $R_{\bar{\rho}}^{\square}(\tau)$ by definition. Thus we get a surjection $\mathcal{A}(\tau)_{\mathfrak{m}}^{\wedge}=\mathcal{A}(\tau) \otimes_{\mathcal{A}} R_{\bar{\rho}}^{\square} \rightarrow R_{\bar{\rho}}^{\square}(\tau)$. However, since $\mathcal{A}(\tau)_{\mathfrak{m}}^{\wedge}$ is reduced and \mathcal{O}-torsion free, and has the property that every \bar{L}-point gives a Galois representation of type τ, this map is an isomorphism by the definition of $R_{\bar{\rho}}^{\square}(\tau)$.

Let $\overline{\mathcal{S}}=\mathcal{S} \otimes_{\mathcal{O}} k, \overline{\mathcal{A}}=\mathcal{A} \otimes_{\mathcal{O}} k$, and $\overline{\mathcal{X}}=\operatorname{Spec} \overline{\mathcal{A}}$. Then the irreducible components of $\overline{\mathcal{X}}$ are in bijection with the conjugacy classes of $G L_{2}(\bar{k})$ that are stable under the
q-power map (again by [Sho16a] Proposition 2.6). Let $\overline{\mathcal{X}}_{1}$ be the irreducible component corresponding to the trivial conjugacy class - this is just the locus where $\Sigma=1$ - and let $\overline{\mathcal{X}}_{N}$ be that corresponding to the non-trivial unipotent conjugacy class (we give the irreducible components the reduced subscheme structure). Let I_{1} and I_{N} be the prime ideals of $\overline{\mathcal{S}}$ cutting out $\overline{\mathcal{X}}_{1}$ and $\overline{\mathcal{X}}_{N}$; these correspond to minimal primes of $\overline{\mathcal{A}}$. If τ is one of the above inertial types, then we write $I(\tau)$ for the ideal of $\overline{\mathcal{S}}$ cutting out $\mathcal{A}(\tau) \otimes_{\mathcal{O}} k$.

Lemma 0.4. The ideals I_{1} and I_{N} have generators

$$
\begin{aligned}
I_{1} & =(A, B, C, D) \\
I_{N} & =\left(A^{2}+B C, C Q+B R, T, A+D\right)
\end{aligned}
$$

Proof. The presentation for I_{1} is obvious. For I_{N}, the condition that Σ is unipotent gives $A+D \in I_{N}$ and $A^{2}+B C \in I_{N}$. If $N=\Sigma-1$, then the relation $\Phi \Sigma=\Sigma^{q} \Phi$ becomes $\Phi N=q N \Phi=N \Phi$ (since we are working mod 2), which implies that $C Q+B R=0$. At any closed point of $\overline{\mathcal{X}}_{N}$ where $N \neq 0$, the eigenvalues of Φ must be in the ratio $1: q=1: 1$, and so $T=0$. As such closed points are dense on $\overline{\mathcal{X}}_{N}$, we see that $T \in I_{N}$. Therefore

$$
\left(A^{2}+B C, C Q+B R, T, A+D\right) \subset I_{N}
$$

The ideal $I=\left(A^{2}+B C, C Q+B R, T, A+D\right)$ is prime of dimension 4 ; indeed, \mathcal{S} / I is isomorphic to a localisation of

$$
\frac{k[A, B, C]}{\left(A^{2}+B C\right)}[P, Q, R] /(C Q+B R)
$$

which is easily seen to be a 4 -dimensional domain. Thus $I \subset I_{N}$ are prime ideals of $\overline{\mathcal{S}}$ of the same dimension, and so must be equal.

Proposition 0.5. Let $\tau=\tau_{\xi}$. Then $I(\tau)=I_{N}$.
Proof. Write $\eta=\xi+\xi^{q}-2$. The condition that Σ has characteristic polynomial $(X-\xi)\left(X-\xi^{q}\right)$ shows that, on $\mathcal{X}(\tau)$, we have the equations

$$
\begin{aligned}
A+D & =\eta \\
A(A-\eta)+B C & =\eta
\end{aligned}
$$

Using the first of these, we replace D by $\eta-A$ everywhere. Now, if x is an \bar{L}-point of $\mathcal{X}(\tau)$ corresponding to a pair of matrices $\left(\Sigma_{x}, \Phi_{x}\right)$, then Φ_{x} exchanges the ξ and ξ^{q} eigenspaces of Σ_{x} and so must have trace zero. Therefore on $\mathcal{X}(\tau)$ we have the equation

