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Abstract. Let F/Qp be �nite, G be an L-group, and let XG be the moduli
space of Langlands parameters WF → G, in characteristic distinct from p.
First, we determine the irreducible components of XG. Then, we determine the
local structure around tamely rami�ed points for which the image of inertia is
regular. This local structure is related to the endomorphism rings of Gelfand�
Graev representations, by work of Li. Lastly, we determine an open dense set
in XM , when M is a Levi subgroup of G, such that the natural map of moduli
stacks [XM/M◦] → [XG/G◦] is smooth on this set.

1. Introduction

Let p be a prime and let F be a �nite extension of Qp with Weil group WF . Let

G = G◦ ⋊ Γ

with G◦ a split reductive group scheme1 over Z[1/p] and Γ a �nite quotient of WF

equipped with an action on G◦ by automorphisms preserving a split Borel pair
(B, T ). Dat, Helm, Kurinczuk, and Moss [DHKM20] have shown that the functor
on Z[1/p]-algebras

R 7→ {L-homomorphisms W 0
F → G(R)}

is representable by a scheme XG, locally of �nite type and �at over Z[1/p] � here
W 0

F is a certain choice of discretization of WF .
2

For L a �eld of characteristic zero, XG,L is known to be generically reduced by
work of Bellovin-Gee [BG19] and so it has a smooth open dense subset (which may
be made explicit). For L of characteristic l, this is far from being true, even for
G = GL1. However, one can still hope for a nice description at an open dense
set of points. For G = GLn, in the tame case, we did this in [Sho22], �nding a
local description of XG around a dense subset of its �bre at each prime l. This
description turns out to be related to the endomorphism algebra of the (integral)
Gelfand-Graev representation, and we applied this to the l ̸= p �Breuil�Mézard�
conjecture.

Our aim here is to extend the geometric part of that work to general groups G.
We do not quite succeed. Roughly, we can only deal with components on which
the L-parameter factors through a Levi subgroup in which `inertia is regular'. For
these components, we obtain a description similar to that for GLn, again related to

Date: December 5, 2023.
1Recall that these are de�ned to have connected �bres.
2In [DHKM20], they write LG for our G and Ĝ for our G◦. This is more in keeping with the

usual notation in the Langlands program, but leads to a proliferation of `L's and hats that we
prefer to avoid.
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2 JACK SHOTTON

the endomorphism algebras of Gelfand-Graev representations by work of Li [Li23].
For G = GLn this is everything, but for general G there are components which fall
outside our description. A limitation is that we restrict to G unrami�ed; however,
as in section 5.2 of [DHKM20], in many situations one may reduce to this case. (We
also require G◦ to have smooth centre and simply connected derived subgroup).

The �rst task, of independent interest, is the determination of the geometri-
cally irreducible components of XG and its reductions modulo primes l ̸= p. The
(geometric) connected components of XG, as well as of its base changes to Zl (equiv-
alently, Fl) for primes l ̸= p, are determined in [DHKM20]. The determination of
the irreducible components takes a similar form, and was explained to us some time
ago by David Helm; we have written down the argument in section 2 below.

We now outline the contents of this paper in more detail. First, the determination
of irreducible components. For G an algebraic group acting on a scheme X, let Gx

denote the stabiliser of a point x ∈ X(R) (it is a closed subscheme of GR).

Theorem (Corollary 2.7). Let L be an algebraically closed �eld of characteristic
distinct from p. There is a bijection between the set of irreducible components of
XG,L and the set of G◦(L)-conjugacy classes of pairs (η, α) where:

• η is a continuous3 L-homomorphism I0F → G(L) over L that extends to
W 0

F ; and
• α is a component of the (G◦)η-torsor of extensions of η to W 0

F .

Note that two pairs (η, α) and (η, α′) are G◦(L)-conjugate if and only if α and
α′ are conjugate under π0((G

◦)η).
The critical case (by the `tame reduction' of [DHKM20] sections 3 and 4.5 and

the discussion following Lemma 5.7) is when the action of WF on G◦ is unrami�ed
and η is tamely rami�ed, so determined by an element Σ ∈ G◦(L). In this case the
irreducible components of type Σ are in bijection with twisted conjugacy classes of
the component group of the centralizer of Σ in G◦.

Assume, therefore, that Γ corresponds to an unrami�ed extension of F , and
de�ne Xtame

G to be the moduli space of tamely rami�ed L-parameters. We have a
presentation

W 0
F /PF

∼=
〈
Fr, σ : Frσ Fr−1 = σq

〉
where q is the order of the residue �eld of F . De�ne XΣ-reg

G to be the open subset
of parameters ρ where Σ = ρ(σ) ∈ G◦ is regular. Let T be a maximal split torus
in G◦ preserved by the action of WF . Let T//W be the GIT quotient of T by the
action of the Weyl group W . There is a morphism, the Steinberg morphism,

Ch : G◦ → G◦//G◦ ∼−→ T//W.

Let
(T//W )Fr

−1[q]

be the closed subscheme of T//W �xed by Fr−1[q], where [q] is the qth power map.

Theorem (Theorem 3.7). Suppose that G◦
der is simply connected and that the centre

of G◦ is smooth. Then the morphism

XΣ-reg
G → (T//W )Fr

−1[q]

sending ρ to Ch(ρ(σ)) is smooth and surjective.

3For the discrete topology on L.
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Remark 1.1. Suppose that G is the L-group of an unrami�ed group with smooth
integral modelG/OF and thatG◦

der is simply connected. In this case, the coordinate

ring of (T//W )Fr
−1[q] has been shown in [Li23] in characteristic not dividing |W |,

and in [LS] in the case of good characteristic, to be isomorphic to the endomorphism
ring of the Gelfand�Graev representation of G(kF ). This is an inertial shadow of
the (conjectural) local Langlands correspondence in families.

