LOCAL DEFORMATION RINGS FOR 2-ADIC REPRESENTATIONS OF $G_{\mathbb{Q}_l}$, $l \neq 2$.

JACK SHOTTON

Let l and p be distinct primes. Let L/\mathbb{Q}_p be a finite extension with ring of integers \mathcal{O} , uniformiser ϖ and residue field k. Let F/\mathbb{Q}_l be a finite extension with absolute Galois group G_F , inertia group I_F , and wild inertia group P_F . Let \tilde{P}_F be the kernel of the maximal pro-l quotient of I_F . Let q be the order of the residue field of F. We assume that L contains all $(q^2 - 1)th$ roots of unity. Choose a pro-generator σ of I_F/\tilde{P}_F and $\phi \in G_F/\tilde{P}_F$ lifting the arithmetic Frobenius element of G_F/I_F . Then we have the relation

(1)
$$\phi \sigma \phi^{-1} = \sigma^q.$$

If $\overline{\rho}: G_F \to GL_2(k)$ is a continuous homomorphism, let $R_{\overline{\rho}}^{\Box}$ be the universal framed deformation ring for $\overline{\rho}$ parametrising lifts with coefficients in \mathcal{O} -algebras. By [Sho16a] Theorem 2.5, $R_{\overline{\rho}}^{\Box}$ is a reduced, \mathcal{O} -flat complete intersection ring of relative dimension 4 over \mathcal{O} .

If $\tau : I_F \to GL_2(L)$ is a continuous semisimple representation that extends to G_F , let $R^{\Box}_{\overline{\rho}}(\tau)$ be the maximal reduced, *p*-torsion free quotient of $R^{\Box}_{\overline{\rho}}$ such that, for every \mathcal{O} -algebra homomorphism $x : R^{\Box}_{\overline{\rho}} \to \overline{L}$, the corresponding representation $\rho_x : G_F \to GL_2(\overline{L})$ satisfies $(\rho_x|_{I_F})^{ss} \cong \tau$.

The goal of this appendix is to prove:

Theorem 0.1. For any $\overline{\rho}$ and τ as above, the ring $R^{\Box}_{\overline{\rho}}(\tau)$ is either Cohen–Macaulay or zero.

If p > 2, then this is the content of section 5.5 of [Sho16b]. If p = 2 and $\overline{\rho}|_{\tilde{P}_F}$ is non-scalar, then the proof of proposition 5.1 of [Sho16b] shows that $R_{\overline{\rho}}^{\Box}$ is a completed tensor product of deformation rings of characters, all of whose irreducible components are formally smooth, and that $R_{\overline{\rho}}^{\Box}(\tau)$ is an irreducible component of $R_{\overline{\rho}}^{\Box}$; thus $R_{\overline{\rho}}^{\Box}(\tau)$ is formally smooth in this case. From now on, then, we assume that p = 2 and that $\overline{\rho}|_{\tilde{P}_F}$ is scalar; by twisting, we may and do assume that $\overline{\rho}|_{\tilde{P}_F}$ is trivial. In this case, we may list the semisimple inertial types τ for which $R_{\overline{\rho}}^{\Box}(\tau)$ may be non-zero. They are determined by the eigenvalues of $\tau(\sigma)$, which must be of 2-power order and either fixed or interchanged by raising to the power q. Writing $a = v_2(q-1)$ and $b = v_2(q^2-1)$, if $R_{\overline{\rho}}^{\Box}(\tau)$ is non-zero then either

- $\tau = \tau_{\zeta}$ is the inertial type in which the eigenvalues of $\tau(\sigma)$ are both equal to an 2^{a} th root of unity, ζ ;
- $\tau = \tau_{\zeta_1,\zeta_2}$ is the inertial type in which the eigenvalues of $\tau(\sigma)$ are equal to distinct 2^a th roots of unity ζ_1 and ζ_2 ;
- $\tau = \tau_{\xi}$ is the inertial type in which the eigenvalues of $\tau(\sigma)$ are equal to ξ and ξ^q for ξ an 2^b th root of unity with $\xi \neq \xi^q$ (equivalently, with ξ not an 2^a th root of unity).

