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Abstract. We compute the deformation rings of two dimensional mod l rep-
resentations of Gal(F/F ) with fixed inertial type, for l an odd prime, p a

prime distinct from l, and F/Qp a finite extension. We show that in this set-

ting an analogue of the Breuil–Mézard conjecture holds, relating the special
fibres of these deformation rings to the mod l reduction of certain irreducible

representations of GL2(OF ).

1. Introduction

Let p be a prime, and let F be a finite extension of Qp with absolute Galois
group GF . We study the (framed) deformation rings for two-dimensional mod l
representations of GF , where l is an odd prime distinct from p. More specifically,
let E be a finite extension of Ql, with ring of integers O, uniformiser λ, and residue
field F. Let

ρ : GF → GL2(F)

be a continuous representation. Then there is a universal lifting (or framed defor-
mation) ring R�(ρ) parametrising lifts of ρ. Our main result relates congruences
between irreducible components of SpecR�(ρ) to congruences between certain rep-
resentations of GL2(OF ), where OF is the ring of integers of F . Our method
is to give explicit equations for the components of SpecR�(ρ), which may be of
independent use.

If τ : IF → GL2(E) is a continuous representation that extends to a representa-
tion of GF (an inertial type), then we say that a representation ρ : GF → GL2(E)
has type τ if its restriction to IF is isomorphic to τ . Say that an irreducible compo-
nent of SpecR�(ρ) has type τ if a Zariski dense subset of its E-points correspond
to representations of type τ . We define (definition 4.1) a formal sum C(ρ, τ) of
irreducible components of the special fibre SpecR�(ρ) ⊗O F. For semisimple τ ,
this is obtained as the intersection with the special fibre of those components of
SpecR�(ρ) having type τ ; for non-semisimple τ this must be slightly modified.

To an inertial type τ we also associate an irreducible E-representation σ(τ) of
GL2(OF ), by a slight variant on the definition of [Hen02] (see section 3.3). For an

irreducible F-representation θ of GL2(OF ), define m(θ, σ(τ)) to be the multiplicity
of θ as a Jordan–Hölder factor of the mod λ reduction of σ(τ). Then we can state
our main theorem (theorem 4.2):

Theorem. Let ρ : GF → GL2(F) be a continuous representation. For each irre-
ducible F-representation θ of GL2(OF ), there is a formal sum C(ρ, θ) of irreducible
components of SpecR�(ρ) ⊗ F such that, for each inertial type τ , we have the
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equality

C(ρ, τ) =
∑
θ

m(θ, σ(τ))C(ρ, θ).

In fact the C(ρ, θ) are uniquely determined (at least for those θ which actually

occur in some σ(τ)).
This theorem is an analogue for mod l representations of GF of the Breuil–

Mézard conjecture [BM02], which pertains to mod p representations of GQp . Our
statement is not in the language of Hilbert–Samuel multiplicities used in [BM02],
but rather in the geometric language of [EG14]. The original conjecture of Breuil–
Mézard was proved in most cases by Kisin [Kis09a]; further cases were proved
by Paškūnas [Paš15] by local methods, and the full conjecture was proved when
p > 3 in [HT13]. The conjecture was generalised to n-dimensional representations
of GF in [EG14]; the only case known, outside of those just mentioned, is that of
two-dimensional potentially Barsotti–Tate representations (see [GK14]).

In the l 6= p setting, a comparison of special fibres of (very particular) local
deformation rings was used by Taylor in [Tay08] to prove the change of level re-
sults needed to obtain non-minimal automorphy lifting theorems; this is another
motivation for our result.

Our method of proof is to completely explicitly determine equations for deforma-
tion rings of fixed type, and indeed obtaining these explicit descriptions is another
goal of this paper. We reduce to the tamely ramified case, in which we use the
relation

φσφ−1 = σq

for φ ∈ GF a lift of Frobenius and σ ∈ IF a generator of tame inertia. Since we
are considering lifts ρ of fixed type, and so with fixed characteristic polynomial
of ρ(σ), we may use the Cayley–Hamilton theorem to reduce this equation to one
of degree at most two in the entries of ρ(φ) and ρ(σ). These explicit descriptions
show that the irreducible components of SpecR�(ρ)⊗E are always smooth (which
is also proved in [Pil08]), and that the reduced deformation rings in which the
semisimplification of the restriction to inertia is fixed are always Cohen–Macaulay
(see 5.5). It is natural to ask whether these properties persist beyond the case
of two dimensional representations. We note that the generic fibres of our local
deformation rings have been studied in [Pil08] and [Red], but their methods say
little about the integral structure.

In a forthcoming paper, we will extend theorem 4.2 to the case of n-dimensional
representations using global methods.

The structure of this paper is as follows. In section 2 we define the universal
deformation rings and show how to reduce their study to the case when ρ is tamely
ramified. We also prove some lemmas that will be useful in the calculations that
follow. In section 3 we define the deformation rings with fixed inertial type that we
will need, and discuss the construction of the representations σ(τ). In section 4 we
state and prove the main theorem, modulo the calculations of section 5 and results
of section 6. Section 5 contains the calculations of explicit equations for local
deformation rings, divided into cases according to the value of q mod l. Finally, in
section 6 we prove the results on the mod l reduction of the σ(τ) that are stated
in section 3.4 (and used in the proof of theorem 4.2).
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2. Preliminaries

2.1. Fields and Galois groups. Suppose that l 6= p are primes with l > 2.
Let F/Qp be a finite extension with ring of integers OF , maximal ideal pF ,

uniformiser $F and residue field kF of order q. Let F have absolute Galois group
GF , inertia group IF , and wild inertia group PF . Let IF � IF /P̃F ∼= Zl be the

maximal pro-l quotient of IF , so that P̃F /PF ∼=
∏
l′ 6=l,p Zl′ . Note that P̃F is normal

in GF and write TF = GF /P̃F . The short exact sequence 1 → IF /P̃F → TF →
GF /IF → 1 splits, so that TF ∼= Zl o Ẑ. We fix topological generators σ of this Zl
and φ of this Ẑ such that φ is a lift of arithmetic Frobenius. Then the action of Ẑ
on Zl is given by

(1) φσφ−1 = σq.

Let L/F be an unramified quadratic extension, with residue field kL.
Now let E/Ql be a finite extension with ring of integers O, residue field F and

uniformiser λ. Let ε : GF → Z×l be the l-adic cyclotomic character, and let 1 :

GF → Z×l be the trivial character. If A is any O-algebra then we will regard these
as maps to A× via the structure maps Zl → O → A.

Define two integers a and b by a = vl(q − 1) and b = vl(q + 1), where vl is the
l-adic valuation; at most one of a and b is non-zero, since l is odd.

2.2. Deformation rings. Suppose that M is an n-dimensional F-vector space and
that ρ : GF → GL(M) is a continuous representation. Let (ei)

n
i=1 be a basis for

M , so that ρ gives a map ρ : GF → GLn(F).
Let CO denote the category of artinian local O-algebras with residue field F, and

C∧O the category of complete noetherian local O-algebras with residue field F. If A
is an object of CO or C∧O, let mA be its maximal ideal. Define two functors

D(ρ), D�(ρ) : CO → Set

as follows:

• D(ρ)(A) is the set of equivalence classes of (M, ι) where: M is a free
rank n A-module, ρ : GF → AutA(M) is a continuous homomorphism,

and ι : M ⊗A F ∼−→ M is an isomorphism commuting with the actions of
GF ;
• D�(ρ)(A) is the set of equivalence classes of (M,ρ, (ei)

n
i=1) where: M is a

free rank n A-module, ρ : GF → AutA(M) is a continuous homomorphism
and (ei)

n
i=1 is a basis of M as an A-module, such that the isomorphism
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ι : M ⊗A F ∼−→ M defined by ι : ei ⊗ 1 7→ ei commutes with the actions of
GF .

In the first case, (M,ρ, ι) and (M ′, ρ′, ι′) are equivalent if there is an isomorphism
α : M →M ′, commuting with the actions of GF , such that ι = ι′ ◦α; in the second
case, (M,ρ, (ei)i) and (M ′, ρ′, (e′i)i) are isomorphic if the map M →M ′ defined by
ei 7→ e′i commutes with the actions of GF . There is a natural transformation of
functors D�(ρ)→ D(ρ) given by forgetting the basis.