Remark 1.2. Under suitable assumptions on G (as in [XZ19] Remark 4.3.4) we
might expect a similar result when G is tamely rami�ed. See Remark 3.9 below.

Remark 1.3. In [DHKM20] Proposition 5.12 one �nds conditions under which
points of the special �bre with Σ regular unipotent are smooth (at least for l > h,
where h is the Coxeter number of G). The condition takes the form l ∤ χG(q) where
χG is a certain product of cyclotomic polynomials depending on G. Our result
provides a clean description of XG at such points when l | χG(q), as long as G◦

der is
simply connected.

Finally, we can go beyond the Σ-regular locus with the following result, for which
we can drop the assumption that G is unrami�ed. By a standard Levi subgroup of
LG we mean a subgroup of the form M = M◦⋊Γ where M◦ is a Γ-stable standard
Levi subgroup of G◦ (relative to our �xed split maximal torus).

Theorem (Theorem 4.2). Suppose that M is a standard Levi subgroup of G. Con-
sider the morphism

c : G◦ × XM → XG

sending (g, ρ) to gρg−1. Then there is an open subset U ⊂ XM such that c|U is
smooth and U intersects each �bre of XM → SpecZ[1/p] in a dense open subset.

Remark 1.4. The theorem is in the spirit of Lemma 5.14 of [DHKM20], which
achieves a similar reduction for their study of unobstructedness.

For G = GLn, the image of

(1)
⋃
M

im(G◦ × XΣ-reg
M → Xtame

G ),

where M runs over conjugacy classes of standard Levi subgroups, is �brewise dense
in XG (see [Sho22]). In general this is not true; there are two issues coming from
the disconnectedness of component groups and the existence of non-regular distin-
guished unipotent conjugacy classes. We give examples in section 5.

In [Sho22] we were able to use this and the desciption of the coordinate ring
of (T//W )[q] as the endomorphism ring of a Gelfand�Graev representation4 to give
a local proof of the author's �l ̸= p Breuil�Mézard conjecture� in the tame case.
It should be possible to do something similar for unrami�ed groups, but only for
modular L-parameters which lie only on components in the image of (1). Given
this serious restriction, we will not discuss this point further here.

1.1. Acknowledgments. We thank David Helm for explaining to the author the
results of section 2, and Tzu-Jan Li for helpful conversations concerning the signif-

icance of (T//W )Fr
−1[q]. We thank Sean Cotner for pointing out a gap in the proof

of Corollary 3.8, and helping to �x it. Finally, we thank an anonymous referee for
a thorough reading that greatly improved this article.

4In fact, we just need the weaker result after ⊗Q.
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2. The moduli space of parameters

2.1. Notation. As in the introduction, let F/Qp be a �nite extension with ring of
integers OF and residue �eld kF of order q. Let WF be the Weil group of F with
inertia group IF and wild inertia group PF . We choose a lift Fr ∈ WF of arithmetic
Frobenius and a lift σ ∈ IF of a topological generator of IF /PF in such a way that
Frσ Fr−1 = σq (this can be done by [Iwa55] Theorem 2). Let W 0

F be the subgroup
of WF generated by σ,Fr, and PF ; its intersection with IF is denoted I0F . We have
that I0F /PF

∼= Z[1/p] via an isomorphism sending σ to 1. We topologise W 0
F such

that the cosets of open subsets of PF (with its pro�nite topology) form a base for
the topology on W 0

F .
Let G be an algebraic group over Z[1/p] of the form G◦ ⋊Γ where: G◦ is a split

reductive group scheme over Z[1/p], Γ is a �nite quotient of WF , and Γ acts on G◦

via automorphisms preserving a split Borel pair (B, T ). We write the action of WF

on G◦ using left superscripts: (w, g) 7→ wg. Finally, we let (X∗(T ),∆, X∗(T ),∆
∨)

be the root datum associated to G◦, together with its action of WF .
If H is a subgroup of WF and R is a Z[1/p]-algebra, then an L-homomorphism

H → G(R) is a continuous (for the discrete topology on G(R)) homomorphism

ρ : H → G(R)

such that the composite of ρ with G(R) → Γ agrees with H → WF → Γ coming
from the given surjection. For h ∈ H, we write ρ(h) = (ρ◦(h), h) (slightly loosely
using the same letter h for an element of H and its image in Γ). If H ⊂ H ′ then by
an extension of ρ to H ′ we will mean an L-homomorphism ρ̃ : H ′ → G(R) whose
restriction to H ′ is ρ. If γ ∈ Γ then we will write

G◦ ⋊ γ = {(g, γ) : g ∈ G◦}
for the corresponding connected component of G.

When G acts on a scheme X and η ∈ X(S), we write Gη for the stabiliser group
scheme (de�ned over S). We adopt the convention that G◦

η = (G◦)η, and not (Gη)
◦.

If X → S and T → S are morphisms of schemes, then we will sometimes write
XT = X ×S T (particularly when T is a point or geometric point of S). If A is
a Z[1/p]-algebra and X is a scheme over SpecZ[1/p] then we will write XA for
X ×SpecZ[1/p] SpecA, reserving this notation for this situation.

2.2. The moduli space of L-parameters. One of the main results of [DHKM20]
is the following.

Theorem 2.1 (Dat�Helm�Kurinczuk�Moss). The functor sending a Z[1/p]-algebra
R to the set of L-homomorphisms W 0

F → G(R) is representable by a scheme XG

over Z[1/p]. Moreover, XG has the following properties:

(1) The morphism XG → SpecZ[1/p] is syntomic (�at, locally of �nite presen-
tation, with �bres that are local complete intersections) of relative dimension
dimZ[1/p] G, the relative dimension of G over Z[1/p].

(2) If L is a �eld of characteristic zero then XG ×SpecZ[1/p] SpecL is reduced.5

(3) The connected components of XG are �nitely presented over Z[1/p].

If Λ is a Z[1/p]-algebra, then we write XG,Λ = XG×SpecZ[1/p]SpecΛ. Theorem 2.1
remains true with Z[1/p] replaced by Λ.

