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Abstract. Let F be a finite extension of Qp. We prove that the category of

finitely presented smooth Z-finite representations of GL2(F ) over a finite exten-
sion of Fp is an abelian subcategory of the category of all smooth representations.

The proof uses amalgamated products of completed group rings.

1. Introduction

Let F be a finite field of characteristic p. If G is a locally profinite topological
group, let CF(G) be the category of smooth representations of G over F. Throughout

this paper, if K is an open subgroup of such a group G then indGK denotes induction
with compact support modulo K.

Definition 1.1. Let V be a smooth F-representation of a locally profinite group G.
Then V is:

(1) finitely generated if for some compact open subgroup K of G there is a
surjection of F[G]-modules

indGKW � V

for a smooth finite-dimensional F-representation W of K;
(2) finitely presented if for some compact open subgroups K1, K2 of G there

is an exact sequence

indGK1
W1 → indGK2

W2 → V → 0

for W1 and W2 smooth finite-dimensional F-representations of K1 and K2

respectively.

Let F be a finite extension of Qp. The purpose of this article is to prove:

Theorem 1.2. The category of finitely presented smooth F-representations of
SL2(F ) is an abelian subcategory of CF(SL2(F )).

The same holds for the category of finitely presented smooth Z-finite representa-
tions of GL2(F ).

This is Theorem 5.1 and Corollary 5.2 below. In fact, we prove the same result
with F replaced by any finite dimensional division algebra over Qp.

The theorem is equivalent to the statement that the kernel1 of any map between
finitely presented smooth representations is itself finitely presented. If CF(SL2(F ))
were the category of modules over a ring R, this would be the statement that

1and the cokernel, but this is automatic

1
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R is a coherent ring. Indeed, we will prove the theorem by considering smooth
F-representations as modules over the amalgamated product

F[[K]] ∗F[[I]] F[[K ′]],

where K = SL2(OF ), K ′ =

(
1 0
0 π

)
K

(
1 0
0 π−1

)
for π a uniformising element

of D, and I = K ∩K ′. Then a result of Åberg [Å82] shows that, under certain
conditions, an amalgamated product of coherent rings over a noetherian ring is
itself coherent. Throughout, unless otherwise stated, by ‘module’, ‘noetherian’ or
‘coherent’ we mean ‘left module’, ‘left noetherian’ or ‘left coherent’.

Finitely presented representations of GL2(F ) were previous studied by Hu [Hu12],
Vigneras [Vig11], and Schraen [Sch15].2 In particular, [Vig11] Theorem 6 shows that
a smooth admissible finitely presented representation of GL2(F ) has finite length,
and that all of its subquotients are also admissible and finitely presented. On the
other hand, the main result of [Sch15] says that, if F is a quadratic extension of
Qp, then an irreducible supersingular representation of GL2(F ) admitting a central
character is never finitely presented.

We are motivated by the construction (see [CEG+16]) of a ‘patched module’ M∞
that has an action of G = GLn(F ) and, hopefully, interpolates the hypothetical
p-adic Langlands correspondence. It is (only?) possible to directly obtain infor-

mation about M∞ by considering HomGLn(F )(indGK(W ),M∨∞) for locally algebraic
representations of K = GLn(OF ) on finitely generated Zp-modules W . This leads us
to consider the category of finitely presented representations of G; it also motivates
us to prove a version of Theorem 1.2 with coefficients.

I do not know whether Theorem 1.2 holds when G = GLn(F ) (or any p-adic Lie
group). The method of this paper does not apply, because G is not (up to centre)
an amalgam of two compact open subgroups. I am not sure whether Theorem 1.2
holds when F has positive characteristic; the method of this paper fails because
GL2(OF ) is not p-adic analytic and its completed group ring is not noetherian. I
thank Billy Woods for a helpful discussion about this case.

I am grateful to Matthew Emerton for asking me the question that this paper
answers, and for several helpful and motivational conversations. I also thank Julien
Hauseux and Stefano Morra for comments and corrections. I am indebted to the
anonymous referee for suggesting that I relate the amalgamated product of rings
considered here to the ring Λ(G) considered in [Koh17], which greatly clarified and
simplified the arguments of this paper.