Alternatively, when ρ is regarded as a homomorphism to GLn(F), we have the
equivalent definitions

D�(ρ)(A) = {continuous ρ : GF → GLn(A) lifting ρ}
and

D(ρ)(A) = {continuous ρ : GF → GLn(A) lifting ρ}/conjugacy by 1 +Mn(mA).

The functor D(ρ) is not usually pro-representable, but the functor D�(ρ) always
is (see, for example, [Kis09b] (2.3.4)):

Definition 2.1. The universal lifting ring (or universal framed deformation ring)
of ρ is the object R�(ρ) of C∧O that pro-represents the functor D�(ρ). The universal

lift is denoted ρ� : GF → GLn(R�(ρ)).

Recall the following calculation (see e.g. [BLGGT14] section 1.2):

Lemma 2.2. The ring R�(ρ)[1/l] is generically formally smooth of dimension n2.

The next lemma enables us to reduce to the case where the residual represen-
tation is trivial on P̃F . Suppose that θ is an irreducible F-representation of P̃F .
Then by [CHT08], lemma 2.4.11, there is a lift of θ to an O-representation of P̃F ,

which may be extended to an O-representation θ̃ of Gθ, where Gθ is the group
{g ∈ GF : gθg−1 ∼= θ}. For each irreducible representation θ of P̃F , we pick such

a θ̃ and a finite free O-module N(θ) on which P̃F acts as θ̃. If M is a set-finite
O-module with a continuous action ρ of GF , then define

Mθ = HomP̃F
(θ̃,M).

The module Mθ has a natural continuous action ρθ of Gθ given by (gf)(v) =

gf(g−1v); the subgroup P̃F of Gθ acts trivially.

Lemma 2.3. (Tame reduction)

(1) Let M be a set-finite O-module with a continuous action of GF . Then there
is a natural isomorphism

M =
⊕
[θ]

IndGFGθ (N(θ)⊗O Mθ) ,

where [θ] runs over GF -conjugacy classes of irreducible representations of

P̃F .
(2) The isomorphism of part (1) induces a natural isomorphism of functors:

D(ρ)
∼−→
∏
[θ]

D(ρθ)

where θ runs through a set of representatives for the GF -conjugacy classes
of irreducible representations of P̃F .
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(3) If R�(ρθ) is the universal framed deformation ring for the representation

ρθ of Gθ/P̃F , then

R�(ρ) ∼=
(⊗̂

[θ]
R�(ρθ)

)
[[X1, . . . , Xn2−

∑
n2
θ
]]

where nθ = dim ρθ. This isomorphism lies above the isomorphism D(ρ)
∼−→∏

[θ]D(ρθ) of part (2).

Proof. The first two parts are in [CHT08]: part (1) is lemma 2.4.12 and part (2)
is corollary 2.4.13. Part (3) is the refinement to framed deformations obtained
by keeping track of a basis in the construction of part (1) of the proposition, as
in [Cho09], proposition 2.0.5.

As [Cho09] is not easily available, we sketch the argument for part (3): let

[θ1], [θ2], . . . be the GF -conjugacy classes of irreducible P̃F -representations. Pick
left coset representatives (gij)j for Gθi in GF . Write Ni for N(θi), and choose an
O-basis (fik)k of Ni.

Let A be an object of CO, M be a free rank n A-module with a continuous
action of GF , and Mθi be as above. Given (for each i) a basis (eil)

nθi
l=1 of Mθi , we

can produce a basis (eijkl)j,k,l of

Mθi = A[GF ]⊗A[Gθ] (Ni ⊗O Mθi)

defined by
eijkl = gij ⊗ fik ⊗ eil.

Then (eijkl)i,j,k,l is a basis of M .
Let F(A) be the set of Y = (Yijkl,i′j′k′l′) which are n × n matrices of elements

of mA such that

Yijkl,i′j′k′l′ = 0 if i = i′ and j = j′ = k = k′ = 1

(so that n2−
∑
n2θi ‘free’ entries of Y remain). Then F defines a functor on CO pro-

represented byO[[X1, . . . , Xn2−
∑
n2
θ
]] (the variablesX being simply an enumeration

of those Yijkl,i′j′k′l′ which can be non-zero).
We then have a natural transformation of functors

F ×
∏
[θ]

D�(ρθ)→ D�(ρ)

taking the tuple (Y, (Mθi , ρθi , eil)i) to the tuple(⊕
i

IndGFGθi
(Ni ⊗O Mθi),

⊕
i

IndGFGθi
(θ̃i ⊗O ρθi), (In + Y)(eijkl)i,j,k,l

)
.

Then one can check (and this is what is done in [Cho09], proposition 2.0.5) that
this is in fact an isomorphism, and so we get the claimed isomorphism of pro-
representing objects. �

2.3. Twisting.

Lemma 2.4. Suppose that χ : GF → O× is any character. Then there is a natural
isomorphism

R�(ρ)
∼−→ R�(ρ⊗ χ).

Moreover, if χ1 and χ2 satisfy χ1 = χ2 then they induce the same maps R�(ρ) ⊗
F ∼−→ R�(ρ⊗ χi)⊗ F.
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Proof. This follows easily from the isomorphism of functors

D�(ρ)→ D�(ρ⊗ χ)

given by tensoring with χ (remembering that we are considering O-algebras). For
the last statement, observe that if the functors are restricted to F-algebras then the
isomorphism only depends on χ. �

Since every F-valued character lifts to O (using the Teichmüller lift) this shows
that R�(ρ) ∼= R�(ρ⊗ χ) for every χ : GF → F×.

We also need the calculation of the universal deformation ring of a character, to
which some of our calculations reduce. This is completely standard, but we include
it as a simple illustration of the method.

Lemma 2.5. Let χ : GF → F× be a continuous character. Then

R�(χ) =
O[[X,Y ]]

((1 +X)la − 1)

has la irreducible components, indexed by the lath roots of unity. They are formally
smooth of relative dimension one over O.

Proof. By lemma 2.4, we may take χ to be trivial. If χ is any lift of χ to an object
A of CO, then for g ∈ P̃F we must have χ(g)n = 1 for some n coprime to l, and
therefore χ(g) = 1, so that we are reduced to considering characters of TF . We must
have that χ(σ)q = χ(σ) and χ(σ) ≡ 1 mod mA, and therefore that χ(σ)l

a

= 1. We
are then free to choose χ(φ). Writing χ(σ) = 1 + X and χ(φ) = 1 + Y , we have
shown that

D�(χ)(A) = HomC∧O

(
O[[X,Y ]]

((1 +X)la − 1)
, A

)
functorially, and so the universal framed deformation ring is as claimed. �

2.4. Multiplicities and cycles. Suppose that X is a noetherian scheme and that
F is a coherent sheaf on X. Let Y be the scheme-theoretic support of F , and let
d ≥ dimY . Let Zd(X) be the free abelian group on the d-dimensional points of X;
elements of Zd(X) are called d-dimensional cycles. If a ∈ X is a point of dimension
d write [a] for the corresponding element of Zd(X) and define the multiplicity
e(F , a) to be the length of Fa as an OY,a-module (this is zero if a 6∈ Y ).

Definition 2.6. The cycle Zd(F) associated to F is the element∑
a

e(F , a)[a] ∈ Zd(X).

If X = SpecA is affine and F = M̃ for a finitely generated A-module M , then
we will write Zd(M) for Zd(F).

If i : X → X ′ is a closed immersion of X in a noetherian scheme X ′, then there
is a natural inclusion i∗ : Zd(X) → Zd(X ′) for each d. For a coherent sheaf F on
X whose support has dimension at most d, we then have

i∗(Z
d(F)) = Zd(i∗(F)).

We will often use this compatibility without comment.
A cycle is effective if it is of the form

∑
na[a] for na ≥ 0. Say that an effective

cycle C1 is a subcycle of an effective cycle C2 if C2 − C1 is also effective.