5This part relies crucially on prior work of Bellovin-Gee [BG19].



IRREDUCIBLE COMPONENTS OF THE MODULI SPACE OF LANGLANDS PARAMETERS 5

2.3. Components. Let L be an algebraically closed �eld of characteristic l distinct
from p; we allow l = 0. We aim to determine the irreducible components of XG =
XG,L, after �rst recalling a result on the connected components.

Theorem 2.2 (Dat�Helm�Kurinczuk�Moss). There are bijections between the sets
of:

(1) Connected components of XG,L; and
(2) G◦(L)-conjugacy classes of pairs (η, α) where η : IF → G(L) is G-semisimple

(see [DHKM20] De�nition 4.12) and α is a connected component of the va-
riety of extensions of η to WF .

If l > 0 then these are in turn in bijection with the sets of connected components of
XG,Fl

and of XG,W (Fl)
.

Proof. The bijection between the �rst two sets follows from [DHKM20, Theorem
1.7] (see also [DHKM20, Corollary 4.21] parts (2) and (5)).

The �nal statement follows from [DHKM20, Theorem 4.8]. □

Remark 2.3. Since η in (5) has �nite image (since it is assumed to be continuous
for the discrete topology on L), if L has characteristic zero then theG-semisimplicity
condition is automatic.

For the rest of this section, we base change everything to L � so G = GL etc.

De�nition 2.4. An L-homomorphism η : I0F → G(L) is admissible if it extends to
an L-homomorphism W 0

F → G(L).

Given an admissible η, we consider the a�ne L-scheme Yη de�ned on L-algebras
R by

Yη(R) = {ρ : W 0
F → G(R) extending η}.

We write Σ(η) for its set of connected components (so we use the same notation as
that for a similarly-de�ned set in [DHKM20] section 3.2).

If we write Φ = ρ(Fr) then

Yη
∼= {Φ ∈ G◦ ⋊ Fr : Φη(γ)Φ−1 = η(Fr γ Fr−1) for all γ ∈ I0F }

and we see that Yη is a left G◦
η-torsor via left multiplication on Φ. If we �x ρ0

extending η with ρ0(Fr) = Φ0, then we can identify Yη
∼= G◦

η, with a general point
having ρ(Fr) = ϕΦ0 for ϕ ∈ G◦

η.
There is a second action of G◦

η on Yη given by conjugation. On choosing ρ0 as
in the previous paragraph, this may be identi�ed with the action of G◦

η on itself by
AdΦ0

-twisted conjugation.
If I is the moduli space of L-homomorphisms I0F → G(R) (for L-algebras R),

then I is a union of connected components that are each a�ne of �nite type over L.
The G◦-orbit of η ∈ I(L), G◦ · η, then naturally has the structure of a quasia�ne
variety and, by [Mil17] Corollary 7.13, there is an isomorphism

G◦/G◦
η

∼−→ G◦ · η.
There is a natural morphism pI : XG → I and we write

Xη = p−1
I (G◦ · η),

a locally closed subscheme of Xη. Note that, by de�nition, we have

Yη = p−1
I (η).
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Theorem 2.5 and Corollary 2.7 below were explained to the author by David
Helm.

Theorem 2.5. For each admissible L-homomorphism η : I0F → G(L), every con-
nected component of Xη is irreducible, and its Zariski closure in XG is an irreducible
component of XG.

If η is chosen as above, then there is a bijection between:

(1) The set of connected (or irreducible) components of Xη;
(2) The set of π0(G

◦
η)-conjugacy classes in Σ(η).

If we choose a ρ0 : W 0
F → G(L) extending η, then these are in bijection with the

Adρ0(Fr)-twisted conjugacy classes in π0(G
◦
η).

Remark 2.6. From the proof of the theorem we will see that |Xη| is an open subset
of an irreducible component of |XG|. However, if charL ̸= 0, then neither Xη nor
XG need be reduced, and the non-reduced structures will typically not agree.

Proof. Note that we have an isomorphism

Yη ×G◦ ∼= Xη ×G◦·η G
◦

(ρ, g) 7→ (gρg−1, g)

by de�nition. Taking the quotient by G◦
η and using that G◦/G◦

η
∼= G◦ ·η, we obtain

an isomorphism

Xη
∼= G◦ ×G◦

η Yη.

It follows that Xη is a disjoint union of irreducible connected components corre-
sponding to the G◦

η-orbits in π0(Yη) = Σ(η), which are the same as the π0(G
◦
η)-

orbits.
Each component of Yη has dimension dimG◦

η and so the dimension of every
component of Xη is

dimG◦ + dimG◦
η − dimG◦

η = dimG◦ = dimXG.

Since G◦ · η is locally closed, the same is true for Xη. It follows that the underly-
ing topological space of each connected component of Xη is an open subset of an
irreducible component of Xη. □

Corollary 2.7. There are bijections between:

(1) The set of irreducible components of XG,L;
(2) The set of G◦(L)-conjugacy classes of pairs (η, C) where η : I0F → G(L) is

an admissible L-homomorphism and C is a connected component of Σ(η).

Let T be a set of representatives of the G◦(L)-conjugacy classes η as in (2). For
each η ∈ T , choose an extension ρη of η to W 0

F .
Then these sets are in bijection with the set

{(η, C) : η ∈ T and C is an Adρη(Fr)-twisted conjugacy class of π0(G
◦
η)}.

Proof. By Theorem 2.5, it is enough to prove that every irreducible component of
XG arises as the closure of an irreducible component of some Xη, for η unique up
to G◦-conjugacy.