2. Finitely presented representations.

For the rest of this article, let F be a finite field of characteristic p. Let A be a
complete local noetherian W (F)-algebra with maximal ideal m and residue field F.
Let G be a locally profinite group. Recall ( [Eme10] definition 2.2.5) that a smooth
A-representation of G is a representation of G on a torsion A-module V such that
every v ∈ V is fixed by a compact open subgroup of G.

Definition 2.1. If K is a profinite group, then a finite rank A-representation of K
is a representation of K on a finitely generated A-module M such that, for every
n ≥ 0, M/mnM is a smooth representation of K.

2The definition of ‘finitely presented’ in these articles is slightly different to ours, and automati-

cally entails Z-finiteness.
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Strictly speaking, we should call these finite rank continuous A-representations
of K.

Definition 2.2. A representation of G on an A-module V is K-finite if for some
(equivalently, any) compact open subgroup K ⊂ G, and for every v ∈ V , the
A[K]-module generated by v is a finite rank A-representation of K.

We let CK-fin
A (G) be the category of all K-finite A-representations of G, with

morphisms being morphisms of A[G]-modules. Note that a representation of G on a
torsion A-module V is smooth if and only if it is K-finite.

In the introduction (Definition 1.1) we gave the definitions of ‘finitely generated’
and ‘finitely presented’ smooth F-representations of G. We now extend those to
K-finite A-representations. First, note that if M is a finite rank A-representation of
a compact open subgroup K ⊂ G, then indGKM is certainly K-finite.

Definition 2.3. Let V be a K-finite A-representation of G. Then V is:

(1) finitely generated if there is a compact open subgroup K ⊂ G, a finite rank
A-representation W of K, and a surjection of A[G]-modules

indGK(W ) � V ;

(2) finitely presented if for some compact open subgroups K1, K2 of G there is
an exact sequence of A[G]-modules

indGK1
W1 → indGK2

W2 → V → 0

for W1 and W2 finite rank A-representations of K1 and K2.

We start by establish some straightforward properties of finitely presented K-
finite representations. Many of the proofs follow those of the properties of finitely
presented modules over a ring given in [Sta17, Tag 0519].

Lemma 2.4. A K-finite A-representation V of G is finitely generated if and only
if it is finitely generated as an A[G]-module.

Proof. For any W and K, indGKW is generated (as an A[G]-module) by the finitely
generated A-submodule of functions supported on K. The ‘only if’ direction follows.

For the ‘if’ direction, let V be a K-finite representation generated by v1, . . . , vn as
an A[G]-module. Choose a compact open subgroup K and let W be the finite rank

A-representation of K generated by v1, . . . , vn. Then V is a quotient of indGKW . �

Remark 2.5. It is not true that a finitely presented K-finite A-representation
of G will be finitely presented as an A[G]-module; this is already false for the

F-representation indGK F, as long as K is not finitely generated. This is the main
technical problem that we have to overcome in the next section.

Lemma 2.6. Suppose that 0 → V1 → V2 → V3 → 0 is a short exact sequence of
K-finite A-representations of G.

If V1 and V3 are finitely generated, so is V2.

Proof. This is immediate from Lemma 2.4 and the fact that an extension of finitely
generated modules over A[G] is finitely generated. �

Lemma 2.7. Suppose that 0 → V1 → V2 → V3 → 0 is a short exact sequence of
K-finite A-representations of G.
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(1) If V2 is finitely presented and V1 is finitely generated, then V3 is finitely
presented.

(2) If V3 is finitely presented and V2 is finitely generated, then V1 is finitely
generated.

(3) If V1 and V3 are finitely presented, so is V2.

Proof. We use K and L, M , N to denote a suitably chosen compact open subgroup
of G and finite rank A-representations of K.