LOCAL DEFORMATION RINGS FOR GL2 7

2.5. A determinantal ring. For a, b and c natural numbers, if I is the ideal
generated by the a × a minors of a b × c matrix with independent indeterminant
entries over a Cohen–Macaulay ring A, then A/I is always Cohen–Macaulay (see
[Eis95] theorem 18.18). We include a simple proof in the very special case that we
need below.

Remark. The proof given below is incorrect, but the proposition is correct. See
Section 7 for details. We thank Lue Pan for pointing this out.

Proposition 2.7. Let k ≥ 2 be an integer and let A be either a field or a dis-
crete valuation ring. Let R = A[X1, . . . , Xk, Y1, . . . , Yk] and let I C R be the ideal
generated by the 2× 2 minors of:(

X1 X2 . . . Xk

Y1 Y2 . . . Yk

)
.

Let S = R/I. Then S is a Cohen–Macaulay domain and is flat over A. It is
Gorenstein if and only if k = 2.

The same is true if we replace S by its completion S∧ at the ‘irrelevant’ ideal
(X1, . . . , Xk, Y1, . . . , Yk).

Proof. Note that R and S are naturally graded A-algebras.
Suppose that A is a field. It is easy to see that Proj(S) is a smooth irreducible

projective variety over A of dimension k + 1 — it is covered by the open sets
{Xi 6= 0} and {Yi 6= 0}, each of which is isomorphic to (A1

A \ {0}) × AkA. Thus S
is a domain. We may extend A so that its cardinality is at least k + 1, and choose
pairwise distinct α1, . . . , αk ∈ A×.

I claim that (X1−α1Y1, . . . , Xk−αkYk, Y1 + . . .+Yk) is a regular sequence in S.
To see this, observe that Proj (S/(X1 − α1Y1, . . . , Xi − αiYi)) is reduced (we may
check this on the affine pieces) and that its irreducible components are all of the
form

Proj

(
R

(Xj − αi0Yj)1≤j≤k + (Xj , Yj)1≤j≤i,j 6=i0

)
for 1 ≤ i0 ≤ i or of the form

Proj(S/(X1, . . . , Xi, Y1, . . . , Yi)).

Now it is easy to check that Xi+1 − αi+1Yi+1 (if i < k) or Y1 + . . .+ Yk (if i = k)
is a non-zerodivisor on each of these components, and so is a non-zerodivisor on
S/(X1 − α1Y1, . . . , Xi − αiYi) as required.

Now

S/((Xi − αiYi)i, Y1 + . . .+ Yk) ∼= A[Y2, . . . , Yk]/(Y2, . . . , Yk)2

is Gorenstein if and only if k = 2, as required.
If A is a DVR then the following easy lemma (a specialisation of [Sno11] propo-

sition 2.2.1) gives the result.

Lemma 2.8. If A is a DVR and S is a finitely generated A-algebra such that
S ⊗A/mA and S ⊗ FracA are domains of the same dimension, then S is flat over
A (that is, a uniformiser of A is a regular parameter in S).

The final statement of the proposition follows from the facts that both localisa-
tion and completion preserve the properties of being Gorenstein, Cohen–Macaulay,
or A-flat; S∧ is a domain because its associated graded ring is S, which is a do-
main. �
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3. Types

3.1. Inertial types.

Definition 3.1. An inertial type τ (of dimension n) is an equivalence class of pairs
(rτ , Nτ ) such that:

• rτ : IF → GLn(E) is a representation with open kernel;
• Nτ is a nilpotent n× n matrix over E;
• (rτ , Nτ ) extends to a Weil–Deligne representation of GF .

In particular, Nτ commutes with the image of rτ . Two such pairs are equivalent if
they are conjugate by an element of GLn(E).

We say that a continuous representation ρ : GF → GLn(E) has inertial type τ if
the restriction to inertia of the associated Weil–Deligne representation is equivalent
to τ .

We define some particular two-dimensional types which will often arise. They
will all be of the form (r,N) with r|P̃F trivial, and are therefore determined by r(σ)
and N . Define:

• τζ,s by r(σ) =

(
ζ 0
0 ζ

)
and N = 0, where ζ is an lath root of unity (s is

for ‘split’);

• τζ,ns by r(σ) =

(
ζ 0
0 ζ

)
and N =

(
0 1
0 0

)
, where ζ is an lath root of unity

(ns is for ‘non-split’);

• τζ1,ζ1 by r(σ) =

(
ζ1 0
0 ζ2

)
and N = 0 where, ζ1 and ζ2 are distinct lath

roots of unity;

• τξ by r(σ) =

(
ξ 0
0 ξ−1

)
and N = 0 where, ξ is a non-trivial lbth root of

unity.

To see that τξ is a type, note that if L/F is the unramified quadratic extension,

then there is a character of GL/P̃F mapping σ to ξ, which when induced to GF
gives a representation of type τξ.

3.2. Deformation rings with fixed type.

Definition 3.2. Let τ be an inertial type. Then R�(ρ, τ) is the maximal reduced,
l-torsion free quotient of R�(ρ) with the following property: if x : R�(ρ)→ GLn(E)
is a continuous homomorphism such that the associated representation ρx : GF →
GLn(E) has type τ , then x factors through R�(ρ, τ).

The rings R�(ρ) ⊗ F and R�(ρ, τ) ⊗ F will occur very often, and so we denote
them respectively by R�(ρ) and R�(ρ, τ).

From now on suppose that n = 2. Write τ = (rτ , Nτ ) and assume that E is large
enough that all of the roots of the characteristic polynomial of rτ lie in E. Let
R�(ρ, τ)◦ be the maximal quotient of R�(ρ) on which:

• if rτ is not scalar then, for all g ∈ IF , the characteristic polynomial of ρ�(g)
agrees with that of rτ ;
• if rτ is scalar and Nτ = 0 then, for all g ∈ IF , ρ�(g) is scalar and agrees

with rτ ;
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• if rτ is scalar and Nτ 6= 0 then, for all g ∈ IF , the characteristic polynomial
of ρ�(g) agrees with that of rτ . Moreover, we have

(2) q(tr ρ�(φ))2 = (q + 1)2 det(ρ�(φ)).

It is clear that these quotients exist and that the conditions imposed are defor-
mation problems for ρ.

Lemma 3.3. The ring R�(ρ, τ) is a reduced l-torsion free quotient of R�(ρ, τ)◦.
If Nτ = 0, then we have that R�(ρ, τ) is equal to the maximal reduced l-torsion

free quotient of R�(ρ, τ)◦.

Proof. The first part is clear unless rτ is scalar and Nτ 6= 0. In this case, we must
show that any representation ρ : GF → GL2(E) of type τ satisfies equation (2).
The Weil–Deligne representation (r,N) corresponding to such a ρ satisfies r|IF = rτ
and N 6= 0. Then r(φ)N = qNr(φ) implies that r(φ) preserves the line kerN and

the quotient E
2
/ kerN . If it acts as α on the former and β on the latter then we

must have α = qβ; as α and β are the eigenvalues of ρ(φ) the equation (2) is easily
verified.

The final claim follows from the simple observation that any E-point of R�(ρ, τ)◦

has associated Galois representation of type τ , except perhaps if rτ is scalar and
Nτ 6= 0. �

Remark 3.4. If R is a reduced, l-torsion free quotient of R�(ρ) such that R�(ρ, τ)
is a quotient of R, then R = R�(ρ, τ) if and only if the closed points of type τ are
Zariski dense in SpecR[1/l]. In our calculations, when this is true it will always be
clear by inspection.

3.3. K-Types. Let G = GL2(F ), K = GL2(OF ), and for N ≥ 1 let K(N) =

1 + M2(pNF ) and K0(N) =

{(
a b
c d

)
: c ∈ pNF

}
. Let U0 = O×F and for N ≥ 1 let

UN = 1+pNF . The exponent of a character χ of O×F is the smallest N ≥ 0 such that
χ is trivial on UN . If π is an irreducible admissible representation of GLm(F ) (we
only need m = 1 and m = 2) over E, let rec(π) be the continuous representation of
WF over E associated to π under the local Langlands correspondence (normalised
so as to be preserved by automorphisms of E).