JACK SHOTTON

We also give a version with fixed determinant:

Corollary 0.2. If ψ is any lift of det $\overline{\rho}$ to \mathcal{O}^{\times} such that $\psi|_{I_F} = \det \tau$, let $R_{\overline{\rho}}^{\Box,\psi}(\tau)$ be the universal framed deformation ring with determinant ψ and type τ . Then $R_{\overline{\rho}}^{\Box,\psi}(\tau)$ is Cohen–Macaulay.

Proof. By Theorem 0.1, $R_{\overline{\rho}}^{\Box}(\tau)$ is Cohen–Macaulay. If we impose a single equation additional det $\rho(\phi) = \psi(\phi)$, then the ring will still be Cohen–Macaulay provided that det $\rho(\phi) - \psi(\phi)$ is a non-zerodivisor — in other words, that it doesn't vanish on any irreducible components of Spec $R_{\overline{\rho}}^{\Box}(\tau)$. This is the case, since the action of \mathbb{G}_{m}^{\wedge} on Spec $R_{\overline{\rho}}^{\Box}(\tau)$ given by making unramified twists preserves irreducible components but varies the determinant.

Let \mathcal{X} be the affine \mathcal{O} -scheme whose R points, for an \mathcal{O} -algebra R, are pairs

$$\{(\Sigma, \Phi) \in GL_2(R) \times GL_2(R) : \Phi\Sigma = \Sigma^q \Phi\}.$$

Then \mathcal{X} is a reduced, \mathcal{O} -flat complete intersection of relative dimension 4 over Spec \mathcal{O} by the proof of Theorem 2.5 of [Sho16a]. Let \mathcal{A} be the coordinate ring of \mathcal{X} . We write $\Sigma = \begin{pmatrix} 1+A & B \\ C & 1+D \end{pmatrix}$ and $\Phi = \begin{pmatrix} P & Q \\ R & T-P \end{pmatrix}$, so that \mathcal{A} is a quotient of

 $\mathcal{S} = \mathcal{O}[A, B, C, D, P, Q, R, T][(\det \Sigma)^{-1}, (\det \Phi)^{-1}].$

For any continuous $\overline{\rho}: G_F \to GL_2(k)$, the pair of matrices $\overline{\rho}(\sigma)$ and $\overline{\rho}(\phi)$ give rise to a closed point of \mathcal{X} , and so a maximal ideal \mathfrak{m} of \mathcal{A} . Then $R_{\overline{\rho}}^{\Box} = \mathcal{A}_{\mathfrak{m}}^{\wedge}$. If \mathcal{C} is a conjugacy class in $GL_2(\overline{L})$, then there is a unique irreducible component of \mathcal{X} such that, for a dense set of geometric points of that component, the corresponding matrix Σ has conjugacy class \mathcal{C} . This provides a bijection between the irreducible components of \mathcal{X} and the conjugacy classes of $GL_2(\overline{L})$ that are preserved under the q-power map (by [Sho16a] Proposition 2.6). If τ is one of the above inertial types then we write $\mathcal{X}(\tau)$ for the union of those irreducible components corresponding to conjugacy classes with the same characteristic polynomial as $\tau(\sigma)$, with the reduced subscheme structure, and $\mathcal{A}(\tau)$ for its coordinate ring. Note that, since \mathcal{X} is \mathcal{O} -flat and $\mathcal{X}(\tau)$ is an irreducible component of \mathcal{X} , $\mathcal{X}(\tau)$ is also \mathcal{O} -flat, so that $\mathcal{A}(\tau)$ is $\overline{\omega}$ -torsion free.