(1) Choose a presentation indGK N
α−→ indGKM → V2 → 0 and choose v1, . . . , vr

generating the image of V1 in V2 as an A[G]-module. For each i, let ṽi be

a lift of vi to indGKM , and let L be the finite rank A-representation of K

generated by the ṽi. Then we have a map γ : indGK L→ indGKM , and the

kernel of the (surjective) composition indGKM → V2 → V3 is the sum of the
image of α and the image of γ, and so is finitely generated.

(2) Choose a presentation indGK N → indGKM
α−→ V3 → 0. We may replace M

by its image in V3, so that we have M ⊂ V3 and indGKM → V3 is the natural
map. Let m1, . . . ,mr generate M ⊂ V3 as an A-module, and for each i let
m̃i ∈ V2 be a lift of mi. Let M̃ be the A[K]-span of the m̃i in V2. Then

there is a surjective map of K representations M̃ →M , and we let L be the
kernel. There is also a map β : indGK M̃ → V2 giving a commuting diagram
with exact rows and columns:

indGK Ny
indGK L −−−−→ indGK M̃ −−−−→ indGKM −−−−→ 0

β

y yα
V2 −−−−→ V3 −−−−→ 0.

Repeating the same argument, we may replace N by an A[K]-submodule of

indGKM and find a K-submodule Ñ ⊂ indGK M̃ , together with a surjection

Ñ → N of A[K]-modules, such that

indGK Ñ −−−−→ indGK Ny y
indGK M̃ −−−−→ indGKM.

commutes and has surjective horizontal maps. The kernel of indGK M̃ → V3

is the image of indGK(Ñ⊕L). Write γ for the restriction of β to indGK(Ñ⊕L).
We obtain a commutative diagram

indGK(Ñ ⊕ L) −−−−→ indGK M̃ −−−−→ V3 −−−−→ 0

γ

y β

y ∥∥∥
0 −−−−→ V1 −−−−→ V2 −−−−→ V3 −−−−→ 0

with exact rows, from which we see that cok(γ) ∼= cok(β). As V2 is finitely
generated, so is cok(β) and hence also cok(γ). Since im(γ) is also finitely
generated, we see that V1 is finitely generated by Lemma 2.6.
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(3) Choose surjections α : indGKM → V1 and β : indGK N → V3. As before, we
may assume that N ⊂ V3. Let n1, . . . , nr generate N as an A-module, lift
them to ñi ∈ V2, and let Ñ be the A[K]-module generated by the ñi. Let

γ be the resulting map indGK Ñ → V2. If we let L = ker(Ñ → N), then γ

restricts to a map γ′ : indGK L→ V1. We obtain a commuting diagram

0 −−−−→ indGK(M ⊕ L) −−−−→ indGK(M ⊕ Ñ) −−−−→ indGK N −−−−→ 0

α+γ′
y α+γ

y yβ
0 −−−−→ V1 −−−−→ V2 −−−−→ V3 −−−−→ 0

with exact rows and surjective vertical maps. By the snake lemma there is
a short exact sequence

0→ ker(α+ γ′)→ ker(α+ γ)→ ker(β)→ 0.

Since the outer two terms are finitely generated by (2), so is the inner term
(by Lemma 2.6). Thus V2 is finitely presented, as required. �

Lemma 2.8. Suppose that G′ ⊂ G is a finite index open subgroup. Then a K-finite
A-representation V of G is finitely generated/presented if and only if its restriction
to G′ is.

Proof. (1) If V is finitely generated as a representation of G′ then it certainly
is as a representation of G. Conversely, for any compact open subgroup K
of G and any finite rank A-representation W of K, we have the Mackey
formula

resGG′ indGKW
∼=

⊕
g∈G′\G/K

indG
′

gKg−1∩G′W
g.

So indGKW is finitely generated — in fact finitely presented — as a repre-
sentation of G′. It follows that any finitely generated representation of G is
finitely generated as a representation of G′.

(2) We showed in (1) that indGKW is finitely presented as a representation of
G′ for any finite rank A-representation W of a compact open subgroup
K. It follows from Lemma 2.7 (1) that any K-finite finitely presented
representation of G is finitely presented as a representation of G′.