To this end, for each irreducible component C of XG, let ρ be an L-point that
lies only on that component and take η = ρ|I0

F
. Then one of the components of Xη

contains ρ, and its closure is an irreducible component of XG containing ρ, which
must therefore be equal to C.
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Finally, to see that η is unique, note that if C is the closure of a connected
component of Xη then it has an open dense subset of points for which the restriction
to I0F is G◦-conjugate to η. This can clearly happen for only one G◦-conjugacy class
of η. □

3. The Σ-regular locus

3.1. Regular elements and the Steinberg morphism. For this subsection
only, let G be a split connected reductive group de�ned over a ring Λ. Let T
be a split maximal torus and B ⊃ T a Borel subgroup. Let W be the Weyl group
of G relative to T . Let r be the rank of T .

Consider the conjugation action of G on itself, and denote the GIT quotient
SpecΛ[G]G by G//G. We also de�ne

T//W = SpecΛ[T ]W = SpecΛ[X∗(T )]W .

Theorem 3.1. (1) The restriction morphism

T//W → G//G

is an isomorphism.
(2) The formation of T//W and G//G is compatible with base change: for any

Λ-algebra Λ′,

GΛ′//GΛ′ ∼= (G//G)Λ′

and similarly for T//W .

Proof. (1) Over a �eld this is a theorem of [Ste65]. Over a general ring see
[Lee15].

(2) This is [Lee15, Lemma 4.2] for G//G, and [Lee15, Lemma 3.1] for T//W .
□

If L is a �eld (and a Λ-algebra) then, for any g ∈ G(L), its centraliser Gg has
dimension ≥ r, and we say that g is regular if equality holds. Then

Greg = {g ∈ G : g is regular in G(κ(g))}

is an open subset of G (by semicontinuity, [Ber65, Proposition 4.1]).

Theorem 3.2. Suppose that Gder is simply connected. Then

(1) The natural morphism

Ch : G → G//G

is faithfully �at, and its restriction to Greg is smooth and surjective.
(2) There is an isomorphism

G//G ∼= Ar
Λ ×G/Gder.

Proof. (1) By the �brewise criterion for �atness, we may check this after base-
change to a �eld. It then follows from [BR22, Propositions 2.4 and 2.5].

(2) This is [BR22, Lemma 2.3] over a �eld; however, the proof works over Λ

if one takes χα in that proof to be the character of IndGB ωα rather than
its socle. (In the semisimple simply connected case, see also [Lee15, Corol-
lary 5.2]).

□
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Finally, we recall the statement of [Cot22, Theorem 7.13] (noting that, if Gder is
simply connected, then `regular' and `strongly regular' in [Cot22] are equivalent).

Proposition 3.3. (Cotner) Suppose that Λ = L is a �eld, that Gder is simply
connected, and that ZG is smooth. Then, for every regular element g ∈ G(L), the
centralizer Gg is smooth.

3.2. Application to XG. Return to the notation of section 2.1. For this subsection
we assume that G is unrami�ed, in the sense that IF acts trivially on G◦. We then
may assume that IF ⊂ ker(WF → Γ), and consider only tame parameters: those
that factor through W 0

F /PF . De�ne Xtame
G to represent the functor on Λ-algebras

Xtame
G (R) = {L-parameters ρ : W ◦

F /PF → G(R)}.

Remark 3.4. By [DHKM20] (4.4) and (4.5), the critical case to consider is that of
tame parameters for tamely rami�ed G � and when considering Xtame

G,Zl
it is possible

to assume that the order of the automorphism σ is a power of l. In particular, if
G is semisimple and simply connected, then it is no great loss to assume that G is
unrami�ed so long as l > 3.

We have that

W 0
F /PF =

〈
σ,Fr : Frσ Fr−1 = σq

〉
and, for a parameter ρ : W 0

F → G(R), we write

ρ(σ) = Σρ ∈ G◦

(recalling that G is unrami�ed) and

ρ(Fr) = (Φρ,Fr).

Let pΣ and pΦ be the morphisms Xtame
G → G◦ taking ρ to Σρ and Φρ respectively.

Let AG = G◦//G◦ ∼= T//W . By Theorem 3.1 we have a morphism

Ch : G◦ → AG.

Note that Fr acts on W , T , and AG. Let [q] : G
◦ → G◦ be the qth power map.

The morphisms Fr and [q] each descend to morphisms, also denoted Fr and [q],
from G◦//G◦ to G◦//G◦. We let

BG = (G◦//G◦)Fr
−1[q] = A

Fr−1[q]
G

be the �xed-point subscheme of AG under the map Fr−1[q].

Lemma 3.5. The morphism Xtame
G → AG sending ρ to Ch(Σρ) factors through a

map

ChΣ : Xtame
G → BG.

Proof. If ρ is an R-point of Xtame
G for a Z[1/p]-algebra R, then ρ(Fr)Σρρ(Fr)

−1 = Σq
ρ.

This is equivalent to

Φρ
FrΣρΦ

−1
ρ = Σq

ρ

and so
FrCh(Σρ) = Ch(FrΣρ) = Ch(Σq

ρ) = [q]Ch(Σρ).

Thus Ch(Σρ) ∈ (G◦//G◦)Fr
−1[q] = BG as required. □
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Remark 3.6. Suppose that Λ is a Z[1/p]-algebra and let AG,Λ = TΛ//W and

BG,Λ = A
Fr−1[q]
G,Λ . By Theorem 3.1 part (2), AG,Λ = AG ×SpecZ[1/p] SpecΛ. It

follows formally that BG,Λ = BG×SpecZ[1/p]Λ. Finally, the map ChΛ : G◦
Λ → AG,Λ

provided by Theorem 3.1 part (1) agrees with the base change of Ch to Λ, and
Lemma 3.5 holds over Λ.

Let XΣ-reg
G = p−1

Σ (G◦,reg). It is an open subscheme of Xtame
G .

Theorem 3.7. Suppose that G◦
der is simply connected and that Λ is a Z[1/p]-algebra

such that ZG◦,Λ is smooth over Λ. Then the restriction

ChΣ,Λ|XΣ-reg
G,Λ

: XΣ-reg
G,Λ → BG,Λ

is smooth and surjective.