Lemma 0.3. If $\tau = \tau_{\zeta}, \tau_{\zeta_1,\zeta_2}, \text{ or } \tau_{\xi}, \text{ then } \mathcal{A}(\tau)^{\wedge}_{\mathfrak{m}} = R^{\square}_{\overline{\rho}}(\tau).$

Proof. Since \mathcal{A} is \mathcal{O} -flat and $\mathcal{A}(\tau)$ is the quotient of \mathcal{A} by an intersection of minimal prime ideals, it is also \mathcal{O} -flat. Thus $\mathcal{A}(\tau)^{\wedge}_{\mathfrak{m}}$ is also \mathcal{O} -flat, by flatness of localisation and completion. Since $\mathcal{A}(\tau)$ is of finite type over a DVR it is Nagata by [Sta17, Tag 0335]. Since $\mathcal{A}(\tau)$ is reduced, the completion $\mathcal{A}(\tau)^{\wedge}_{\mathfrak{m}}$ is also reduced by [Sta17, Tag 07NZ]. The composite map $\mathcal{A} \to R^{\Box}_{\overline{\rho}} \twoheadrightarrow R^{\Box}_{\overline{\rho}}(\tau)$ factors through a map $\mathcal{A}(\tau) \to R^{\Box}_{\overline{\rho}}(\tau)$, since any function in \mathcal{A} that vanishes on all \overline{L} -points of type τ must vanish in $R^{\Box}_{\overline{\rho}}(\tau)$ by definition. Thus we get a surjection $\mathcal{A}(\tau)^{\wedge}_{\mathfrak{m}} = \mathcal{A}(\tau) \otimes_{\mathcal{A}} R^{\Box}_{\overline{\rho}} \twoheadrightarrow R^{\Box}_{\overline{\rho}}(\tau)$. However, since $\mathcal{A}(\tau)^{\wedge}_{\mathfrak{m}}$ is reduced and \mathcal{O} -torsion free, and has the property that every \overline{L} -point gives a Galois representation of type τ , this map is an isomorphism by the definition of $R^{\Box}_{\overline{\rho}}(\tau)$.

Let $\overline{\mathcal{S}} = \mathcal{S} \otimes_{\mathcal{O}} k$, $\overline{\mathcal{A}} = \mathcal{A} \otimes_{\mathcal{O}} k$, and $\overline{\mathcal{X}} = \operatorname{Spec} \overline{\mathcal{A}}$. Then the irreducible components of $\overline{\mathcal{X}}$ are in bijection with the conjugacy classes of $GL_2(\overline{k})$ that are stable under the

3

q-power map (again by [Sho16a] Proposition 2.6). Let $\overline{\mathcal{X}}_1$ be the irreducible component corresponding to the trivial conjugacy class — this is just the locus where $\Sigma = 1$ — and let $\overline{\mathcal{X}}_N$ be that corresponding to the non-trivial unipotent conjugacy class (we give the irreducible components the reduced subscheme structure). Let I_1 and I_N be the prime ideals of $\overline{\mathcal{S}}$ cutting out $\overline{\mathcal{X}}_1$ and $\overline{\mathcal{X}}_N$; these correspond to minimal primes of $\overline{\mathcal{A}}$. If τ is one of the above inertial types, then we write $I(\tau)$ for the ideal of $\overline{\mathcal{S}}$ cutting out $\mathcal{A}(\tau) \otimes_{\mathcal{O}} k$.

Lemma 0.4. The ideals I_1 and I_N have generators

$$I_1 = (A, B, C, D)$$

 $I_N = (A^2 + BC, CQ + BR, T, A + D).$

Proof. The presentation for I_1 is obvious. For I_N , the condition that Σ is unipotent gives $A + D \in I_N$ and $A^2 + BC \in I_N$. If $N = \Sigma - 1$, then the relation $\Phi \Sigma = \Sigma^q \Phi$ becomes $\Phi N = qN\Phi = N\Phi$ (since we are working mod 2), which implies that CQ + BR = 0. At any closed point of $\overline{\mathcal{X}}_N$ where $N \neq 0$, the eigenvalues of Φ must be in the ratio 1: q = 1: 1, and so T = 0. As such closed points are dense on $\overline{\mathcal{X}}_N$, we see that $T \in I_N$. Therefore

$$(A^2 + BC, CQ + BR, T, A + D) \subset I_N.$$

The ideal $I = (A^2 + BC, CQ + BR, T, A + D)$ is prime of dimension 4; indeed, S/I is isomorphic to a localisation of

$$\frac{k[A,B,C]}{(A^2+BC)}[P,Q,R]/(CQ+BR)$$

which is easily seen to be a 4-dimensional domain. Thus $I \subset I_N$ are prime ideals of \overline{S} of the same dimension, and so must be equal.