Conversely, suppose that V is finitely presented as a representation of
G′. By the first part, it is finitely generated as a representation of G, so
that there is a surjection indGKW → V . Since the first term is finitely
generated as a representation of G′ by part (1), by Lemma 2.7 (2) the
kernel is finitely generated as a representation of G′, and hence also as a
representation of G. Therefore V is finitely presented as a representation of
G by Lemma 2.7 (1). �

2.1. Z-finiteness. Suppose that G is a locally profinite group with centre Z. We
say that Hypothesis Z is satisfied if, for some (equivalently, any) compact open
subgroup K of G, Z/K ∩Z is finitely generated. Recall from [Eme10] the definitions
of Z-finite and locally Z-finite representations: a representation is Z-finite if the
action of A[Z] on V factors through a quotient A[Z]/I that is a finitely generated
A-module. It is locally Z-finite if the A[Z]-module spanned by any v ∈ V is a
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finitely generated A-module. By [Eme10] Lemma 2.3.3, a representation of G,
finitely generated as an A[G]-module, is Z-finite if and only if it is locally Z-finite.

Lemma 2.9. Let V be a locally Z-finite, K-finite, A-representation of G.

(1) The representation V is finitely generated if and only if there is a surjection

indGKZW → V → 0

for some compact open subgroup K of G and finite rank A-representation
W of KZ.

(2) If the representation V is finitely presented then there is an exact sequence

indGK1ZW1 → indGK2ZW2 → V → 0

for some compact open subgroup K of G and finite rank A-representations
W1 and W2 of K1Z and K2Z. If Hypothesis Z is satisfied, the converse
holds.

Proof. (1) The backwards implication is clear. For the forwards implication,
let W be the A[KZ]-span of a finite set of generators of V . It is finite-
rank since V is K-finite and locally Z-finite. We therefore get a surjection
indGKZW → V → 0 as required.

(2) Suppose that V is finitely presented. Then there is a surjection indGKZW2 →
V → 0, by the first part. The kernel is finitely generated by Lemma 2.7 (2),

and indGKZW2 is Z-finite. Applying the first part again, we get an exact

sequence indGKZW1 → indGKZW2 → V → 0 as required.
For the other direction, it is enough to show that (under Hypothesis Z)

indGKZW2 is finitely presented for any representation W2 of KZ on a finitely

generated A-module. If U is the kernel of the natural map indKZK W2 →W2

then there is a short exact sequence

0→ indGKZ U → indGKW2 → indGKZW2 → 0.

We have to show that U is finitely generated as a KZ-representation. This
follows from Hypothesis Z, since this implies that A[KZ/K] is a noetherian
ring. �

Now suppose that H is an open subgroup of G such that HZ has finite index in
G and Z ∩H is compact.

Proposition 2.10. Let V be a locally Z-finite, K-finite, A-representation of G.

(1) The representation V of G is finitely generated if and only if its restriction
to H is finitely generated.

(2) If the representation V of G is finitely presented then its restriction to H is
finitely presented. If Hypothesis Z holds, then the converse is true.

Proof. By Lemma 2.8 we may assume that G = HZ. Let V be a locally Z-finite
K-finite representation of G.

(1) If V is finitely generated as an representation of H, it certainly is as a
representation of G. Conversely, suppose that V is finitely generated as
an representation of G. If W ⊂ V is a finitely generated A-module that
generates V as an representation of G, then the Z-span ZW is a finitely
generated A-module that generates V as a representation of H. So V is a
finitely generated representation of H as required.
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(2) Suppose that V is finitely presented as a representation ofG. By Lemma 2.9 (2)

and Lemma 2.7 (1), it suffices to show that indGKZW is a finitely presented
representation of H for K ⊂ H. This follows from the identity of represen-
tations of H

indHZKZW = indHK(Z∩H)W

and the assumption that Z ∩H is compact.
Finally, suppose that V is finitely presented as an representation of H and

that Hypothesis Z holds. Then V is finitely generated as a representation
of G, so by Lemma 2.9 (1) there is a surjection indGKZW → V . By (1) and
Lemma 2.7 (2) the kernel of this map is a finitely generated representation
of H. By (1) again, it is a finitely generated representation of G, and so by
Lemma 2.9 (1) we have an exact sequence

indGKZ U → indGKZW → V → 0.