For each two-dimensional inertial type τ = (rτ , Nτ ), we define an irreducible
representation σ(τ) by the following recipe:

• If τ = τ1,s, then σ(τ) is the trivial representation of K.
• If τ = τ1,ns, then σ(τ) is the inflation to K of the Steinberg representation

St of GL2(kF ).
• If τ = (1⊕ rec(ε)|IF , 0) for a non-trivial character ε of F× of exponent N ,

then
σ(τ) = IndKK0(N) ε,

where ε

((
a b
c d

))
= ε(a).

• If τ = (rec(π)|IF , 0) for a cuspidal representation π of GL2(F ), then by
[BH06], 15.5 Theorem, there is a certain subgroup J ⊂ G, containing the
center of G and compact modulo center, and a representation Λ of J such
that

π = c-IndGJ Λ.
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By conjugating, we may suppose that the maximal compact subgroup J0

of J is contained in K. We then have

σ(τ) = IndKJ0(Λ|J0).

• If τ = τ ′ ⊗ rec(χ)|IF , then σ(τ) = σ(τ ′)⊗ (χ|U0 ◦ det).

This is a slightly modified version of the construction in [Hen02] — the construc-
tion there only depends on rτ , and agrees with ours whenever rτ is not scalar. The
following is an easy consequence of [Hen02]:

Proposition 3.5. If σ(τ) is contained in an irreducible admissible representation
π of GL2(F ) and rec(π) = (r,N) then r|IF ∼= rτ and either N ∼= Nτ or Nτ 6= 0
and N = 0.

If π is infinite-dimensional, then the converse is true.

3.4. Reduction of types. Suppose that r : IF → GL2(F) is such that r extends
to GF .

Definition 3.6. The set L(r) is the set of types τ such that there exists a repre-
sentation ρ : GF → GL2(OE) of type τ satisfying

ρ|IF ∼= r.

If r|P̃F is non-scalar then we abuse notation and also write L(r) for the set of r

such that (r, 0) ∈ L(r), as in this case every element of L(r) is of this form.

Lemma 3.7. Suppose that r is trivial on P̃F . Then each element of L(r) is one of
the types τζ,s, τζ,ns, τζ1,ζ2 , τξ defined in section 3.1.

Proof. Suppose that ρ : GF → GL2(OE) is of type τ and is such that ρ|IF ∼= r.

As r|P̃F is trivial, ρ must also be trivial on P̃F and its type is determined by the

eigenvalues of ρ(σ) and by a nilpotent matrix N commuting with ρ(σ). Now, the
fundamental relation φσφ−1 = σq shows that the eigenvalues of ρ(σ) are the same
(but perhaps in a different order) as those of ρ(σ)q, and this implies that they are
(q2 − 1)th roots of unity. Moreover, they are congruent to 1 modulo the maximal
ideal of OE , and so must in fact be either lath or lbth roots of unity (recall that
at most one of a and b is non-zero, since l 6= 2). If they are distinct lath roots of
unity, then N must be zero and τ = τζ1,ζ2 ; if they are equal lath roots of unity then
τ = τζ,s or τζ,ns; if they are lbth roots of unity then they must be ξ and ξq = ξ−1

for an lbth root of unity ξ. Moreover the case ξ = 1 has already been dealt with
and so we may assume that ξ 6= 1, in which case N = 0 and τ = τξ. �

Lemma 3.8. (1) Suppose that r|P̃F is irreducible. There is a lift r of r to

GL2(E), which we fix. Then L(r) = {r ⊗ χ}χ as χ runs over the set of

characters χ : IF → E
×

which extend to GF and reduce to the trivial
character.

(2) Suppose that r|P̃F ∼= (r1 ⊕ r2)|P̃F where r1 and r2 are distinct characters

of GF . There are lifts r1 and r2 of r1 and r2 to E
×

, which we fix. Then
L(r) = {(r1|IF ⊗χ1)⊕ (r2|IF ⊗χ2)}χ1,χ2

where χ1, χ2 run over all pairs of

characters IF → E
×

which extend to GF and reduce to the trivial character.
(3) Suppose that r|P̃F ∼= (r1 ⊕ rc1)|P̃F where r1 and rc1 are distinct characters

of GL which are conjugate by an element of GF (recall that L/F is the

unramified quadratic extension). There is a lift r1 of r1 to E
×

. Then
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L(r) = {(r1|IF ⊗χ)⊕ (rc1|IF ⊗χc)}χ as χ runs over all characters IF → E
×

which extend to GL and reduce to the trivial character.

Proof. This follows from proposition 5.1 below; the ingredients in the proof of that
proposition are lemma 2.3 (reduction to the tame case) and lemma 2.4 (lifting ring
of a character). �

Lemma 3.9. If τ = (r, 0) is an inertial type with r|P̃F non-scalar, then σ(τ) is

irreducible. If τ ′ is any other inertial type, then σ(τ ′) contains σ(τ) if and only if

τ ′ ∈ L(r) (in which case σ(τ) ∼= σ(τ ′)).

Proof. These are the results of propositions 6.4 and 6.5. �

If τ = (r,N) with r|P̃F scalar, then σ(τ) need not be irreducible. We give the

(well-known) analysis of these σ(τ) in section 6.1. For now, we just give names to
the following representations of GL2(kF ) (and hence, by inflation, of K) over F:

• the trivial representation, 1;
• the Steinberg representation, St (irreducible if q 6≡ −1 mod l);
• if q ≡ −1 mod l, the cuspidal (but not supercuspidal) subrepresentation
π1 of St.

4. The ‘Breuil–Mézard conjecture’

Let ρ : GF → GL2(F) be a continuous representation, and suppose that E is
sufficiently large that:

• every subrepresentation of ρ⊗ F is already defined over F;
• E contains all of the (q2 − 1)th roots of unity;
• for every τ ∈ L(ρ|IF ), σ(τ) is defined over E.

We state our analogue of the Breuil–Mézard conjecture when l 6= p. By lemma 2.2
and the fact that R�(ρ, τ) is defined to be O-flat, we have

dimR�(ρ, τ) ≤ 4.

Definition 4.1. We associate to each type τ = (r,N) a cycle C(ρ, τ) ∈ Z4(R�(ρ))
as follows:

• if N = 0, set

C(ρ, τ) = Z4(R�(ρ, τ));

• if N 6= 0 (in which case r must be scalar) let τ ′ = (r, 0) and set

C(ρ, τ) = Z4(R�(ρ, τ)) + Z4(R�(ρ, τ ′)).

Then we have

Theorem 4.2. For each irreducible F-representation θ of GL2(OF ), there is an
effective cycle C(ρ, θ) ∈ Z4(R�(ρ)) such that, for any inertial type τ , we have an
equality of cycles

(3) C(ρ, τ) =
∑
θ

m(θ, σ(τ))C(ρ, θ)

where m(θ, σ(τ)) is the multiplicity of θ as a Jordan–Hölder factor of σ(τ) and the
sum runs over all θ.
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Proof. We proceed case by case, using the results of section 3.4 and of sections 5
and 6.1 below.

Suppose that ρ|P̃F is non-scalar. Then by lemma 3.9, the representations σ(τ)

for τ ∈ L(ρ|IF ) are all irreducible and isomorphic to a common irreducible repre-
sentation, which we call θ0. By corollary 5.2, R�(ρ) has a unique minimal prime,
denoted a, which has dimension 4. So we have

Z4(Spec(R�(ρ))) = Z · [a].

Define C(ρ, θ0) = [a], and C(ρ, θ) = 0 for θ 6= θ0. By corollary 5.2,

C(ρ, τ) = [a] = C(ρ, θ0)

if τ ∈ L(ρ|P̃F ) and

C(ρ, τ) = 0

otherwise. In other words, for all τ we have

C(ρ, τ) =
∑
θ

m(θ, σ(τ))C(ρ, θ)

as required.
If ρ|P̃F is scalar, then we may twist ρ by a character of GF and apply lemma 2.4

and so suppose for the rest of the proof that ρ|P̃F is trivial.