Proof. Let

Zreg = {Σ ∈ G◦,reg : Σq ∈ G◦,reg and Ch(FrΣ) = Ch(Σq).}
⊂ G◦,reg ×AG

BG

with the latter inclusion being an open immersion. We show that in fact it is an
equality. For this, it su�ces to show that, if Σ ∈ G◦(κ) is regular, with κ an
algebraically closed �eld (and Λ-algebra), such that Ch(FrΣ) and Ch(Σ) are equal,
then FrΣ is conjugate to Σq. Considering the su decomposition of Σ and replacing
G by ZG(s)

◦, it is enough to prove that if Σ is regular unipotent then so are FrΣ
and Σq. The �rst is clear. For the second, we may assume that G is semisimple and
use the characterisation of regular unipotent elements as those whose projections
onto all the root spaces for simple roots are nontrivial (we thank Sean Cotner for
help with this).

Then the map Ch : Zreg → BG is smooth and surjective by Theorem 3.2 (1), and
pΣ|XΣ-reg factors through a map

pΣ : XΣ-reg → Zreg

that we wish to show is smooth.
Note that there is a closed immersion

ι : Zreg → G◦,reg ×AG
G◦,reg

Σ 7→ (FrΣ,Σq).

If we let

c : G◦ ×G◦,reg → G◦,reg ×AG
G◦,reg

be the conjugation morphism c(γ, g) = (g, γgγ−1) then the pullback of Zreg along
c is

{(γ, g,Σ) ∈ G◦ ×G◦,reg ×G◦,reg : g = FrΣ, γgγ−1 = Σq}
= {(γ,Σ) : γFrΣγ−1 = Σq}

= XΣ-reg
G .

It therefore su�ces to show that c is smooth and surjective after base change to
Λ. We think of c as a morphism of AG-schemes where G◦ × G◦,reg is regarded as
an AG-scheme via Ch on the second factor. Since G × G◦,reg is �at over AG by
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Theorem 3.2 (1), we may apply the �brewise criterion. It is therefore enough to
show that, for every geometric point s : Specκ → AG,Λ,

cs : G
◦
κ ×SpecΛ G◦,reg

s → G◦,reg
s ×SpecΛ G◦,reg

s

is smooth and surjective.
By Theorem 3.2 (1), G◦,reg

s is smooth and by [BR22] Proposition 2.5 it is a
single G◦

κ-orbit. The �bre of cs above a point (g, g′) ∈ G◦,reg
s (κ)×G◦,reg

s (κ) is then
a G◦

κ,g-torsor. It follows from the miracle �atness theorem that cs is �at, and from
Proposition 3.3 that it is smooth. □

As an application, we generalise [Hel20] Proposition 5.3.

Corollary 3.8. Suppose that the hypotheses of Theorem 3.7 hold with Λ = Zl.
Let S = O(Xtame

G,Λ )G
◦
Λ and R = O(BG,Λ). Then the natural map Ch∗Σ : R → S is

injective with saturated image.

Proof. Injectivity follows from the faithful �atness of ChΣ restricted to the regular
locus. If l ̸= p is a prime, then the same argument shows that Ch∗Σ ⊗ Fl = Ch∗Σ,Fl

(see Remark 3.6) is injective. Since S is a torsion-free Λ-module, this implies that
the image of Ch∗Σ is saturated. □

Remark 3.9. Remark 3.4 notwithstanding, it would be desirable to generalise
these results to the case that G is tamely rami�ed. In this case G◦//G◦ should be
replaced by

AG,σ = (G◦ ⋊ σ)//G◦ = G◦//σG
◦

(where //σ denotes the quotient for G◦ acting by σ-twisted conjugation). The q-
power map and Frobenius map de�ne G◦-equivariant morphisms

G◦ ⋊ σ → G◦ ⋊ σq

and we let BG,σ = A
Fr−1[q]
G,σ be their equaliser. There is a notion of σ-regularity,

for which see [XZ19] section 5. We then expect that, under appropriate hypotheses
on G◦ (perhaps those of [XZ19] Remark 4.3.4 together with a hypothesis on the

centre) there will be a smooth morphism XΣ-reg
G → BG,σ. For this we would require

generalizations of the results of section 3.1: that is, the results of [XZ19] sections 4
and 5 over a general base and for a reductive (rather than semisimple) group, and
Proposition 3.3 in the twisted context.

Remark 3.10. IfG is the L-group of an unrami�ed group then we have a representation-
theoretic interpretation of BG, see Remark 1.1. It would be interesting to have a
similar representation-theoretic interpretation of BG,σ, as de�ned in Remark 3.9,
in the tamely rami�ed case.

4. Levi subgroups

For this section we no longer assume that G is unrami�ed. Let M ⊂ G be a
standard Levi subgroup in the sense of [Bor79, section 3]: that is, a subgroup of the
form M◦ ⋊Γ where M◦ is a Γ-stable standard (with respect to our chosen T ) Levi
subgroup of G◦. Since Γ preserves a Borel subgroup B ⊃ T , there is a Γ-stable
standard parabolic subgroup P ◦ with Levi M◦, and we write P = P ◦ ⋊ Γ. Let
U be the unipotent radical of P ◦ and U− its opposite. We have a decomposition
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Lie(G) = Lie(M) ⊕ Lie(U) ⊕ Lie(U−) that is stable under the action of W 0
F on

Lie(G). We also have a natural closed immersion

XM ↪→ XG

and a conjugation map

c : G◦ × XM → XG

(g, ρ) 7→ gρg−1.

We will show that there is an open and �brewise dense subset V ⊂ XM such
that c : G◦ × V → XG is smooth. If we �x a separated �ltration (P d

F )d≥0 of PF by
open subgroups then

Xd
M = {ρ ∈ XM : ρ|Pd

F
is trivial}

is a union of connected components of XM .
Let d ≥ 1 and let r be an integer, depending on d, such that:

• Frr = e in Γ;
• The conjugation action of Frr on PF /P

d
F is trivial; and

• For any semisimple s ∈ G◦(Q)⋊ σ such that s is conjugate to sq, we have
s = sq

r

.