As G satisfies Hypothesis Z, by the converse direction of Lemma 2.9 (2), V
is a finitely presented representation of G. �

3. Completed group rings.

If K is a profinite group, let

A[[K]] = lim←−
JCKopen

A[K/J ]

be the completed group ring, a compact topological A-algebra.

Lemma 3.1. Suppose that M is a finite rank A-representation of K. Then there
is a unique A[[K]]-module structure on M extending the A[K]-module structure.

Proof. For each n, the action of A[K] on M ⊗A A/mnA factors through A[K/Jn]
for some open subgroup Jn ⊂ K and so extends uniquely to an action of A[[K]].
Since M is finitely generated as an A-module, M = lim←−M ⊗AA/m

n
A and the lemma

follows. �

Kohlhaase [Koh17] has extended the notion of completed group ring beyond the
compact case. Let G be a locally profinite group.

Proposition 3.2 (Kohlhaase). If K ⊂ G is a compact open subgroup, then there is
a unique A-algebra structure on

A 〈G〉 = A[G]⊗A[K] A[[K]]

such that the natural maps A[G] → A 〈G〉 and A[[K]] → A 〈G〉 are A-algebra
homomorphisms. This A-algebra is independent of the choice of K up to canonical
isomorphism.

Proof. This is shown in section 1 of [Koh17] when A is a field — where what we
call A 〈G〉 is denoted Λ(G) — but the proof works verbatim for general rings A.
We recall the construction for the reader’s convenience. Firstly, if K ′ is an open
subgroup of K, then the natural map of (A[G], A[[K ′]])-bimodules

ρK,K′ : A[G]⊗A[K′] A[[K ′]]→ A[G]⊗A[K] A[[K]]
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is an isomorphism.3 If K ′′ ⊂ K ′ then we have ρK,K′′ = ρK′,K′′ ◦ ρK,K′ , and so we
may construct the direct limit

A 〈G〉 = lim−→
K

(
A[G]⊗A[K] A[[K]]

)
which is (canonically) isomorphic to any one of its terms. Now, if g ∈ G then there
is an isomorphism of direct systems

·g : A[G]⊗A[K] A[[K]]→ A[G]⊗A[g−1Kg] A[[g−1Kg]]

taking h ⊗ κ to hg ⊗ g−1κg. This defines a right action of G on A 〈G〉 by left
A[G]-module isomorphisms, which suffices to define the required ring structure on
A 〈G〉. Precisely, if h⊗ κ ∈ A[G]⊗A[K] A[[K]] and h′ ⊗ κ′ ∈ A[G]⊗A[K′] A[[K ′]] are

representatives of elements of A 〈G〉, we may assume that K ⊂ h−1K ′h and define

(h′ ⊗ κ′)(h⊗ κ) = h′h⊗ h−1κ′hκ ∈ A[G]⊗A[h−1K′h] A[[h−1K ′h]]. �

For later use, we record a flatness result:

Lemma 3.3. The A-algebra A 〈G〉 is flat as a right A[[K]]-module for any compact
open subgroup K of G.

Proof. As in [Koh17], A 〈G〉 = A[G]⊗A[K]A[[K]] ∼=
⊕

h∈G/K A[[K]] as right A[[K]]-

modules, so that A 〈G〉 is even a free right A[[K]]-module. �

Remark 3.4. In the same way we could put an A-algebra structure on A[[K]]⊗A[K]

A[G] (for any compact open subgroup K) and the A-module map A[[K]] ⊗A[K]

A[G]→ A 〈G〉 defined by

κ⊗ h 7→ h⊗ h−1κh ∈ A[G]⊗A[h−1Kh] A[[h−1Kh]]

is an isomorphism of A-algebras. Thus Lemma 3.3 holds with ‘right’ replaced by
‘left’.