If q 6= ±1 mod l, then L(ρ|IF ) ⊂ {τ1,s, τ1,ns}. By the discussion of section 6.1,
we have that

σ(τ1,s) = 1

and

σ(τ1,ns) = St

are irreducible and non-isomorphic, and that neither is a Jordan–Hölder factor of
any other σ(τ). So the fact that we can define the C(ρ, θ) so as to satisfy equation

(3) is a triviality, as there are no relations amongst the σ(τ) for different τ . We
work out what the C(ρ, θ) are explicitly: for θ 6= 1 or St we define C(ρ, θ) = 0.
Otherwise, there are four cases to consider:

• if ρ(φ) has eigenvalues with ratio not in {1,±q} then by proposition 5.3
there is a unique minimal prime anr of R�(ρ). In this case, define

C(ρ,1) = [anr]

C(ρ, St) = [anr];

• if ρ is an extension of the trivial character by itself then by proposition 5.5
part 1 there is a unique minimal prime anr of R�(ρ). In this case, define

C(ρ,1) = [anr]

C(ρ, St) = [anr];

• if ρ is a non-split extension of the trivial character by the cyclotomic char-
acter then by proposition 5.5 part 2 there is a unique minimal prime aN of
R�(ρ). In this case, define

C(ρ,1) = 0

C(ρ,St) = [aN ];
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• if ρ is the direct sum of the trivial character and the cyclotomic character
then by proposition 5.5 part 2 there are two minimal primes of R�(ρ),
denoted there by anr and aN . In this case, define

C(ρ,1) = [anr]

C(ρ,St) = [anr] + [aN ].

It is then easy to verify that equation (3) holds; we just do the last case. We see
from proposition 5.5 part 2 that

C(ρ, τ1,s) = [anr] = C(ρ,1)

C(ρ, τ1,ns) = [anr] + [aN ]= C(ρ,St)

and C(ρ, τ) = 0 for all other τ , exactly as required by equation (3).
If q = −1 mod l, then L(ρ|IF ) ⊂

⋃
ξ{τ1,s, τ1,ns, τξ} for ξ a non-trivial lbth root

of unity. By the discussion of section 6.1, we have that

σ(τ1,s) = 1,

σ(τξ) = π1,

and

σ(τ1,ns)
ss = 1⊕ π1

where 1 and π1 are irreducible and non-isomorphic, and are not Jordan–Hölder
factors of any other σ(τ). For θ 6= 1 or π1 we define C(ρ, θ) = 0. Otherwise, there
are four cases to consider:

• if ρ(φ) has eigenvalues with ratio not in {±1} then by proposition 5.3 there
is a unique minimal prime anr of R�(ρ). In this case, define

C(ρ,1) = [anr]

C(ρ, π1) = 0;

• if ρ is an extension of the trivial character by itself then by proposition 5.6
part 1 there is a unique minimal prime anr of R�(ρ). In this case, define

C(ρ,1) = [anr]

C(ρ, π1) = 0;

• if ρ is a non-split extension of the trivial character by the cyclotomic char-
acter then by proposition 5.6 part 2a there is a unique minimal prime, de-
noted aN in that proposition, of R�(ρ, τ1,ns), which we regard as a prime

of R�(ρ). In this case, define

C(ρ,1) = 0

C(ρ, π1) = [aN ];

• if ρ is the direct sum of the trivial character by the cyclotomic character
then in proposition 5.6 part 2b three four-dimensional primes of R�(ρ) are
defined, denoted there anr, aN and aN ′ . In this case, define

C(ρ,1) = [anr]

C(ρ, π1) = [aN ] + [aN ′ ].
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It is then easy to verify that equation (3) holds using proposition 5.3 in the first
case and proposition 5.6 parts 1, 2a, and 2b in the second, third, and fourth cases;
again we just do the fourth case, which is the most complicated. Equation (3) is
equivalent to the equations:

C(ρ, τ1,s) = C(ρ,1) =[anr]

C(ρ, τ1,ns) = C(ρ,1) + C(ρ, π1)=[anr] + [aN ] + [aN ′ ]

C(ρ, τξ) = C(ρ, π1) =[aN ] + [aN ′ ]

and

C(ρ, τ) = 0

if τ 6∈
⋃
ξ{τ1,s, τ1,ns, τξ}. But by proposition 5.6 part 2b we have:

C(ρ, τ1,s) = Z4(R(ρ, τ1,s)) =[anr]

C(ρ, τ1,ns) = Z4(R(ρ, τ1,s)) + Z4(R(ρ, τ1,ns))=[anr] + [aN ] + [aN ′ ]

C(ρ, τξ) = Z4(R(ρ, τξ)) =[aN ] + [aN ′ ]

and

C(ρ, τ) = 0

if τ 6∈
⋃
ξ{τ1,s, τ1,ns, τξ}, as required.

If q = 1 mod l, then L(ρ|IF ) ⊂
⋃
ζ,ζ1,ζ2

{τζ,s, τζ,ns, τζ1,ζ2} for ζ, ζ1 and ζ2 (possibly

trivial) lath roots of unity with ζ1 6= ζ2. By the discussion of section 6.1, we have
that

σ(τζ,s) = 1,

σ(τζ,ns) = St,

and

σ(τζ1,ζ2) = 1⊕ St

where 1 and St are irreducible and non-isomorphic, and are not Jordan–Hölder
factors of any other σ(τ). For θ 6= 1 or St we define C(ρ, θ) = 0. Otherwise, there
are four cases to consider:

• if ρ(φ) has eigenvalues with ratio not in {±1} then by proposition 5.3 there
is a unique minimal prime anr of R�(ρ). In this case, define

C(ρ,1) = [anr]

C(ρ, St) = [anr];

• if ρ is a ramified extension of the trivial character by itself then by propo-
sition 5.8 part 1 there is a unique minimal prime aN of R�(ρ, τ1,ns) which

we regard as a four-dimensional prime of R�(ρ). In this case, define

C(ρ,1) = 0

C(ρ,St) = [aN ];
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• if ρ is a unramified extension of the trivial character by itself then by
proposition 5.8 parts 2 and 3 there are four-dimensional primes of R�(ρ)
which are denoted there by [anr] and [aN ]. In this case, define

C(ρ,1) = [anr]

C(ρ,St) = [anr] + [aN ].

It is then easy to verify that equation (3) holds using proposition 5.3 in the first
case, proposition 5.8 part 1 in the second case, and proposition 5.8 parts 2 and 3
in the third case (according as ρ is split or not); again we just do the third case,
which is the most complicated. Equation (3) is equivalent to the equations:

C(ρ, τζ,s) = C(ρ,1) =[anr]

C(ρ, τζ,ns) = C(ρ, St) =[anr] + [aN ]

C(ρ, τζ1,ζ2) = C(ρ,1) + C(ρ,St)=[anr] + [anr] + [aN ]

and

C(ρ, τ) = 0

if τ 6∈
⋃
ζ,ζ1,ζ2

{τζ,s, τζ,ns, τζ1,ζ2}. But by proposition 5.8 parts 2 and 3 we have:

C(ρ, τζ,s) = Z4(R(ρ, τζ,s)) =[anr]

C(ρ, τζ,ns) = Z4(R(ρ, τζ,s)) + Z4(R(ρ, τ1,ns))=[anr] + [aN ]

C(ρ, τζ1,ζ2) = Z4(R(ρ, τζ1,ζ2)) =2[anr] + [aN ]

and

C(ρ, τ) = 0

if τ 6∈
⋃
ζ,ζ1,ζ2

{τζ,s, τζ,ns, τζ1,ζ2}, as required. �

Remark 4.3. Although the definition of C(ρ, τ) may seem ad-hoc, it in fact has
the following natural interpretation: it is the reduction modulo λ of the cycle
in Z4(R�(ρ)) obtained by taking the Zariski closure of the closed points x ∈
SpecR�(ρ)[1/l] such that rec−1(ρx)|K contains σ(τ).

Remark 4.4. We conjecture that the theorem remains true when l = 2.

5. Calculations

Let ρ : GF → GL2(F) be a continuous representation. The aims of this section
are to give explicit presentations for the rings R�(ρ, τ) and to compute the cycles
Z(R�(ρ, τ)) ∈ Z4(SpecR�(ρ)). We continue to assume that E is sufficiently large,
as defined at the start of the previous section.

5.1. Simple cases. When ρ|P̃F is not scalar, then lemma 2.3 allows us to determine

the universal framed deformation rings. Recall that if r : IF → GL2(F) is a
representation that extends to GF then we have defined the set L(r) of types that
lift r.