Proposition 0.5. Let $\tau = \tau_{\xi}$. Then $I(\tau) = I_N$.

Proof. Write $\eta = \xi + \xi^q - 2$. The condition that Σ has characteristic polynomial $(X - \xi)(X - \xi^q)$ shows that, on $\mathcal{X}(\tau)$, we have the equations

$$A + D = \eta$$
$$A(A - \eta) + BC = \eta.$$

Using the first of these, we replace D by $\eta - A$ everywhere. Now, if x is an \overline{L} -point of $\mathcal{X}(\tau)$ corresponding to a pair of matrices (Σ_x, Φ_x) , then Φ_x exchanges the ξ and ξ^q eigenspaces of Σ_x and so must have trace zero. Therefore on $\mathcal{X}(\tau)$ we have the equation

$$T = 0.$$

Lastly, by the Cayley–Hamilton theorem, and the fact that

$$X^q \equiv \xi + \xi^q - X \mod (X - \xi)(X - \xi^q)$$

we see that $\Sigma^q = \begin{pmatrix} 1 + \eta - A & -B \\ -C & 1 + A \end{pmatrix}$ on $\mathcal{X}(\tau)$. Equating matrix entries in the relation $\Phi \Sigma = \Sigma^q \Phi$, and noting that T = 0, we obtain one new equation

$$(2A - \eta)P + BR + CQ = 0.$$

Thus, letting

$$J = (A + D, T, A(A - \eta) + BC - \eta, (2A - \eta)P + BR + CQ)$$

we obtain a surjection $\mathcal{S}/J \to \mathcal{A}(\tau)$, and therefore a surjection

$$\overline{\mathcal{S}}/J \twoheadrightarrow \overline{\mathcal{A}}(\tau).$$

As η is divisible by ϖ , we see that $J + (\varpi) = I_N$, and so we have a surjection $\overline{S}/I_N \twoheadrightarrow \overline{A}(\tau)$. This must be an isomorphism since \overline{S}/I_N is a 4-dimensional domain and $\overline{A}(\tau)$ is a non-zero 4-dimensional ring. Therefore $I_N = I(\tau)$ as required. \Box

For the remaining types the following lemmas will be useful. If R is a noetherian ring, \mathfrak{p} is a minimal prime of R, and M is a finitely-generated R-module, let $e_R(M,\mathfrak{p}) = l_{R_\mathfrak{p}}(M_\mathfrak{p})$ (this is a special case of the Hilbert–Samuel multiplicity).

Lemma 0.6. Let $f : R \to S$ be a surjection of equidimensional rings of the same dimension, and suppose that R is S1 and Nagata. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be the minimal primes of R. Suppose that, for $i = 1, \ldots, n$, there is a maximal ideal \mathfrak{m}_i of S such that $\mathfrak{p}_i \subset \mathfrak{m}_i$ but $\mathfrak{p}_j \not\subset \mathfrak{m}_i$ for $i \neq j$. If, for each i, we have

$$e_R(R,\mathfrak{p}_i) \le e_{S_{\mathfrak{m}_i}^{\wedge}}(S_{\mathfrak{m}_i}^{\wedge},\mathfrak{q}_i)$$

for some minimal prime q_i of $S^{\wedge}_{\mathfrak{m}_i}$, then f is an isomorphism.