Lemma 3.5. Suppose that V is a K-finite A-representation of G. Then there is a
unique A 〈G〉-module structure on V extending the A[G]-module structure.

Proof. Since V is K-finite, for any compact open subgroup K the action of A[K]
extends uniquely to an action of A[[K]] by Lemma 3.1. By the unicity, we have that,
for any h ∈ G and κ ∈ A[[K]], the two actions of h−1κh defined on the one hand by
the actions of G and A[[K]], and on the other hand by the action of A[[h−1Kh]],
agree. From the formula for multiplication in A 〈G〉 given in Proposition 3.2, it
follows that we can define an action of A 〈G〉 on V by fixing K and setting

(h⊗ κ)(v) = h(κ(v))

for any h ∈ A[G] and κ ∈ A[[K]], which is clearly the unique action extending those
of A[G] and A[[K]]. �

Lemma 3.6. Suppose that V is a K-finite A-representation of G. Then V is finitely
generated if and only if it is finitely generated as an A 〈G〉-module.

3In [Koh17] this is stated for K′ normal in K, but it is true for any K′ and moreover this is
necessary for the construction of the ring structure.
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Proof. Suppose that V is finitely generated. By Lemma 2.4, V is finitely generated
as an A[G]-module, and hence as a A 〈G〉-module.

Conversely, let V be a K-finite A-representation of G that is finitely generated as
a A 〈G〉-module. Then, if v1, . . . , vr generate V and if M is their A[K]-span, then
M is also preserved by A[[K]] and so

V = A 〈G〉 ·M = (A[G]⊗A[K] A[[K]])M = A[G]M.

Therefore V is finitely generated, as required. �

The key technical reason for us to introduce the ring A 〈G〉 is that it is true that a
finitely presented K-finite A-representation of G is a finitely presented A 〈G〉-module

— see Remark 2.5. The starting point is the following result of Lazard (see [Eme10]
Theorem 2.1.1).

Theorem 3.7. If G is a p-adic analytic group, then A[[K]] is noetherian for every
compact open subgroup K of G. �

Proposition 3.8. Suppose that G is a p-adic analytic group. Let V be a K-finite
A-representation of G. Then V is finitely presented if and only if it is finitely
presented as an A 〈G〉-module.

Proof. The backwards implication follows from Lemma 3.6. Suppose that V is
finitely presented as an A 〈G〉-module. Then by Lemma 3.6 there is a surjection

α : indGKW → V → 0

for some finite rank A-representation W of a compact open subgroup K ⊂ G.
The kernel of α is a K-finite representation of G that is finitely generated as an
A 〈G〉-module, by [Sta17, Tag 0519] (5).4 Therefore it is finitely generated as an
A-representation of G, by Lemma 3.6.

Suppose now that V is finitely presented. Then by Lemma 2.7 (2), there is a
compact open subgroup K, a finite rank A-representation M of K, and a surjection
indGKM → V → 0 with finitely generated kernel.

By [Sta17, Tag 0519] (4) and Lemma 3.6, it is enough to show that indGK(M)
is a finitely presented A 〈G〉-module for the A 〈G〉-module structure provided by
Lemma 3.5. We may think of this instead as the tensor product

indGK(M) ∼= A[G]⊗A[K] M

via the isomorphism sending an element f : G → M of indGK(M) to
∑
g∈G/K g ⊗

f(g−1). By Lemma 3.1 the action of A[K] on M extends uniquely to one of A[[K]]
and we have isomorphisms

A 〈G〉 ⊗A[[K]] M = A[G]⊗A[K] ⊗A[[K]]⊗A[[K]] M = A[G]⊗A[K] M

of A[G]-modules, and hence of A 〈G〉-modules (by Lemma 3.5).
Since A[[K]] is noetherian by Theorem 3.7, the finitely generated A[[K]]-module

M is finitely presented; let A[[K]]m → A[[K]]n → M → 0 be a presentation.
Applying A 〈G〉 ⊗A[[K]] −, we obtain an exact sequence

A 〈G〉n → A 〈G〉m → A 〈G〉 ⊗A[[K]] M = A[G]⊗A[K] M → 0

4Strictly speaking, [Sta17, Tag 0519] is only stated for modules over commutative rings. However,
it is still true, with an identical proof, in the non-commutative case.
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so that indGKM = A[G]⊗A[K] M is a finitely presented A 〈G〉-module, as required.
�

4. Amalgamations and coherence

Let K1,K2 and I be profinite groups equipped with inclusions fi : I ↪→ Ki of I as
a common open subgroup of K1 and K2. Then there are maps fi : A[[I]]→ A[[Ki]]
of topological augmented A-algebras.