Proposition 5.1. If ρ|P̃F is irreducible, then

R�(ρ) ∼= O[[X,Y, Z1, Z2, Z3]]/((1 +X)l
a

− 1).

The la irreducible components of SpecR�(ρ) are precisely the SpecR�(ρ, τ) for
τ ∈ L(ρ|IF ).
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If ρ|P̃F is a sum of distinct characters which extend to GF , then

R�(ρ) ∼= O[[X1, X2, Y1, Y2, Z1, Z2]]/((1 +X1)l
a

− 1, (1 +X2)l
a

− 1).

The l2a irreducible components of SpecR�(ρ) are precisely the SpecR�(ρ, τ) for
τ ∈ L(ρ|IF ).

If ρ|P̃F is a sum of distinct characters which are conjugate by the non-trivial

element of GL \GF , then

R�(ρ) ∼= O[[X,Y, Z1, Z2, Z3]]/((1 +X)l
b

− 1).

The lb irreducible components of SpecR�(ρ) are precisely the SpecR�(ρ, τ) for
τ ∈ L(ρ|IF ).

Proof. This follows straightforwardly from lemma 2.3. Suppose first that ρ|P̃F is

irreducible. Then there is a unique irreducible representation θ of P̃F such that
ρθ (in the notation of lemma 2.3) is non-zero. For that θ, ρθ is an unramified
one-dimensional representation of GF . So by lemmas 2.3 and 2.5:

R�(ρ) ∼= R�(ρθ)[[Z1, Z2, Z3]] ∼= O[[X,Y, Z1, Z2, Z3]]/((1 +X)l
a

− 1).

We have ρ� ∼= θ̃ ⊗ χ� where χ� is the universal character GF → R�(ρθ)
×.

Suppose now that ρ|P̃F = θ1⊕ θ2 for distinct characters θ1 and θ2. Suppose first

that the θi are not GF -conjugate. As in lemma 2.3, we pick O-characters θ̃1 and
θ̃2 of GF lifting and extending θ1 and θ2. Then (in the notation of lemma 2.3) ρθ1
and ρθ2 are both unramified characters. By lemmas 2.3 and 2.5:

R�(ρ) ∼=
(
R�(ρθ1)⊗̂R�(ρθ2)

)
[[Z1, Z2]]

∼= O[[X1, X2, Y1, Y1, Z1, Z2]]/((1 +X1)l
a

− 1, (1 +X2)l
a

− 1).

We have
ρ� ∼= θ̃1 ⊗ χ�

1 ⊕ θ̃2 ⊗ χ�
2

where each χ�
i is the universal character over R�(ρθi).

Suppose finally that θ1 and θ2 are GF -conjugate. We take θ = θ1; then Gθ = GL
where L is a quadratic extension of F . In fact, since P̃F ⊂ GL and l is odd, we must
have that GL is the unramified quadratic extension of F . As in lemma 2.3, pick an
O-character θ̃ of GL lifting and extending θ. Then (in the notation of lemma 2.3)
ρθ is an unramified character of GL. By lemmas 2.3 and 2.5:

R�(ρ) ∼= R�(ρθ)[[Z1, Z2, Z3]]

∼= O[[X,Y, Z1, Z2, Z3]]/((1 +X)l
b

− 1),

since vl(q
2 − 1) = lb. We have

ρ� ∼= IndGFGL

(
θ̃ ⊗ χ�

)
where χ� is the universal character over R�(ρθ).

We show that f : Spec(R�(ρ, τ)) 7→ τ is a bijection from the set of irreducible
components of Spec(R�(ρ)) to L(ρ|IF ). It is easy to see that f is an injection
(from our explicit expressions for ρ�). The type of the E-points of Spec(R�(ρ, τ))
is constant on irreducible components, so to show that a particular τ is in the
image of f it suffices to produce a lift of ρ to E of type τ . Each τ ∈ L(ρ|IF ) is, by
definition, the type of a lift of some ρ′ with ρ′|IF ∼= ρ|IF . But it is clear from the
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calculations above that the image of f only depends on ρ|IF , and so f is surjective
as required. �

Corollary 5.2. If ρ|P̃F is not scalar, then R�(ρ) has a unique minimal prime a,
which has dimension 4. For τ an inertial type we have that

Z4(R�(ρ, τ)) = [a]

if τ ∈ L(ρ|P̃F ) and Z4(R�(ρ, τ)) = 0 otherwise.

We may now assume that ρ|P̃F is scalar; after a twist (invoking [CHT08] lemma

2.4.11 to extend the character occurring in ρ|P̃F to the whole Galois group), we

may assume that ρ|P̃F is trivial, so that any lift of ρ|P̃F is also trivial. In this case,

then, ρ|IF is inflated from a representation of the (procyclic) pro-l group IF /P̃F
over a field of characteristic l. Any irreducible representation in characteristic l of
an l-group is trivial, and so ρ|IF must be an extension of the trivial representation
by the trivial representation. Now, because φσφ−1 = σq, ρ(φ) maps the subspace
of fixed vectors of ρ(σ) to itself; therefore ρ must be an extension of unramified
characters. That is, there is a short exact sequence

0→ χ1 → ρ→ χ2 → 0

for unramified characters χ1 and χ2. Such an extension corresponds to an element of
H1(GF , χ1χ

−1
2 ); by a simple calculation with the local Euler characteristic formula

and local Tate duality, this cohomology group is non-zero if and only if χ1 = χ2 or
χ1 = χ2ε. So we can easily deal with the case where neither of these two possibilities
can occur.

Proposition 5.3. Suppose that ρ|P̃F is trivial and that ρ(φ) has eigenvalues α, β ∈
F with α/β 6∈ {1, q, q−1}. Then

R�(ρ) ∼=
O[[A,B, P,Q,X, Y ]]

((1 + P )la − 1, (1 +Q)la − 1)
,

and ρ�(σ) is diagonalizable with eigenvalues 1 + P and 1 +Q.
For ζ an lath root of unity (possibly equal to 1), we have that

R�(ρ, τζ,s) = O[[A,B, P,Q,X, Y ]]/(1 + P − ζ, 1 +Q− ζ)

∼= O[[A,B,X, Y ]]

is formally smooth of relative dimension 4 over O, and R�(ρ, τζ,ns) = 0. If q = 1
mod l and ζ1, ζ2 are distinct lath roots of unity, then

R�(ρ, τζ1,ζ2) =
O[[A,B, P,Q,X, Y ]]

(2 + P +Q− ζ1 − ζ2, PQ− (ζ1 − 1)(ζ2 − 1))
∼= O[[A,B, P,X, Y ]]/(1 + P − ζ1)(1 + P − ζ2).

For all other τ , R�(ρ, τ) = 0.
The ideal anr defining R�(ρ, τ1,s) is the unique minimal prime of R�(ρ). We

have:

Z4(R�(ρ, τ)) =


[anr] if τ = τζ,s

2[anr] if τ = τζ1,ζ2
0 if τ = τζ,ns.
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Proof. First note that, by the above cohomology calculation, ρ(σ) must be trivial.
Let α and β be lifts of α and β to O. Suppose that A is an object of CO and

that M is a free A-module of rank 2 with a continuous action of GF given by
ρ : GF → AutA(M), reducing to ρ modulo mA. Suppose that the characteristic
polynomial of ρ(φ) is (X − α − A)(X − β − B), where A,B ∈ mA – note that by
Hensel’s lemma the characteristic polynomial does have roots in A reducing to α
and β. Then there is a decomposition

M = (ρ(φ)− α−A)M ⊕ (ρ(φ)− β −B)M.

Here it is crucial that α+A, β+B and α−β+A−B are all invertible in A. If vα, vβ
is a basis of eigenvectors of ρ(φ) in M ⊗ F and vα, vβ is a basis of M lifting vα, vβ
then there are unique X,Y ∈ mA such that vα +Xvβ , vβ +Y vα are eigenvectors of
ρ(φ). Moreover, replacing (vα, vβ) by (µvα, µvβ) for µ ∈ 1 + mA does not change
X and Y .