Remark 0.7. For those primes \mathfrak{p}_i such that $e_R(R, \mathfrak{p}_i) = 1$ — which is all of them if R is reduced — the required inequality is implied simply by the existence of the \mathfrak{m}_i .

Proof. Since R is S1, every associated prime of S is minimal and so, by [Sta17, Tag 0311], it is enough to show that f induces an isomorphism $f_{\mathfrak{p}_i} : R_{\mathfrak{p}_i} \to S_{\mathfrak{p}_i}$ for each i. Since f is surjective and $R_{\mathfrak{p}_i}$ is artinian, it is enough to show that $e_R(R,\mathfrak{p}_i) \leq e_R(S,\mathfrak{p}_i)$. Let $i \in \{1, \ldots, n\}$. Choose \mathfrak{m}_i and \mathfrak{q}_i as in the hypotheses of the lemma. It is enough to show that for each i,

$$e_R(S,\mathfrak{p}_i) = e_{S^{\wedge}_{\mathfrak{m}_i}}(S^{\wedge}_{\mathfrak{m}_i},\mathfrak{q}_i).$$

Since \mathfrak{m}_i contains a unique minimal prime of R, after localising at \mathfrak{m}_i we may assume that $R \to S$ is a local map of local rings, and that \mathfrak{p}_i is the unique minimal prime of R, and drop i from the notation. The hypothesis that R and S are equidimensional of the same dimension implies that $\mathfrak{p}S$ is the unique minimal prime of S, which we also denote by \mathfrak{p} . We have $e_R(S,\mathfrak{p}) = e_S(S,\mathfrak{p})$ since both are just the length of $S_{\mathfrak{p}}$. Since $S \to S^{\wedge}$ is flat and $S^{\wedge}/\mathfrak{p} = (S/\mathfrak{p})^{\wedge}$ is reduced because R (and hence S) is Nagata, [Sta17, Tag 02M1] implies that $e_S(S,\mathfrak{p}) = e_{S^{\wedge}}(S^{\wedge},\mathfrak{q})$. So

$$e_R(S,\mathfrak{p}) = e_S(S,\mathfrak{p}) = e_{S^{\wedge}}(S^{\wedge},\mathfrak{q}) \ge e_R(R,\mathfrak{p})$$

as required.

The S1 condition holds, in particular, if R is reduced or Cohen–Macaulay, while the Nagata condition holds if R is of finite type over a field or DVR.

Proposition 0.8. Let $\tau = \tau_{\zeta}$. Then

$$I(\tau) = I_N \cap I_1$$

= (A + D, AT, BT, CT, A² + BC, BR + CQ).

Proof. For simplicity, we twist so that $\zeta = 1$. Write $N = \Sigma - 1 = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. On $\mathcal{A}(\tau)$, Σ has characteristic polynomial $(X - 1)^2$, and so the equations

$$A + D = 0$$
$$A^2 + BC = 0$$

hold on $\mathcal{A}(\tau)$. Moreover, since $(\Sigma - 1)^2 = 0$ on $\mathcal{A}(\tau)$, by the Cayley–Hamilton theorem we have that $\Sigma^q = 1 + q(\Sigma - 1) = 1 + qN$ on $\mathcal{A}(\tau)$. The equation $\Phi\Sigma = \Sigma^q \Phi$ becomes $\Phi N = qN\Phi$, and comparing matrix entries we get equations

$$qBR - CQ + (q - 1)AP = 0$$

(q + 1)QA + B(qT - (q + 1)P) = 0
(q + 1)RA + C(T - (q + 1)P)) = 0
qCQ - BR + (q - 1)A(P - T) = 0.

Summing the first and fourth of these gives (q-1)(BR + CQ + A(2P - T)) = 0; since $\mathcal{A}(\tau)$ is (q-1)-torsion free, we deduce that

$$BR + CQ + A(2P - T) = 0$$

in $\mathcal{A}(\tau)$ and can replace the fourth of the above equations by this.