Let H = K1 ∗I K2 be the amalgamation of K1 and K2 along I. By [Ser77],
Théorème 1, the natural map I → H is injective. The following proposition shows
that H is naturally a locally profinite topological group:

Proposition 4.1. With the colimit topology,5 H is a locally profinite group with a
basis of open neighbourhoods of the identity being given by open neighbourhoods of I.

Proof. Let H and H ′ respectively denote H with the colimit topology and the
topology for which translates of open subgroups of I are a basis of open sets. Let
i : H → H ′ and j : H ′ → H be the identity maps; we have to show that they
are both continuous. But i is continuous by the universal property of H, and j is
continuous because the map I → H is continuous. �

We now consider the amalgamated product of rings, A[[K1]] ∗A[[I]] A[[K2]]. Note
first that A[K1] ∗A[I] A[K2] is simply the group ring of H over A. This is because
the functor G 7→ A[G] from groups to A-algebras is a left-adjoint, and so commutes
with the colimit ∗.

In general, we have A-algebra maps A[[K1]] → A 〈H〉 and A[[K2]] → A 〈H〉
which agree on A[[I]], and so (by the universal property) an A-algebra map α :
A[[K1]] ∗A[[I]] A[[K2]]→ A 〈H〉.

Proposition 4.2. The map

α : A[[K1]] ∗A[[I]] A[[K2]]→ A 〈H〉

is an isomorphism of A-algebras.

Proof. Let R = A[[K1]] ∗A[[I]] A[[K2]].
The composite map

A[H] = A[K1] ∗A[I] A[K2]→ R→ A 〈H〉

is easily seen to be the natural map A[H] → A 〈H〉. It follows that the image of
R in A 〈H〉 contains A[H] and A[[Ki]] and so in fact is all of A 〈H〉, whence α is
surjective.

Moreover, from the universal property of ⊗, for each i we have a map of
(A[H], A[[Ki]])-bimodules

A[H]⊗A[Ki] A[[Ki]]→ R

and these define the same map β : A 〈H〉 → R. Since this is a map of right A[[K1]]-
and A[[K2]]-modules, we see that β ◦ α is the identity — it is enough to check that
it takes 1 to 1. Therefore α is injective and so an isomorphism. �

5The coarsest topology on H such that for every topological group G equipped with continuous
maps Ki → G agreeing on I, there is a continuous map H → G extending these.
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4.1. Coherence. Recall that a ring R is (left) coherent if any of the following
equivalent definitions hold:

(1) every finitely generated left ideal of R is finitely presented;
(2) if f : M → N is a map of finitely presented left R-modules, then ker(f) is

finitely presented;
(3) the category of finitely presented left R-modules is an abelian subcategory

of the category of left R-modules.

Proposition 4.3. If the rings A[[Ki]] are coherent and A[[I]] is noetherian, then
A 〈H〉 is coherent.

Proof. This follows immediately from [Å82] Theorem 12; the hypotheses of that
theorem are satisfied, by Lemma 3.3. For the convenience of the reader, we summarise
the argument of [Å82] in the case of interest to us. It uses the characterisation —
due to Chase [Cha60] — of left coherent rings as those for which arbitrary products
of right flat modules are flat. Let R, S and T be rings such that S and T are
R-algebras, and Q = S ∗R T is flat as a right R, S or T -module; we will take
R = A[[I]] and S = A[[K1]], T = A[[K2]]. Then there is a Mayer–Vietoris sequence

for TorQ in terms of TorS , TorR and TorT . If R is left noetherian and S and T
are left coherent, then take a set (Fi)i∈I of right flat Q-modules and compare the
Mayer–Vietoris sequence for Tor(

