
LOCAL DEFORMATION RINGS FOR 2-ADIC

REPRESENTATIONS OF GQl
, l 6= 2.

JACK SHOTTON

Let l and p be distinct primes. Let L/Qp be a finite extension with ring of
integers O, uniformiser $ and residue field k. Let F/Ql be a finite extension with

absolute Galois group GF , inertia group IF , and wild inertia group PF . Let P̃F be
the kernel of the maximal pro-l quotient of IF . Let q be the order of the residue
field of F . We assume that L contains all (q2 − 1)th roots of unity. Choose a

pro-generator σ of IF /P̃F and φ ∈ GF /P̃F lifting the arithmetic Frobenius element
of GF /IF . Then we have the relation

(1) φσφ−1 = σq.

If ρ : GF → GL2(k) is a continuous homomorphism, let R�
ρ be the universal

framed deformation ring for ρ parametrising lifts with coefficients in O-algebras.
By [Sho16a] Theorem 2.5, R�

ρ is a reduced, O-flat complete intersection ring of
relative dimension 4 over O.

If τ : IF → GL2(L) is a continuous semisimple representation that extends to
GF , let R�

ρ (τ) be the maximal reduced, p-torsion free quotient of R�
ρ such that,

for every O-algebra homomorphism x : R�
ρ → L, the corresponding representation

ρx : GF → GL2(L) satisfies (ρx |IF )ss ∼= τ .
The goal of this appendix is to prove:

Theorem 0.1. For any ρ and τ as above, the ring R�
ρ (τ) is either Cohen–Macaulay

or zero.

If p > 2, then this is the content of section 5.5 of [Sho16b]. If p = 2 and
ρ|P̃F

is non-scalar, then the proof of proposition 5.1 of [Sho16b] shows that R�
ρ is a

completed tensor product of deformation rings of characters, all of whose irreducible
components are formally smooth, and that R�

ρ (τ) is an irreducible component of

R�
ρ ; thus R�

ρ (τ) is formally smooth in this case. From now on, then, we assume

that p = 2 and that ρ|P̃F
is scalar; by twisting, we may and do assume that ρ|P̃F

is trivial. In this case, we may list the semisimple inertial types τ for which R�
ρ (τ)

may be non-zero. They are determined by the eigenvalues of τ(σ), which must be
of 2-power order and either fixed or interchanged by raising to the power q. Writing
a = v2(q − 1) and b = v2(q2 − 1), if R�

ρ (τ) is non-zero then either

• τ = τζ is the inertial type in which the eigenvalues of τ(σ) are both equal
to an 2ath root of unity, ζ;
• τ = τζ1,ζ2 is the inertial type in which the eigenvalues of τ(σ) are equal to

distinct 2ath roots of unity ζ1 and ζ2;
• τ = τξ is the inertial type in which the eigenvalues of τ(σ) are equal to ξ

and ξq for ξ an 2bth root of unity with ξ 6= ξq (equivalently, with ξ not an
2ath root of unity).
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We also give a version with fixed determinant:

Corollary 0.2. If ψ is any lift of det ρ to O× such that ψ|IF = det τ , let R�,ψ
ρ (τ)

be the universal framed deformation ring with determinant ψ and type τ . Then

R�,ψ
ρ (τ) is Cohen–Macaulay.

Proof. By Theorem 0.1, R�
ρ (τ) is Cohen–Macaulay. If we impose a single equation

additional det ρ(φ) = ψ(φ), then the ring will still be Cohen–Macaulay provided
that det ρ(φ)−ψ(φ) is a non-zerodivisor — in other words, that it doesn’t vanish on
any irreducible components of SpecR�

ρ (τ). This is the case, since the action of G∧m
on SpecR�

ρ (τ) given by making unramified twists preserves irreducible components
but varies the determinant. �

Let X be the affine O-scheme whose R points, for an O-algebra R, are pairs

{(Σ,Φ) ∈ GL2(R)×GL2(R) : ΦΣ = ΣqΦ}.
Then X is a reduced, O-flat complete intersection of relative dimension 4 over
SpecO by the proof of Theorem 2.5 of [Sho16a]. Let A be the coordinate ring of

X . We write Σ =

(
1 +A B
C 1 +D

)
and Φ =

(
P Q
R T − P

)
, so that A is a quotient

of

S = O[A,B,C,D, P,Q,R, T ][(det Σ)−1, (det Φ)−1].