$$
T=0
$$

Lastly, by the Cayley-Hamilton theorem, and the fact that

$$
X^{q} \equiv \xi+\xi^{q}-X \quad \bmod (X-\xi)\left(X-\xi^{q}\right)
$$

we see that $\Sigma^{q}=\left(\begin{array}{cc}1+\eta-A & -B \\ -C & 1+A\end{array}\right)$ on $\mathcal{X}(\tau)$. Equating matrix entries in the relation $\Phi \Sigma=\Sigma^{q} \Phi$, and noting that $T=0$, we obtain one new equation

$$
(2 A-\eta) P+B R+C Q=0
$$

Thus, letting

$$
J=(A+D, T, A(A-\eta)+B C-\eta,(2 A-\eta) P+B R+C Q)
$$

we obtain a surjection $\mathcal{S} / J \rightarrow \mathcal{A}(\tau)$, and therefore a surjection

$$
\overline{\mathcal{S}} / J \rightarrow \overline{\mathcal{A}}(\tau)
$$

As η is divisible by ϖ, we see that $J+(\varpi)=I_{N}$, and so we have a surjection $\overline{\mathcal{S}} / I_{N} \rightarrow \overline{\mathcal{A}}(\tau)$. This must be an isomorphism since $\overline{\mathcal{S}} / I_{N}$ is a 4-dimensional domain and $\overline{\mathcal{A}}(\tau)$ is a non-zero 4-dimensional ring. Therefore $I_{N}=I(\tau)$ as required.

For the remaining types the following lemmas will be useful. If R is a noetherian ring, \mathfrak{p} is a minimal prime of R, and M is a finitely-generated R-module, let $e_{R}(M, \mathfrak{p})=l_{R_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)$ (this is a special case of the Hilbert-Samuel multiplicity).

Lemma 0.6. Let $f: R \rightarrow S$ be a surjection of equidimensional rings of the same dimension, and suppose that R is $S 1$ and Nagata. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ be the minimal primes of R. Suppose that, for $i=1, \ldots, n$, there is a maximal ideal \mathfrak{m}_{i} of S such that $\mathfrak{p}_{i} \subset \mathfrak{m}_{i}$ but $\mathfrak{p}_{j} \not \subset \mathfrak{m}_{i}$ for $i \neq j$. If, for each i, we have

$$
e_{R}\left(R, \mathfrak{p}_{i}\right) \leq e_{S_{\mathfrak{m}_{i}}}\left(S_{\mathfrak{m}_{i}}^{\wedge}, \mathfrak{q}_{i}\right)
$$

for some minimal prime \mathfrak{q}_{i} of $S_{\mathfrak{m}_{i}}^{\wedge}$, then f is an isomorphism.
Remark 0.7. For those primes \mathfrak{p}_{i} such that $e_{R}\left(R, \mathfrak{p}_{i}\right)=1$ - which is all of them if R is reduced - the required inequality is implied simply by the existence of the \mathfrak{m}_{i}.

Proof. Since R is S1, every associated prime of S is minimal and so, by [Sta17, Tag 0311], it is enough to show that f induces an isomorphism $f_{\mathfrak{p}_{i}}: R_{\mathfrak{p}_{i}} \rightarrow S_{\mathfrak{p}_{i}}$ for each i. Since f is surjective and $R_{\mathfrak{p}_{i}}$ is artinian, it is enough to show that $e_{R}\left(R, \mathfrak{p}_{i}\right) \leq e_{R}\left(S, \mathfrak{p}_{i}\right)$. Let $i \in\{1, \ldots, n\}$. Choose \mathfrak{m}_{i} and \mathfrak{q}_{i} as in the hypotheses of the lemma. It is enough to show that for each i,

$$
e_{R}\left(S, \mathfrak{p}_{i}\right)=e_{S_{\mathfrak{m}_{i}}^{\wedge}}\left(S_{\mathfrak{m}_{i}}^{\wedge}, \mathfrak{q}_{i}\right)
$$