Therefore we may assume that ρ(φ) =

(
α 0

0 β

)
and that

ρ(φ) =

(
1 X
Y 1

)−1(
α+A 0

0 β +B

)(
1 X
Y 1

)
ρ(σ) =

(
1 X
Y 1

)−1(
1 + P R
S 1 +Q

)(
1 X
Y 1

)
where X,Y, P,R, S,Q ∈ mA are uniquely determined by ρ. The equation φσφ−1 =
σq implies that(

α+A 0
0 β +B

)(
1 + P R
S 1 +Q

)(
α+A 0

0 β +B

)−1
=

(
1 + P R
S 1 +Q

)q
.

Looking at the top right and bottom left entries gives that R = S = 0. Then
looking at the diagonal entries gives that (1 + P )q−1 = (1 + Q)q−1 = 1, which is
equivalent to (1 + P )l

a

= (1 +Q)l
a

= 1. Thus

R�(ρ) ∼=
O[[A,B, P,Q,X, Y ]]

((1 + P )la − 1, (1 +Q)la − 1)
.

The possible inertial types are τζ,s and τζ1,ζ2 (τζ,ns cannot occur since all lifts are

diagonalisable). Clearly R�(ρ, τζ,s) is defined by the equations 1 + P = 1 + Q =

ζ. The ring R�(ρ, τζ1,ζ2)◦ is cut out by the equations 2 + P + Q = ζ1 + ζ2,

(1 +P )(1 +Q) = ζ1ζ2 and the redundant equations (1 +P )l
a

= (1 +Q)l
a

= 1. But

R�(ρ, τζ1,ζ2)◦ ∼= O[[A,B, P,X, Y ]]/((1 + P − ζ1)(1 + P − ζ2))

is reduced and λ-torsion free and so is equal to R�(ρ, τζ1,ζ2).
For the reduction modulo λ, simply note that:

R�(ρ) = F[[A,B, P,Q,X, Y ]]/(P l
a

, Ql
a

)

R�(ρ, τζ,s) = F[[A,B, P,Q,X, Y ]]/(P,Q)

and

R�(ρ, τζ1,ζ2) = F[[A,B, P,Q,X, Y ]]/(P 2, Q2, P +Q).

So anr = (P,Q) is the unique minimal prime of R�(ρ) and the multiplicities are as
claimed. �
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We extract one part of the proof of this proposition for future use:

Lemma 5.4. If ρ(φ) has distinct eigenvalues, we may assume that it is diagonal.

In that case, there exists a unique matrix

(
1 X
Y 1

)
∈ GL2(R�(ρ)), reducing to the

identity modulo the maximal ideal, such that ρ�(φ) =

(
1 X
Y 1

)−1
Φ

(
1 X
Y 1

)
for

a diagonal matrix Φ.

Proof. This is simply the first half of the proof of the previous proposition. �

5.2. q 6= ±1 mod l. Suppose that q 6= ±1 mod l. By lemma 5.3, we have already
dealt with the cases in which the eigenvalues of ρ(φ) are not in the ratio 1 or q±1.
All other cases are dealt with by the following (after twisting and conjugating ρ).
Note that, by lemma 3.7, the only possible types when ρ|P̃F is trivial are τ1,s and
τ1,ns.

Proposition 5.5. Suppose that q 6= ±1 mod l, and that ρ|P̃F is trivial. Then

(1) Suppose that ρ(σ) is trivial, and that ρ(φ) =

(
1 y
0 1

)
for y ∈ F. Then

R�(ρ, τ1,s) = R�(ρ) is formally smooth of relative dimension 4 over O,

while R�(ρ, τ1,ns) = 0.

(2) Suppose that ρ(σ) =

(
1 x
0 1

)
and ρ(φ) =

(
q 0
0 1

)
.

If x 6= 0, then R�(ρ, τ1,ns) = R�(ρ) is formally smooth of relative di-

mension 4 over O, while R�(ρ, τ1,s) = 0.
If x = 0 then

R�(ρ) ∼= O[[X1, . . . , X5]]/(X1X2).

The quotients by the two minimal primes are R�(ρ, τ1,s) and R�(ρ, τ1,ns),
so that both are formally smooth of relative dimension 4 over O. The mini-
mal primes anr and aN of R�(ρ) which respectively define R�(ρ, τ1,s) and

R�(ρ, τ1,ns) are distinct.

Proof. For the first part, write

ρ�(σ) =

(
1 +A B
C 1 +D

)
ρ�(φ) =

(
1 + P y +R
S 1 +Q

)
where y is a lift of y (taken to be zero if y = 0) and A,B,C,D, P,Q,R, S ∈ m.

Let I = (A,B,C,D). Considering the equation ρ�(φ)ρ�(σ) = ρ�(σ)qρ�(φ)
modulo the ideal Im gives equations Cy ≡ (q − 1)A, B + Dy ≡ qAy + qB, C ≡
qC and (q − 1)D + qCy ≡ 0, all modulo Im. As q 6= 1 mod l we find that
I = Im. Therefore, by Nakayama’s lemma, I = 0 and ρ� is unramified. So
R�(ρ) = R�(ρ, τ1,s) ∼= O[[P,Q,R, S]] as claimed. Note that this proof is still valid
if q = −1 mod l.
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The proof of the second part is similar. By lemma 5.4, we may write

ρ�(σ) =

(
1 X
Y 1

)−1(
1 +A x+B
C 1 +D

)(
1 X
Y 1

)
ρ�(φ) =

(
1 X
Y 1

)−1(
q(1 + P ) 0

0 1 +Q

)(
1 X
Y 1

)
with x a lift of x (taken to be zero if x = 0) and A,B,C,D,X, Y, P,Q ∈ m.

Let I = (A,C,D). Considering the relation φσφ−1 = σq modulo Im and apply-
ing Nakayama’s lemma as before now yields A = C = D = 0 (using that q2 6= 1
mod l). The relation (not modulo any ideal) gives that (x+B)(P −Q) = 0, and it
is easy to see if this equality holds then the given formulae for ρ� do indeed define
a representation so that

R�(ρ) =
O[[B,P,Q,X, Y ]]

((x+B)(P −Q))
.

If x 6= 0 then this implies that P = Q. Then R�(ρ) = O[[B,P,X, Y ]]. It is clear
that R�(ρ) = R�(ρ, τ1,ns), and the proposition follows.

If x = 0 then, writing U = P −Q, we have R�(ρ) = O[[B,P,U,X, Y ]]/(BU). In
these coordinates, it is clear from the description of ρ� that

R�(ρ, τ1,s) = R�(ρ)/(B)

and

R�(ρ, τ1,ns) = R�(ρ)/(U).

The proposition follows. �

5.3. q = −1 mod l. Suppose that q = −1 mod l. By proposition 5.3, we have
already dealt with the cases in which the eigenvalues of ρ(φ) are not in the ratio 1
or−1. All other cases are dealt with by the following (after twisting and conjugating
ρ). By lemma 3.7, the only possible types when ρ|P̃F is trivial are τ1,s, τ1,ns and τξ
for ξ a non-trivial lbth root of unity.

Proposition 5.6. Suppose that q = −1 mod l and that ρ|P̃F is trivial.

(1) Suppose that ρ(σ) =

(
1 0
0 1

)
and ρ(φ) =

(
1 y
0 1

)
for y ∈ F. Then

R�(ρ, τ1,s) = R�(ρ)

is formally smooth of relative dimension 4 over O, while

R�(ρ, τ1,ns) = R�(ρ, τξ) = 0.

If anr is the unique minimal prime of R�(ρ), then we have

Z4(R�(ρ, τ)) =


[anr] if τ = τ1,s

0 if τ = τ1,ns

0 if τ = τξ.

(2) Suppose that ρ(σ) =

(
1 x
0 1

)
and ρ(φ) =

(
q 0
0 1

)
for x ∈ F.
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(a) If x 6= 0, then R�(ρ, τ1,ns) and R�(ρ, τξ) are formally smooth of rel-

ative dimension 4 over O, while R�(ρ, τ1,s) = 0. If aN is the prime

ideal of R�(ρ) cutting out R�(ρ, τ1,ns) then we have

(4) Z4(R�(ρ, τ)) =


0 if τ = τ1,s

[aN ] if τ = τ1,ns

[aN ] if τ = τξ.