The ideal cutting out $\mathcal{A}(\tau)$ therefore contains the ideal

$$J = (A + D, A^{2} + BC, qBR - CQ + (q - 1)AP, (q + 1)QA + B(qT - (q + 1)P), (q + 1)RA + C(T - (q + 1)P), CQ + BR + A(2P - T)).$$

Now, the image of J in \overline{S} is

$$(A+D, A2 + BC, BR + CQ, BT, CT, BR + CQ + AT)$$

which is equal to $(A + D, A^2 + BC, BR + CQ) + I_1 \cap (T) = I_N \cap I_1$. Therefore there is a surjection

$$f:\overline{\mathcal{S}}/(I_N\cap I_1)\twoheadrightarrow\overline{\mathcal{A}}(\tau).$$

Write $\tilde{R} = \overline{S}/(I_N \cap I_1)$. Then \tilde{R} is reduced with two minimal primes, which we also call I_N and I_1 . Let $\rho_1 : G_F \to GL_2(\mathcal{O})$ be diagonal unramified with distinct eigenvalues of Frobenius, and let $\rho_N : G_F \to GL_2(\mathcal{O})$ send $\sigma \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\phi \mapsto \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix}$. Let \mathfrak{m}_1 and \mathfrak{m}_N be the corresponding maximal ideals of $\overline{\mathcal{A}}(\tau)$. Then $I_1 \subset \mathfrak{m}_1, I_N \not\subset \mathfrak{m}_1, I_1 \not\subset \mathfrak{m}_N$ and $I_N \subset \mathfrak{m}_N$, so f is an isomorphism by the remark following lemma 0.6.

Proposition 0.9. Let $\tau = \tau_{\zeta_1,\zeta_2}$. Then

$$I(\tau) = (A + D, BT, CT, CQ + BR, A^2 + BC).$$

Proof. Write $\mu = \zeta_1 + \zeta_2 - 2$. The condition that Σ has characteristic polynomial $(X - \zeta_1)(X - \zeta_2)$ is equivalent to the equations

$$A + D = \mu$$
$$A(A - \mu) + BC = \mu.$$

As $X^q \equiv X \mod (X - \zeta_1)(X - \zeta_2)$, we have by the Cayley–Hamilton theorem that $\Sigma^q = \Sigma$ on $\mathcal{A}(\tau)$. The equation $\Phi \Sigma = \Sigma^q \Phi$ therefore becomes $\Phi \Sigma = \Sigma \Phi$, and comparing matrix entries we get three equations (the fourth being redundant):

$$BR - CQ = 0$$

$$Q(2A - \mu) = B(2P - T)$$

$$R(2A - \mu) = C(2P - T).$$

Let

 $J = (A + D - \mu, A(A - \mu) + BC - \mu, BR - CQ, Q(2A - \mu) - B(2P - T), R(2A - \mu) - C(2P - T)).$ Let I be the image of J in \overline{S} , so that

$$I = (A + D, BT, CT, CQ + BR, A2 + BC).$$

We have shown that there is a surjection $S/J \twoheadrightarrow \mathcal{A}(\tau)$, and therefore there is a surjection $f: \overline{S}/I \to \overline{\mathcal{A}}(\tau)$. We have to show that f is an isomorphism. Write $\tilde{R} = \overline{S}/I$.

Then (see the proof of corollary 0.10 below) \overline{S}/I is Cohen–Macaulay, with minimal primes I_1 and I_N , and it is easy to see that $e_{\tilde{R}}(\tilde{R}, I_N) = 1$ while $e_{\tilde{R}}(\tilde{R}, I_1) = 2$.