For any continuous ρ : GF → GL2(k), the pair of matrices ρ(σ) and ρ(φ) give rise
to a closed point of X , and so a maximal ideal m of A. Then R�

ρ = A∧m. If C is

a conjugacy class in GL2(L), then there is a unique irreducible component of X
such that, for a dense set of geometric points of that component, the corresponding
matrix Σ has conjugacy class C. This provides a bijection between the irreducible
components of X and the conjugacy classes of GL2(L) that are preserved under the
q-power map (by [Sho16a] Proposition 2.6). If τ is one of the above inertial types
then we write X (τ) for the union of those irreducible components corresponding to
conjugacy classes with the same characteristic polynomial as τ(σ), with the reduced
subscheme structure, and A(τ) for its coordinate ring. Note that, since X is O-flat
and X (τ) is an irreducible component of X , X (τ) is also O-flat, so that A(τ) is
$-torsion free.

Lemma 0.3. If τ = τζ , τζ1,ζ2 , or τξ, then A(τ)∧m = R�
ρ (τ).

Proof. Since A is O-flat and A(τ) is the quotient of A by an intersection of minimal
prime ideals, it is also O-flat. Thus A(τ)∧m is also O-flat, by flatness of localisation
and completion. Since A(τ) is of finite type over a DVR it is Nagata by [Sta17, Tag
0335]. Since A(τ) is reduced, the completion A(τ)∧m is also reduced by [Sta17, Tag
07NZ]. The composite map A → R�

ρ � R�
ρ (τ) factors through a map A(τ) →

R�
ρ (τ), since any function in A that vanishes on all L-points of type τ must vanish

in R�
ρ (τ) by definition. Thus we get a surjection A(τ)∧m = A(τ)⊗A R�

ρ � R�
ρ (τ).

However, since A(τ)∧m is reduced and O-torsion free, and has the property that
every L-point gives a Galois representation of type τ , this map is an isomorphism
by the definition of R�

ρ (τ). �

Let S = S⊗Ok, A = A⊗Ok, and X = SpecA. Then the irreducible components
of X are in bijection with the conjugacy classes of GL2(k) that are stable under the
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q-power map (again by [Sho16a] Proposition 2.6). Let X 1 be the irreducible com-
ponent corresponding to the trivial conjugacy class — this is just the locus where
Σ = 1 — and let XN be that corresponding to the non-trivial unipotent conjugacy
class (we give the irreducible components the reduced subscheme structure). Let
I1 and IN be the prime ideals of S cutting out X 1 and XN ; these correspond to
minimal primes of A. If τ is one of the above inertial types, then we write I(τ) for
the ideal of S cutting out A(τ)⊗O k.

Lemma 0.4. The ideals I1 and IN have generators

I1 = (A,B,C,D)

IN = (A2 +BC,CQ+BR, T,A+D).

Proof. The presentation for I1 is obvious. For IN , the condition that Σ is unipotent
gives A+D ∈ IN and A2 + BC ∈ IN . If N = Σ− 1, then the relation ΦΣ = ΣqΦ
becomes ΦN = qNΦ = NΦ (since we are working mod 2), which implies that
CQ+BR = 0. At any closed point of XN where N 6= 0, the eigenvalues of Φ must
be in the ratio 1 : q = 1 : 1, and so T = 0. As such closed points are dense on XN ,
we see that T ∈ IN . Therefore

(A2 +BC,CQ+BR, T,A+D) ⊂ IN .
The ideal I = (A2 +BC,CQ+BR, T,A+D) is prime of dimension 4; indeed, S/I
is isomorphic to a localisation of

k[A,B,C]

(A2 +BC)
[P,Q,R]/(CQ+BR)

which is easily seen to be a 4-dimensional domain. Thus I ⊂ IN are prime ideals
of S of the same dimension, and so must be equal. �

Proposition 0.5. Let τ = τξ. Then I(τ) = IN .

Proof. Write η = ξ + ξq − 2. The condition that Σ has characteristic polynomial
(X − ξ)(X − ξq) shows that, on X (τ), we have the equations

A+D = η

A(A− η) +BC = η.

Using the first of these, we replace D by η−A everywhere. Now, if x is an L-point
of X (τ) corresponding to a pair of matrices (Σx,Φx), then Φx exchanges the ξ and
ξq eigenspaces of Σx and so must have trace zero. Therefore on X (τ) we have the
equation

T = 0.

Lastly, by the Cayley–Hamilton theorem, and the fact that

Xq ≡ ξ + ξq −X mod (X − ξ)(X − ξq),

we see that Σq =

(
1 + η −A −B
−C 1 +A

)
on X (τ). Equating matrix entries in the

relation ΦΣ = ΣqΦ, and noting that T = 0, we obtain one new equation

(2A− η)P +BR+ CQ = 0.

Thus, letting

J = (A+D,T,A(A− η) +BC − η, (2A− η)P +BR+ CQ)
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we obtain a surjection S/J � A(τ), and therefore a surjection

S/J � A(τ).