∏
Fi,M) with the product of those for Tor(Fi,M),

for an arbitrary left Q-module M This gives TorQi (
∏
Fi,M) = 0 for i > 1. Since

S and T are left coherent and that, as R is left noetherian and the Fi are right
flat R-modules, (

∏
Fi) ⊗R M →

∏
(Fi ⊗R M) is injective by [Å82] Lemma 6. It

follows that TorQ1 (
∏
Fi,M) also vanishes, so that TorQi (

∏
Fi,M) = 0 for all i > 0

as required. �

Combining with Theorem 3.7 we get:

Corollary 4.4. Suppose that H is a p-adic analytic group that is an amalgamated
product of two compact open subgroups. Then A 〈H〉 is coherent. �

Theorem 4.5. Suppose that H is a p-adic analytic group that is an amalgamated
product of two compact open subgroups. Then the category of finitely presented
K-finite A-representations of H is an abelian subcategory of the category of A-
representations of H.

Proof. It suffices to show that the kernel or cokernel of a map of finitely presented
K-finite A-representations of H is also a finitely presented K-finite A-representation.
This is straightforward for cokernels, and does not require the ring A 〈H〉. For kernels,
suppose that f : V →W is a map of finitely presented K-finite A-representations
of H. Then ker(f) is a K-finite A-representation of H, and by Proposition 3.8 and
Corollary 4.4 it is finitely presented as a left A 〈H〉-module. By Proposition 3.8
again, it is a finitely presented A-representation of H. �

5. Applications.

Let F be a local field of characteristic 0 with ring of integers OF and residue
field k of characteristic p, and let D be a division algebra over F with ring of
integers OD. Choose a uniformiser π of D. Let G = GL2(D) and let G′ = SL2(D)
be the subgroup of elements of reduced norm 1. Let K1 = GL2(OD) and let
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K ′1 = SL2(OD) = K ′ ∩ SL2(D). Let α =

(
1 0
0 π

)
∈ G, and let K2 = αK1α

−1 and

K ′2 = K2 ∩G′. Let

I = K1 ∩K2 =

{(
a b
c d

)
∈ K1 : c ≡ 0 mod π

}
and I ′ = I ∩G′ = K ′1 ∩K ′2.

Theorem 5.1. The category of finitely presented K-finite A-representations of G′

is an abelian subcategory of CK-fin
A (G′).

Proof. By a theorem of Ihara (Serre [Ser77] Chapter II Corollary 1) we know that
G′ = K ′1 ∗I′ K ′2. The theorem follows from Theorem 4.5. �

Corollary 5.2. The category of finitely presented, K-finite, (locally) Z-finite A-

representations of G is an abelian subcategory of CK-fin
A (G).

Proof. Let G0 be the subgroup of G of elements whose reduced norm is in O×F and
let Z be the centre of G. Then ZG0 has finite index in G, Z ∩ G0 is compact,
and Z/Z ∩ K is finitely generated for any compact open subgroup K of G. Let
f : V1 → V2 be a map of K-finite Z-finite finitely presented representations of G.
By Proposition 2.10 they are finitely presented representations of G0. By [Ser77]
Chapter II Theorem 3, G0 = K1 ∗I K2, and so Theorem 4.5 the kernel ker(f) is
finitely presented as a representation of G0. By Proposition 2.10 again, it is a finitely
presented representation of G. �
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No. 46. MR 0476875

[Sta17] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2017.

[Vig11] Marie-France Vigneras, Le foncteur de Colmez pour GL(2, F ), Arithmetic geometry
and automorphic forms, Adv. Lect. Math. (ALM), vol. 19, Int. Press, Somerville, MA,

2011, pp. 531–557. MR 2906918

http://stacks.math.columbia.edu

	1. Introduction
	2. Finitely presented representations.
	3. Completed group rings.
	4. Amalgamations and coherence
	5. Applications.
	References