Since \mathfrak{m}_{i} contains a unique minimal prime of R, after localising at \mathfrak{m}_{i} we may assume that $R \rightarrow S$ is a local map of local rings, and that \mathfrak{p}_{i} is the unique minimal prime of R, and drop i from the notation. The hypothesis that R and S are equidimensional of the same dimension implies that $\mathfrak{p} S$ is the unique minimal prime of S, which we also denote by \mathfrak{p}. We have $e_{R}(S, \mathfrak{p})=e_{S}(S, \mathfrak{p})$ since both are just the length of $S_{\mathfrak{p}}$. Since $S \rightarrow S^{\wedge}$ is flat and $S^{\wedge} / \mathfrak{p}=(S / \mathfrak{p})^{\wedge}$ is reduced because R (and hence S) is Nagata, [Sta17, Tag 02M1] implies that $e_{S}(S, \mathfrak{p})=e_{S^{\wedge}}\left(S^{\wedge}, \mathfrak{q}\right)$. So

$$
e_{R}(S, \mathfrak{p})=e_{S}(S, \mathfrak{p})=e_{S^{\wedge}}\left(S^{\wedge}, \mathfrak{q}\right) \geq e_{R}(R, \mathfrak{p})
$$

as required.
The S 1 condition holds, in particular, if R is reduced or Cohen-Macaulay, while the Nagata condition holds if R is of finite type over a field or DVR.

Proposition 0.8. Let $\tau=\tau_{\zeta}$. Then

$$
\begin{aligned}
I(\tau) & =I_{N} \cap I_{1} \\
& =\left(A+D, A T, B T, C T, A^{2}+B C, B R+C Q\right)
\end{aligned}
$$

LOCAL DEFORMATION RINGS FOR 2-ADIC REPRESENTATIONS OF $G_{\mathbb{Q}_{l}}, l \neq 2 . \quad 5$
Proof. For simplicity, we twist so that $\zeta=1$. Write $N=\Sigma-1=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. On $\mathcal{A}(\tau), \Sigma$ has characteristic polynomial $(X-1)^{2}$, and so the equations

$$
\begin{aligned}
A+D & =0 \\
A^{2}+B C & =0
\end{aligned}
$$

hold on $\mathcal{A}(\tau)$. Moreover, since $(\Sigma-1)^{2}=0$ on $\mathcal{A}(\tau)$, by the Cayley-Hamilton theorem we have that $\Sigma^{q}=1+q(\Sigma-1)=1+q N$ on $\mathcal{A}(\tau)$. The equation $\Phi \Sigma=\Sigma^{q} \Phi$ becomes $\Phi N=q N \Phi$, and comparing matrix entries we get equations

$$
\begin{aligned}
q B R-C Q+(q-1) A P & =0 \\
(q+1) Q A+B(q T-(q+1) P) & =0 \\
(q+1) R A+C(T-(q+1) P)) & =0 \\
q C Q-B R+(q-1) A(P-T) & =0 .
\end{aligned}
$$

Summing the first and fourth of these gives $(q-1)(B R+C Q+A(2 P-T))=0$; since $\mathcal{A}(\tau)$ is $(q-1)$-torsion free, we deduce that

$$
B R+C Q+A(2 P-T)=0
$$

in $\mathcal{A}(\tau)$ and can replace the fourth of the above equations by this.
The ideal cutting out $\mathcal{A}(\tau)$ therefore contains the ideal

$$
\begin{array}{r}
J=\left(A+D, A^{2}+B C, q B R-C Q+(q-1) A P,(q+1) Q A+B(q T-(q+1) P)\right. \\
(q+1) R A+C(T-(q+1) P), C Q+B R+A(2 P-T))
\end{array}
$$

Now, the image of J in $\overline{\mathcal{S}}$ is

$$
\left(A+D, A^{2}+B C, B R+C Q, B T, C T, B R+C Q+A T\right)
$$

which is equal to $\left(A+D, A^{2}+B C, B R+C Q\right)+I_{1} \cap(T)=I_{N} \cap I_{1}$. Therefore there is a surjection

$$
f: \overline{\mathcal{S}} /\left(I_{N} \cap I_{1}\right) \rightarrow \overline{\mathcal{A}}(\tau)
$$