As η is divisible by $, we see that J + ($) = IN , and so we have a surjection
S/IN � A(τ). This must be an isomorphism since S/IN is a 4-dimensional domain
and A(τ) is a non-zero 4-dimensional ring. Therefore IN = I(τ) as required. �

For the remaining types the following lemmas will be useful. If R is a noether-
ian ring, p is a minimal prime of R, and M is a finitely-generated R-module, let
eR(M, p) = lRp

(Mp) (this is a special case of the Hilbert–Samuel multiplicity).

Lemma 0.6. Let f : R → S be a surjection of equidimensional rings of the same
dimension, and suppose that R is S1 and Nagata. Let p1, . . . , pn be the minimal
primes of R. Suppose that, for i = 1, . . . , n, there is a maximal ideal mi of S such
that pi ⊂ mi but pj 6⊂ mi for i 6= j. If, for each i, we have

eR(R, pi) ≤ eS∧
mi

(S∧mi
, qi)

for some minimal prime qi of S
∧
mi
, then f is an isomorphism.

Remark 0.7. For those primes pi such that eR(R, pi) = 1 — which is all of them
if R is reduced — the required inequality is implied simply by the existence of the
mi.

Proof. Since R is S1, every associated prime of S is minimal and so, by [Sta17,
Tag 0311], it is enough to show that f induces an isomorphism fpi

: Rpi
→ Spi

for each i. Since f is surjective and Rpi is artinian, it is enough to show that
eR(R, pi) ≤ eR(S, pi). Let i ∈ {1, . . . , n}. Choose mi and qi as in the hypotheses of
the lemma. It is enough to show that for each i,

eR(S, pi) = eS∧
mi

(S∧mi
, qi).

Since mi contains a unique minimal prime of R, after localising at mi we may assume
that R→ S is a local map of local rings, and that pi is the unique minimal prime of
R, and drop i from the notation. The hypothesis that R and S are equidimensional
of the same dimension implies that pS is the unique minimal prime of S, which we
also denote by p. We have eR(S, p) = eS(S, p) since both are just the length of Sp.
Since S → S∧ is flat and S∧/p = (S/p)∧ is reduced because R (and hence S) is
Nagata, [Sta17, Tag 02M1] implies that eS(S, p) = eS∧(S∧, q). So

eR(S, p) = eS(S, p) = eS∧(S∧, q) ≥ eR(R, p)

as required. �

The S1 condition holds, in particular, if R is reduced or Cohen–Macaulay, while
the Nagata condition holds if R is of finite type over a field or DVR.

Proposition 0.8. Let τ = τζ . Then

I(τ) = IN ∩ I1
= (A+D,AT,BT,CT,A2 +BC,BR+ CQ).



LOCAL DEFORMATION RINGS FOR 2-ADIC REPRESENTATIONS OF GQl
, l 6= 2. 5

Proof. For simplicity, we twist so that ζ = 1. Write N = Σ − 1 =

(
A B
C D

)
. On

A(τ), Σ has characteristic polynomial (X − 1)2, and so the equations

A+D = 0

A2 +BC = 0

hold on A(τ). Moreover, since (Σ − 1)2 = 0 on A(τ), by the Cayley–Hamilton
theorem we have that Σq = 1 + q(Σ − 1) = 1 + qN on A(τ). The equation
ΦΣ = ΣqΦ becomes ΦN = qNΦ, and comparing matrix entries we get equations

qBR− CQ+ (q − 1)AP = 0

(q + 1)QA+B(qT − (q + 1)P ) = 0

(q + 1)RA+ C(T − (q + 1)P )) = 0

qCQ−BR+ (q − 1)A(P − T ) = 0.

Summing the first and fourth of these gives (q − 1)(BR + CQ + A(2P − T )) = 0;
since A(τ) is (q − 1)-torsion free, we deduce that

BR+ CQ+A(2P − T ) = 0

in A(τ) and can replace the fourth of the above equations by this.
The ideal cutting out A(τ) therefore contains the ideal

J =
(
A+D,A2 +BC, qBR− CQ+ (q − 1)AP, (q + 1)QA+B(qT − (q + 1)P ),

(q + 1)RA+ C(T − (q + 1)P ), CQ+BR+A(2P − T )) .

Now, the image of J in S is

(A+D,A2 +BC,BR+ CQ,BT,CT,BR+ CQ+AT )

which is equal to (A+D,A2 +BC,BR+CQ)+ I1∩ (T ) = IN ∩ I1. Therefore there
is a surjection

f : S/(IN ∩ I1) � A(τ).