Such an integer must exist; for instance, choose a faithful representation G ↪→ GLN

and take r = n! ordΓ(Fr)|Aut(PF /P
d
F )|. The �rst two conditions immediately follow

from the divisibility of r by its second and third factors, respectively. The third
condition follows from the divisibility of r by n! and the fact that, if s ∈ GLN (Q)

with s conjugate to sq, then s = sq
n!

. See also [DHKM20] Lemma 2.2 for a similar
argument. Say that m ∈ M◦(R)⋊ Fr is avoidant at depth d if:

• adm −1 and adm −q are invertible on Lie(U)(R) and Lie(U−)(R);
• if χ is the characteristic polynomial of admr on Lie(M)(R) ⊕ Lie(U)(R),
and γ ∈ Γ, then χ(adγmr ) is invertible on Lie(U−)(R); and

• the same condition holds with the roles of U and U− reversed.

The relevance of the �rst condition will become clear, while the second and third
are used via the following lemma.

Lemma 4.1. Suppose that a, b ∈ M◦(Q) satisfy the condition that, if χ is the char-
acteristic polynomial of ada on LiePQ = LieMQ ⊕LieUQ, then χ(adb) is invertible

on Lie(U−
Q ), and similarly with the roles of U and U− reversed.

If b = gag−1 for some g in G◦(Q), then g ∈ M◦(Q).

Proof. Let g ∈ G◦(Q) such that gag−1 = b. Then adg takes each (generalised)
eigenspace of ada to a generalised eigenspace of adb with the same eigenvalue. The
assumption on a and b then implies that Lie(MQ) ⊕ Lie(UQ) is stable under adg,
from which it follows that the parabolic subgroup M◦

QUQ is normalised by g. Since

a parabolic subgroup is its own normaliser, we see that g ∈ M◦U . Arguing similarly
with U and U− reversed, we see that g ∈ M◦U ∩M◦U− = M◦ as required. □

Write Md,a for the open subscheme of M◦ ⋊ Fr consisting of those Φ avoidant

at depth d. Let Xd,a
M = {ρ ∈ Xd

M : ρ(Fr) ∈ Md,a}, and let Xa
M =

⋃
d≥1 X

d,a
M . We

have a morphism
c : G◦ × XM → XG

given by c(g, ρ) = gρg−1. This descends to a morphism c : G◦ ×M◦
XM → XG.
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Theorem 4.2. (1) The open subscheme Xa
M ⊂ XM is �brewise dense.

(2) The restriction of c to G◦ × Xa
M is smooth.

(3) The restriction of c to G◦ ×M◦
Xa

M is étale.

Proof. If M = G then all of these statements are trivial. So assume that M is a

proper standard Levi subgroup. It is enough to prove the theorem for Xd,a
M for each

�xed d ≥ 1, so �x such a d.

(1) Let J ⊊ ∆ be the set of simple roots associated to P . As in the proof
of [Bor79] Lemma 3.5, if we let A be the maximal subtorus of Z(M◦) and

S = {s ∈ A ∩G◦
der : α(s) = β(s) for all α, β ∈ ∆ \ J},

then S is a rank one torus and M = ZG(S). If λ ∈ ∆ \ J , then the
weights of S acting adjointly on Lie(U) (respectively, Lie(U−)) are positive
(respectively, negative) powers of λ|S , which is independent of the choice
of λ by de�nition. Since W 0

F acts on S ∼= Gm by automorphisms and also
preserves U and λ|S , it must �x S. For s ∈ S, let χs be the unrami�ed
character of W 0

F sending Fr to s.
Suppose that x ∈ SpecZ[1/p] with residue �eld κ and that ρ is a closed

point of the �bre Xd
M,κ. Consider the map

Sκ → XM,κ

s 7→ χsρ.

The eigenvalues of adsρ(Fr) acting on Lie(U) are of the form λ(s)nµ for µ
an eigenvalue of adρ(Fr) and n positive. Similarly, for each γ ∈ Γ, the eigen-

values of adsγρ(Fr) on Lie(U−) are of the form λ(s)nµ′ for µ′ an eigenvalue
of adγρ(Fr) and n negative. From this and the same considerations with the

roles of U and U− reversed, it follows that sρ(Fr) is avoidant at depth d

for all but �nitely many s ∈ Sκ. In particular, ρ is in the closure of Xd,a
M,κ

as required.
(2) Let Z be the locally closed subscheme of Xd

G given by

Z = {ρ ∈ Xd
G : ρ(Fr) ∈ Md,a}.

(a) We �rst show that the morphism G◦ × Z → Xd
G sending (γ, ρ) to

γργ−1 is smooth. This map is the pullback of the conjugation map
c : G◦×Md,a → G along the projection Xd

G → G sending ρ to ρ(Fr). It
is enough to show that c is smooth. Since G◦×Md,a and G are smooth
over Z[1/p], it is enough (by the �brewise criterion of smoothness,
[Gro67, Proposition 17.8.2], together with [Gro67, Proposition 17.7.1
and Théorème 17.11.1(d)]) to show that the derivative Dc is surjective
on geometric tangent spaces. Since the map c is equivariant for the
action of G◦ we may check this at a point (e,m) ∈ (G◦ ×Md,a)(κ) for
an algebraically closed �eld κ. Identify the tangent spaces of G◦

κ×Md,a
κ

(resp. Gκ) at (e,m) (resp. m) with LieGκ ⊕ LieMκ (resp. LieGκ) via
left multiplication by (e,m) (resp. m). A computation shows that for
(X,Y ) ∈ LieGκ ⊕ LieMκ

Dc(X,Y ) = (ad−1
m −1)X + Y,

so that Dc is surjective by the assumption that m is avoidant at depth
d.
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(b) We must show that the closed immersion ι : Xd,a
M → Z is an isomor-

phism. Since XG is Z[1/p]-�at and reduced, Z also has these proper-
ties. Since ι is a closed immersion of Z[1/p]-�at schemes, it is enough
to show that ι⊗Z[1/p] Q is an isomorphism.