Write $\tilde{R}=\overline{\mathcal{S}} /\left(I_{N} \cap I_{1}\right)$. Then \tilde{R} is reduced with two minimal primes, which we also call I_{N} and I_{1}. Let $\rho_{1}: G_{F} \rightarrow G L_{2}(\mathcal{O})$ be diagonal unramified with distinct eigenvalues of Frobenius, and let $\rho_{N}: G_{F} \rightarrow G L_{2}(\mathcal{O})$ send $\sigma \mapsto\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $\phi \mapsto\left(\begin{array}{ll}q & 0 \\ 0 & 1\end{array}\right)$. Let \mathfrak{m}_{1} and \mathfrak{m}_{N} be the corresponding maximal ideals of $\overline{\mathcal{A}}(\tau)$. Then $I_{1} \subset \mathfrak{m}_{1}, I_{N} \not \subset \mathfrak{m}_{1}, I_{1} \not \subset \mathfrak{m}_{N}$ and $I_{N} \subset \mathfrak{m}_{N}$, so f is an isomorphism by the remark following lemma 0.6.

Proposition 0.9. Let $\tau=\tau_{\zeta_{1}, \zeta_{2}}$. Then

$$
I(\tau)=\left(A+D, B T, C T, C Q+B R, A^{2}+B C\right)
$$

Proof. Write $\mu=\zeta_{1}+\zeta_{2}-2$. The condition that Σ has characteristic polynomial $\left(X-\zeta_{1}\right)\left(X-\zeta_{2}\right)$ is equivalent to the equations

$$
\begin{aligned}
A+D & =\mu \\
A(A-\mu)+B C & =\mu
\end{aligned}
$$

As $X^{q} \equiv X \bmod \left(X-\zeta_{1}\right)\left(X-\zeta_{2}\right)$, we have by the Cayley-Hamilton theorem that $\Sigma^{q}=\Sigma$ on $\mathcal{A}(\tau)$. The equation $\Phi \Sigma=\Sigma^{q} \Phi$ therefore becomes $\Phi \Sigma=\Sigma \Phi$, and comparing matrix entries we get three equations (the fourth being redundant):

$$
\begin{aligned}
B R-C Q & =0 \\
Q(2 A-\mu) & =B(2 P-T) \\
R(2 A-\mu) & =C(2 P-T) .
\end{aligned}
$$

Let
$J=(A+D-\mu, A(A-\mu)+B C-\mu, B R-C Q, Q(2 A-\mu)-B(2 P-T), R(2 A-\mu)-C(2 P-T))$.
Let I be the image of J in $\overline{\mathcal{S}}$, so that

$$
I=\left(A+D, B T, C T, C Q+B R, A^{2}+B C\right)
$$

We have shown that there is a surjection $\mathcal{S} / J \rightarrow \mathcal{A}(\tau)$, and therefore there is a surjection $f: \overline{\mathcal{S}} / I \rightarrow \overline{\mathcal{A}}(\tau)$. We have to show that f is an isomorphism. Write $\tilde{R}=\overline{\mathcal{S}} / I$.

Then (see the proof of corollary 0.10 below) $\overline{\mathcal{S}} / I$ is Cohen-Macaulay, with minimal primes I_{1} and I_{N}, and it is easy to see that $e_{\tilde{R}}\left(\tilde{R}, I_{N}\right)=1$ while $e_{\tilde{R}}\left(\tilde{R}, I_{1}\right)=2$.

Let $\rho_{1}: G_{F} \rightarrow G L_{2}(\mathcal{O})$ be diagonal such that the eigenvalues of $\rho_{1}(\sigma)$ are ζ_{1} and ζ_{2}, and the eigenvalues of $\rho_{1}(\phi)$ are distinct modulo ϖ. Let $\rho_{N}: G_{F} \rightarrow G L_{2}(\mathcal{O})$ send $\sigma \mapsto\left(\begin{array}{cc}\zeta_{1} & 1 \\ 0 & \zeta_{2}\end{array}\right)$ and $\phi \mapsto\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$. Let \mathfrak{m}_{1} and \mathfrak{m}_{N} be the corresponding maximal ideals of $\overline{\mathcal{A}}(\tau)$. Then $I_{1} \subset \mathfrak{m}_{1}, I_{N} \not \subset \mathfrak{m}_{1}, I_{1} \not \subset \mathfrak{m}_{N}$ and $I_{N} \subset \mathfrak{m}_{N}$. By [Sho16b] Proposition 5.3, which remains valid when $p=2, R_{\bar{\rho}_{1}}^{\square}(\tau)$ is formally smooth over

$$
\frac{\mathcal{O}[[X-1]]}{\left(X-\zeta_{1}\right)\left(X-\zeta_{2}\right)}
$$