Let $\rho_1 : G_F \to GL_2(\mathcal{O})$ be diagonal such that the eigenvalues of $\rho_1(\sigma)$ are ζ_1 and ζ_2 , and the eigenvalues of $\rho_1(\phi)$ are distinct modulo ϖ . Let $\rho_N : G_F \to GL_2(\mathcal{O})$ send $\sigma \mapsto \begin{pmatrix} \zeta_1 & 1 \\ 0 & \zeta_2 \end{pmatrix}$ and $\phi \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Let \mathfrak{m}_1 and \mathfrak{m}_N be the corresponding maximal ideals of $\overline{\mathcal{A}}(\tau)$. Then $I_1 \subset \mathfrak{m}_1$, $I_N \not\subset \mathfrak{m}_1$, $I_1 \not\subset \mathfrak{m}_N$ and $I_N \subset \mathfrak{m}_N$. By [Sho16b] Proposition 5.3, which remains valid when p = 2, $R_{\overline{\rho}_1}^{\Box}(\tau)$ is formally smooth over

$$\frac{\mathcal{O}[[X-1]]}{(X-\zeta_1)(X-\zeta_2)}.$$

Therefore $R^{\Box}_{\overline{\rho}_1}(\tau) \otimes k$ has a unique minimal prime \mathfrak{q} and its multiplicity is 2. By lemmas 0.3 and 0.6, f is an isomorphism.

Corollary 0.10. (of propositions 0.5, 0.8 and 0.9) For $\tau = \tau_{\xi}$, τ_{ζ} , or τ_{ζ_1,ζ_2} , $\mathcal{A}(\tau)$ is Cohen–Macaulay.

Proof. Since ϖ is a regular element of $\mathcal{A}(\tau)$, it suffices to prove that $\overline{\mathcal{A}}(\tau)$ is Cohen–Macaulay. This can easily be checked in magma; we sketch an alternative proof by hand. If $\tau = \tau_{\xi}$, then by proposition 0.5, $I(\tau) = I_N$. But $\overline{\mathcal{S}}/I_N$ is a complete intersection ring of dimension 4, and therefore is Cohen–Macaulay. If $\tau = \tau_{\zeta}$, then by proposition 0.8, $I(\tau_{\xi}) = I_1 \cap I_N$. Now, $\overline{\mathcal{S}}/I_1$ and $\overline{\mathcal{S}}/I_N$ are Cohen–Macaulay of dimension 4 (the latter by the previous case), while $\overline{\mathcal{S}}/(I_1 + I_N)$ is regular, and so Cohen–Macaulay. Finally, if $\tau = \tau_{\zeta_1,\zeta_2}$ then by proposition 0.9, $I(\tau) = (A + D, A^2 + BC, BR + CQ, BT, CT)$. Let $I = I(\tau)$. Since $I + (AT) = I_1 \cap I_N$ and $AT \cdot I_1 = 0$, there is an exact sequence of $\overline{\mathcal{S}}/I$ -modules

$$\overline{\mathcal{S}}/I_1 \xrightarrow{AT} \overline{\mathcal{S}}/I \longrightarrow \overline{\mathcal{S}}/(I_1 \cap I_N) \to 0.$$

The first map must be injective, since I_1 is prime and $e_{\overline{S}/I}(\overline{S}/I, I_1) = 2 > 1 = e_{\overline{S}/I}(\overline{S}/(I_1 \cap I_N), I_1)$. Since we have shown that \overline{S}/I_1 and $\overline{S}/(I_1 \cap I_N)$ are maximal Cohen–Macaulay modules over \overline{S}/I , so is \overline{S}/I (by [Yos90] Proposition 1.3).

Since $R^{\Box}_{\overline{\rho}}(\tau)$ is a completion of $\mathcal{A}(\tau)$ by lemma 0.3, and a completion of a Cohen–Macaulay ring is Cohen–Macaulay (by [Sta17, Tag 07NX]), we obtain Theorem 0.1.

References

- [Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.
- [Sho16a] Jack Shotton, The Breuil-Mézard conjecture when $l \neq p$, 2016, preprint available at https://arxiv.org/abs/1608.01784.
- [Sho16b] Jack Shotton, Local deformation rings for GL₂ and a Breuil-Mézard conjecture when $\ell \neq p$, Algebra Number Theory **10** (2016), no. 7, 1437–1475. MR 3554238
- [Sta17] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2017.
- [Yos90] Yuji Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990. MR 1079937