(c) Since Z ⊗Z[1/p] Q is reduced and of �nite type over Q, it is enough to

show that ι ⊗ Q is a bijection on closed points. Thus we must show
that, if ρ ∈ Z(Q), then ρ ∈ Xd

M (Q). In other words, if ρ is an L-

parameter with ρ(Fr) ∈ Md,a(Q), then we also have ρ(σ) ∈ M(Q) and
ρ(g) ∈ M(Q) for all g ∈ PF /P

d
F .

Let ρ be such a parameter, and let ρ(σ) = (Σs, σ)Σu be the Jordan
decomposition of ρ(σ) (we must have that ρ(σ)u ∈ G◦(Q) since Q has
characteristic zero).

(d) We show that Σu ∈ M◦(Q). Write Σu = exp(N) for N ∈ Lie(G)(Q).
Then (by uniqueness of Jordan decomposition) we have adρ(Fr)(N) =
qN . By our assumption that ρ(Fr) is avoidant at depth d, we have
N ∈ Lie(M)(Q) and so Σu ∈ M◦(Q).

(e) We next show that Σs ∈ M◦(Q). Let r be as above. Then

ρ(Fr)r(Σs, σ)ρ(Fr)
−r = (Σs, σ)

qr = (Σs, σ),

which may be rewritten as

(Σs)
−1ρ(Fr)rΣs =

σρ(Fr)r.

Applying Lemma 4.1, we see that Σs ∈ M◦(Q) as required.
(f) Finally, we show that ρ(g) ∈ M(Q) for g ∈ PF /P

d
F . This is identical

to the previous step: if π = ρ◦(g) we obtain

π−1ρ(Fr)rπ = gρ(Fr)r

and therefore that π ∈ M◦(Q).
(3) It follows from part 2 that c is smooth of relative dimension

dim(G◦ ×M◦
Xa

M )− dimXG = dimG◦ − dimM◦ + dimXM − dimXG = 0,

by Theorem 2.1, and hence étale.

□

Remark 4.3. In fact, c descends further to a map G◦ ×NG◦ (M◦) Xa
M → XG which

one can show is an open immersion. This implies that c is a torsor under

NG◦(M◦)/M◦ ∼= NW (WM◦)/WM◦

(see [MT11] Corollary 12.11 for this isomorphism).

Remark 4.4. The formation of Xa
M is compatible with base change, as is the

property of �brewise density, and so we obtain Theorem 4.2 over any Z[1/p]-algebra
Λ.

5. (Non-)Examples

In all the following examples we consider unrami�ed G and tamely rami�ed L-
homomorphisms only. If κ is an algebraically closed �eld of characteristic distinct
from p, then the irreducible components of XG,κ are in bijection with the G◦(κ)-
conjugacy classes of pairs (Σ, C), where Σ ∈ G◦(κ) and C is an element of

π0({Φ ∈ G◦
κ : ΦFrΣΦ−1 = Σq}).
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If we �x Σ and �x Φ0 with Φ0ΣΦ
−1
0 = Σq, then by Corollary 2.7 the equivalence

classes of pairs (Σ, C) are in bijection with the AdΦ0 -twisted conjugacy classes in
π0(CG◦(Σ)). We call the corresponding components the components of type Σ.

Let Λ = W (Fl); in the rest of this section, we consider everything over Λ. Our
main interest is in describing the local geometry of XG around generic points of
components of the special �bre. By [DHKM20] section 4.2, it is possible to reduce
the general case to that of tame parameters such that the semisimple part of Σ
has l-power order � and so, modulo l, Σ is unipotent. We therefore focus on such
components in the discussion below. We call the irreducible components of Xtame

G,Fl

on which Σ is unipotent the unipotent components. We have the morphism Ch :

Xtame
G → (T//W )Fr

−1[q] and the unipotent components are those in the preimage of

the identity e ∈ (T//W )Fr
−1[q](Fl).

5.1. GLn. Since centralizers are connected in G = GLn, the irreducible unipotent
components of XG,Fl

correspond to unipotent conjugacy classes in GLn, which
are parametrized by partitions of n giving the Jordan canonical form of Σ. For
every conjugacy class [Σ], we can �nd a representative such that Σ is regular in a
standard Levi subgroup M (the one corresponding to the same partition of n). By
Theorems 4.2 and 3.2, we have open subsets U ⊂ XM and V ⊂ XG, each containing
the generic point of the component corresponding to Σ, and smooth morphisms

G× U → V

and
U → (T//WM )[q].

In particular, the completed local ring of XG at a point in V (Fl) will be formally

smooth over (T//WM )
[q]
e . We therefore recover the geometric results of [Sho22] in

this case (and there is no need to assume that Σ is unipotent here).

5.2. SL2. Suppose that G = SL2 (with Γ trivial). There are two conjugacy classes
of unipotent Σ.

If Σ =

(
1 1
0 1

)
, then we may take Φ0 =

(
q 0
0 1

)
. We have π0(CG◦(Σ)) =

π0(Z(SL2)) = π0(µ2), and so there are two components of XFl
of type Σ unless

l = 2, in which case there is only one. If l ̸= 2, then there is an open subset U of
XG intersecting each of these components such that the map

U → (T//W )[q] = SpecZl[x+ x−1]/((xq + x−q − (x+ x−1))]

is smooth.

If Σ =

(
1 0
0 1

)
, then there is only one component Cnr of type Σ. There is an

open subset V of Xtame
T

∼= µq−1 × Gm such that the morphism G × V → XG is
smooth and has image intersecting Cnr (necessarily in an open subset).