Therefore $R_{\bar{\rho}_{1}}^{\square}(\tau) \otimes k$ has a unique minimal prime \mathfrak{q} and its multiplicity is 2 . By lemmas 0.3 and $0.6, f$ is an isomorphism.

Corollary 0.10. (of propositions $0.5,0.8$ and 0.9) For $\tau=\tau_{\xi}, \tau_{\zeta}$, or $\tau_{\zeta_{1}, \zeta_{2}}, \mathcal{A}(\tau)$ is Cohen-Macaulay.

Proof. Since ϖ is a regular element of $\mathcal{A}(\tau)$, it suffices to prove that $\overline{\mathcal{A}}(\tau)$ is CohenMacaulay. This can easily be checked in magma; we sketch an alternative proof by hand. If $\tau=\tau_{\xi}$, then by proposition $0.5, I(\tau)=I_{N}$. But $\overline{\mathcal{S}} / I_{N}$ is a complete intersection ring of dimension 4, and therefore is Cohen-Macaulay. If $\tau=\tau_{\zeta}$, then by proposition $0.8, I\left(\tau_{\xi}\right)=I_{1} \cap I_{N}$. Now, $\overline{\mathcal{S}} / I_{1}$ and $\overline{\mathcal{S}} / I_{N}$ are Cohen-Macaulay of dimension 4 (the latter by the previous case), while $\overline{\mathcal{S}} /\left(I_{1}+I_{N}\right)$ is regular, and so Cohen-Macaulay, of dimension 3. By exercise 18.13 of [Eis95], $\overline{\mathcal{S}} /\left(I_{1} \cap I_{N}\right)$ is also Cohen-Macaulay. Finally, if $\tau=\tau_{\zeta_{1}, \zeta_{2}}$ then by proposition $0.9, I(\tau)=$ $\left(A+D, A^{2}+B C, B R+C Q, B T, C T\right)$. Let $I=I(\tau)$. Since $I+(A T)=I_{1} \cap I_{N}$ and $A T \cdot I_{1}=0$, there is an exact sequence of $\overline{\mathcal{S}} / I$-modules

$$
\overline{\mathcal{S}} / I_{1} \xrightarrow{A T} \overline{\mathcal{S}} / I \longrightarrow \overline{\mathcal{S}} /\left(I_{1} \cap I_{N}\right) \rightarrow 0
$$

The first map must be injective, since I_{1} is prime and $e_{\overline{\mathcal{S}} / I}\left(\overline{\mathcal{S}} / I, I_{1}\right)=2>1=$ $e_{\overline{\mathcal{S}} / I}\left(\overline{\mathcal{S}} /\left(I_{1} \cap I_{N}\right), I_{1}\right)$. Since we have shown that $\overline{\mathcal{S}} / I_{1}$ and $\overline{\mathcal{S}} /\left(I_{1} \cap I_{N}\right)$ are maximal Cohen-Macaulay modules over $\overline{\mathcal{S}} / I$, so is $\overline{\mathcal{S}} / I$ (by [Yos90] Proposition 1.3).

Since $R_{\bar{\rho}}^{\square}(\tau)$ is a completion of $\mathcal{A}(\tau)$ by lemma 0.3 , and a completion of a CohenMacaulay ring is Cohen-Macaulay (by [Sta17, Tag 07NX]), we obtain Theorem 0.1.

References

[Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.
[Sho16a] Jack Shotton, The Breuil-Mézard conjecture when $l \neq p, 2016$, preprint available at https://arxiv.org/abs/1608.01784.
[Sho16b] Jack Shotton, Local deformation rings for GL_{2} and a Breuil-Mézard conjecture when $\ell \neq p$, Algebra Number Theory 10 (2016), no. 7, 1437-1475. MR 3554238
[Sta17] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2017.
[Yos90] Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937