Write R̃ = S/(IN ∩ I1). Then R̃ is reduced with two minimal primes, which we
also call IN and I1. Let ρ1 : GF → GL2(O) be diagonal unramified with distinct

eigenvalues of Frobenius, and let ρN : GF → GL2(O) send σ 7→
(

1 1
0 1

)
and

φ 7→
(
q 0
0 1

)
. Let m1 and mN be the corresponding maximal ideals of A(τ). Then

I1 ⊂ m1, IN 6⊂ m1, I1 6⊂ mN and IN ⊂ mN , so f is an isomorphism by the remark
following lemma 0.6. �

Proposition 0.9. Let τ = τζ1,ζ2 . Then

I(τ) = (A+D,BT,CT,CQ+BR,A2 +BC).

Proof. Write µ = ζ1 + ζ2 − 2. The condition that Σ has characteristic polynomial
(X − ζ1)(X − ζ2) is equivalent to the equations

A+D = µ

A(A− µ) +BC = µ.
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As Xq ≡ X mod (X − ζ1)(X − ζ2), we have by the Cayley–Hamilton theorem
that Σq = Σ on A(τ). The equation ΦΣ = ΣqΦ therefore becomes ΦΣ = ΣΦ, and
comparing matrix entries we get three equations (the fourth being redundant):

BR− CQ = 0

Q(2A− µ) = B(2P − T )

R(2A− µ) = C(2P − T ).

Let

J = (A+D − µ,A(A− µ) +BC − µ,BR− CQ,Q(2A− µ)−B(2P − T ), R(2A− µ)− C(2P − T )) .

Let I be the image of J in S, so that

I =
(
A+D,BT,CT,CQ+BR,A2 +BC

)
.

We have shown that there is a surjection S/J � A(τ), and therefore there is a
surjection f : S/I → A(τ). We have to show that f is an isomorphism. Write

R̃ = S/I.
Then (see the proof of corollary 0.10 below) S/I is Cohen–Macaulay, with mini-

mal primes I1 and IN , and it is easy to see that eR̃(R̃, IN ) = 1 while eR̃(R̃, I1) = 2.
Let ρ1 : GF → GL2(O) be diagonal such that the eigenvalues of ρ1(σ) are ζ1 and

ζ2, and the eigenvalues of ρ1(φ) are distinct modulo $. Let ρN : GF → GL2(O)

send σ 7→
(
ζ1 1
0 ζ2

)
and φ 7→

(
1 0
0 1

)
. Let m1 and mN be the corresponding

maximal ideals of A(τ). Then I1 ⊂ m1, IN 6⊂ m1, I1 6⊂ mN and IN ⊂ mN .
By [Sho16b] Proposition 5.3, which remains valid when p = 2, R�

ρ1
(τ) is formally

smooth over
O[[X − 1]]

(X − ζ1)(X − ζ2)
.

Therefore R�
ρ1

(τ) ⊗ k has a unique minimal prime q and its multiplicity is 2. By
lemmas 0.3 and 0.6, f is an isomorphism. �

Corollary 0.10. (of propositions 0.5, 0.8 and 0.9) For τ = τξ, τζ , or τζ1,ζ2 , A(τ)
is Cohen–Macaulay.

Proof. Since $ is a regular element of A(τ), it suffices to prove that A(τ) is Cohen–
Macaulay. This can easily be checked in magma; we sketch an alternative proof
by hand. If τ = τξ, then by proposition 0.5, I(τ) = IN . But S/IN is a complete
intersection ring of dimension 4, and therefore is Cohen–Macaulay. If τ = τζ , then

by proposition 0.8, I(τξ) = I1 ∩ IN . Now, S/I1 and S/IN are Cohen–Macaulay

of dimension 4 (the latter by the previous case), while S/(I1 + IN ) is regular, and
so Cohen–Macaulay, of dimension 3. By exercise 18.13 of [Eis95], S/(I1 ∩ IN )
is also Cohen–Macaulay. Finally, if τ = τζ1,ζ2 then by proposition 0.9, I(τ) =
(A+D,A2 +BC,BR+CQ,BT,CT ). Let I = I(τ). Since I + (AT ) = I1 ∩ IN and
AT · I1 = 0, there is an exact sequence of S/I-modules

S/I1
AT−→ S/I −→ S/(I1 ∩ IN )→ 0.

The first map must be injective, since I1 is prime and eS/I(S/I, I1) = 2 > 1 =

eS/I(S/(I1∩ IN ), I1). Since we have shown that S/I1 and S/(I1∩ IN ) are maximal

Cohen–Macaulay modules over S/I, so is S/I (by [Yos90] Proposition 1.3). �
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Since R�
ρ (τ) is a completion of A(τ) by lemma 0.3, and a completion of a Cohen–

Macaulay ring is Cohen–Macaulay (by [Sta17, Tag 07NX]), we obtain Theorem 0.1.
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