5.3. Unitary groups. We take G to be the L-group of an unrami�ed quasisplit
unitary group over F . Thus,

G = G◦ ⋊Gal(E/F )

where G◦ = GLn, the extension E/F is unrami�ed quadratic, and the nontrivial
element c ∈ Gal(E/F ) acts on G◦ as

cg = Jg−TJ−1
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for J an antidiagonal matrix of alternating 1s and −1s. Then c preserves the
standard maximal torus T and Borel B in G◦.

Since centralizers in G◦ are connected, the irreducible components of XG,Fl
are

in bijection with G◦(Fl)-conjugacy classes of Σ ∈ G◦(Fl) such that cΣ ∼ Σq. In
particular, the unipotent irreducible components are in bijection with the unipotent
conjugacy classes in G◦(Fl) ∼= GLn(Fl), since

cΣ ∼ Σ for Σ unipotent.
Note that Fr acts on T//W in the same way as the map induced by t 7→ t−1. We

therefore have a formally smooth morphism Xreg
G → (T//W )[−q], by Theorem 3.2.

However, it is no longer true that every unipotent conjugacy class of G◦ contains
an element regular in a standard Levi subgroup of G. Indeed, such Levi subgroups
must be preserved by c, and so we only get partitions of n for which all except at
most one part occurs an even number of times.

For example, when n = 3, the unipotent components of XG to which Theorem 4.2
applies are those corresponding to the partitions (1, 1, 1) and (3); we do not obtain
a description of the local geometry of XG about points for which Σ is unipotent of
type (2, 1).

5.4. GSp4. Let G = GSp4, with l > 2. We take the symplectic form to be that
given by the matrix

J =


1

1
−1

−1

 .

We describe the unipotent components of XFl
. The conjugacy class of a unipotent

matrix u ∈ GSp4(Fl) is determined by the rank of u − 1. The centralizer of u is
connected unless the rank of u − 1 is two, in which case the centralizer has two
connected components (see the table on p400 of [Car85]). We label the unipotent
components by the rank of Σ− I at a generic point, so that they are C0, C1, C2A,
C2B , and C3.

Firstly, on the unrami�ed component C0 we have Σ = I. We may apply The-
orem 4.2 to this component, with the Levi subgroup being the standard maximal
torus, to see that there is an étale neighbourhood U of the generic point of C0 such
that U is smooth over T [q] ∼= µ3

q−1.
Secondly, we have the component C1 on which Σ − I has rank 1 (generically).

There is a unique such component since the centralizer of any Σ such that Σ − I
has rank 1 is connected. Letting M ∼= GL2 × Gm be the Levi subgroup of block
diagonal matrices with block sizes 1, 2, 1, there is an étale neighbourhood U of the
generic point of C1 such that U is smooth over (T//WM )[q].

Thirdly, we have the component C3 on which Σ − I has rank 3 (generically).
There is an open neighbourhood U of the generic point of C3 that is smooth over
(T//W )[q].

Lastly, consider

u =


1 1 0 0
0 1 0 0
0 0 1 −1
0 0 0 1

 .

Then CG(u) has two components. The Frobenius-twisted conjugacy classes of
π0(CG(u)) ∼= Z/2 are in this case just the conjugacy classes and there are therefore
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two components of Xu. One of them, which we call C2A, contains the points with
Σ = u and

ρ(Fr) =


λq 0 0 0
0 λ 0 0
0 0 q 0
0 0 0 1

 ,

while the other, which we call C2B , contains the points with Σ = u and

ρ(Fr) =


0 0 −λq 0
0 0 0 λ
−q 0 0 0
0 1 0 0

 .

The component C2A may be understood by applying Theorem 4.2 with the Levi
subgroup M ∼= GL2×Gm

GL2 consisting of block diagonal matrices with block sizes
(2, 2), and we see that an étale neighourhood U of the generic point of C2A will be

smooth over (T//WM )
[q]
1 . The component C2B , however, falls outside the scope of

our results.

Remark 5.1. We can show by explicit calculation that, if q ≡ −1 mod l, then any
open neighbourhood of the generic point of C2B intersects the components of the
generic �bre of type C2B and C3, so that no statement like 4.2 can be true.

If q ≡ 1 mod l and l ≥ 5, then one can actually prove a statement like Theo-
rem 4.2 for the component C2B with M taken to be the pseudo-Levi subgroup (in
the sense of [MS03])

M = ZGSp4
(Φ0)

where

Φ0 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 .

For this, we choose λ = 1 and make a change of basis such that ρ(Fr) = Φ0 and

Σ =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ∈ M.

In this case, we can show that an étale neighbourhood of C2B is smooth over
(T//WM )[q]. Is there a more general picture involving pseudo-Levi subgroups when
q ≡ 1 mod l (and l is su�ciently large)?

5.5. Distinguished unipotent elements. The Bala�Carter theorem (see [Pre03])
says that, in good characteristic, every unipotent element of a reductive group is a
distinguished unipotent element of a Levi subgroup. For G = GLn, the notions of
distinguished and regular coincide, but in general they do not.
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Concretely, suppose that G = GSp6, l > 2, and that

Σ =


1 1

1 1
1 1

1
1 −1

1

 .

Then there is a single component of type Σ. This Σ is distinguished unipotent,
so is contained in no proper Levi subgroup of G, but is not regular.6 This com-
ponent therefore falls outside the scope of our results, and we do not understand
the deformation rings at generic points of these components (except for minimal
deformations as in [Boo19]).

Remark 5.2. If q ≡ 1 mod l then the trivial representation lies on the compo-
nent of type Σ. In particular, to apply the Ihara avoidance method of [Tay08] to
GSp2n, n > 2, one would need to understand something about deformations of
representations of type Σ. For GSp4, where Ihara avoidance was worked out in
section 7.4.5 of [BCGP21], the issue does not arise, as C2B does not contain the
trivial representation.
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