(b) If x = 0, then R�(ρ, τ1,s) is formally smooth of relative dimension 4
over O and

R�(ρ, τ1,ns) ∼=
O[[X1, . . . , X6]]

((X1, X3) ∩ (X2, X3 − (q + 1)))

is a non-Cohen–Macaulay ring of relative dimension 4 over O. Its
spectrum is the scheme theoretic union of two formally smooth compo-
nents that do not intersect in the generic fibre. Lastly,

R�(ρ, τξ) ∼=
O[[X1, . . . , X5]]

(X1X2 − (ξ − ξ−1)2)

is a complete intersection domain of relative dimension 4 over O with
formally smooth generic fibre. If anr is the prime of R�(ρ) corre-
sponding to R�(ρ, τ1,s) and aN , a

′
N are the prime ideals of R�(ρ) cor-

responding to the two minimal primes of R�(ρ, τ1,ns), then we have

(5) Z4(R�(ρ, τ)) =


[anr] if τ = τ1,s

[aN ] + [aN ′ ] if τ = τ1,ns

[aN ] + [aN ′ ] if τ = τξ.

Proof. The proof of the first part is identical to that of proposition 5.5, part 1.
For the second part, by lemma 5.4 we may write

ρ�(σ) =

(
1 X
Y 1

)(
1 +A x+B
C 1 +D

)(
1 X
Y 1

)
ρ�(φ) =

(
1 X
Y 1

)(
−(1 + P ) 0

0 1 +Q

)(
1 X
Y 1

)
with x a lift of x (taken to be zero if x = 0) and A,B,C,D,X, Y, P,Q ∈ m.

Firstly, it is clear that R�(ρ, τ1,s) = 0 if x 6= 0 and

R�(ρ, τ1,s) ∼= O[[P,Q,X, Y ]]

if x = 0.
Next we deal with τ1,ns. On R�(ρ, τ1,ns) we have the equations

tr(ρ�(σ)) = 2

det(ρ�(σ)) = 1

q tr(ρ(φ))2 = (q + 1)2 det(ρ(φ))

and

ρ�(φ)ρ�(σ)ρ�(φ)−1 = ρ�(σ)q.

The first two of these may be rewritten as

A = −D



22 JACK SHOTTON

and
A2 + (x+B)(C) = 0

and the third can be written as

(q + 1 + P + qQ)(q + 1 +Q+ qP ) = 0.

By the Cayley–Hamilton theorem, (ρ�(σ)− 1)2 = 0 on R�(ρ, τ1,ns)
◦; it follows

that ρ�(σ)q − 1 = q(ρ�(σ) − 1) on R�(ρ, τ1,ns)
◦ and so the relation φσφ−1 = σq

together with D = −A yields the equation:(
A −(x+B) 1+P

1+Q

−C 1+Q
1+P −A

)
=

(
qA q(x+B)
qC −qA

)
.

Equating coefficients and using that 2 and q − 1 are invertible we obtain that
A = D = 0 and that

(x+B)(q + 1 + qQ+ P ) = 0(6)

C(q + 1 +Q+ qP ) = 0(7)

(x+B)C = 0(8)

(q + 1 +Q+ qP )(q + 1 + qQ+ P ) = 0(9)

is a complete set of equations cutting out R�(ρ, τ1,ns)
◦ (the last two equations

being, respectively, the conditions on det(ρ�(σ)) and on ρ�(φ)).
If x 6= 0 then these equations are equivalent to q + 1 + qQ + P = 0 and C = 0

and so we see that
R�(ρ, τ1,ns) ∼= O[[B,P,X, Y ]].

If x = 0 then the left hand sides of the four equations given generate the ideal

I = (B, q + 1 +Q+ qP ) ∩ (C, q + 1 + qQ+ P )

in O[[B,C, P,Q,X, Y ]]. Since O[[B,C, P,Q,X, Y ]]/I is reduced and λ-torsion free
and a Zariski dense set of its E-points have type τ1,ns, it is equal to R�(ρ, τ1,ns). Af-

ter the change of variablesX3 = q(q+1+Q+qP )
(q−1)(1+P ) , (X1, X2, X4, X5, X6) = (B,C, P,X, Y )

we get the presentation given in the proposition.
Let

S =
O[[X1, X2, X3]]

(X1, X3) ∩ (X2, X3 − (q + 1))
.

Then S has dimension two. We show that S is not Cohen–Macaulay; the same is
then true for R�(ρ, τ1,ns). Now, λ is a non-zerodivisor in S, and

S/λ =
F[[X1, X2, X3]]

(X1X2, X1X3, X2X3, X2
3 )
.

The maximal ideal of S/λ is annihilated by X3, and X3 6= 0 in S/λ. So S/λ, and
hence S, is not Cohen–Macaulay. The remaining statements about R�(ρ, τ1,ns) are
clear.

Now suppose that τ = τξ. On R�(ρ, τξ) we have

tr(ρ�(σ)) = ξ + ξ−1

det(ρ�(σ)) = 1

and

ρ�(φ)ρ�(σ)ρ�(φ)−1 = ρ�(σ)q.
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The first two of these may be rewritten as

A+D = ξ + ξ−1 − 2

and

AD − (x+B)C = 2− ξ − ξ−1.
By the Cayley–Hamilton theorem, (ρ�(σ)− ξ)(ρ�(σ)− ξ−1) = 0. As

T q ≡ ξ + ξ−1 − T mod (T − ξ)(T − ξ−1)

in Z[T ], the relation φσφ−1 = σq yields(
1 +A −(x+B) 1+P

1+Q

−C 1+Q
1+P 1 +D

)
=

(
ξ + ξ−1 − 1−A −(x+B)

−C ξ + ξ−1 − 1−D

)
.

Equating coefficients and combining with the equation det(ρ�(σ)) = 1 we get:

A = D =
ξ + ξ−1

2
− 1(10)

(x+B)(P −Q) = 0(11)

C(P −Q) = 0(12)

4(x+B)C = (ξ − ξ−1)2.(13)

If x 6= 0 then these equations are equivalent to P = Q and C = (ξ−ξ−1)2

4(x+B) , so that

R�(ρ, τξ) ∼= O[[X,Y,B, P ]].

If x = 0, then the equations imply that

0 = BC(P −Q) =

(
ξ − ξ−1

2

)2

(P −Q)

and hence that P = Q, as R�(ρ, τξ) is λ-torsion free by definition. Thus

R�(ρ, τξ) ∼=
O[[X,Y,B,C, P ]]

(4BC − (ξ − ξ−1)2)
.

The remaining statements about R�(ρ, τξ) are clear.

Now we calculate the various Z4(R�(ρ, τ)). For part 1, this is trivial. For part 2,
we have computed each R�(ρ, τ) as a quotient of the ring F[[A,B,C,D, P,Q,X, Y ]]
by an ideal which we call I(τ). We see that if x 6= 0 then I(τ1,ns) = I(τξ), and

R�(ρ, τ1,s) = 0, from which equation 4 follows. If x = 0 then

I(τ1,s) = (A,B,C,D)

I(τ1,ns) = (A,D,BC,B(Q− P ), C(Q− P ), (Q− P )2)

and

I(τξ) = (A,D,BC,Q− P ).

The minimal primes above these I(τ) in F[[A, . . . , Y ]] are anr = (A,B,C,D),
aN = (A,C,D,Q−P ) and aN ′ = (A,B,D,Q−P ); the multiplicities in equation 5
are then easily verified. �
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Remark 5.7. When ρ is unramified and ρ(φ) =

(
q 0
0 1

)
, the ring R�(ρ, τ1,ns)

is not Cohen–Macaulay. However the ring R�(ρ, unip), defined to be the maximal
reduced quotient of R�(ρ) on which ρ�(σ) is unipotent (so that SpecR�(ρ, unip) is
the scheme-theoretic union of SpecR�(ρ, τ1,s) and SpecR�(ρ, τ1,ns) in SpecR�(ρ)),
is Cohen–Macaulay. Indeed it is easy to see from the above proof that

R�(ρ,unip) ∼=
O[[X1, . . . , X6]]

(X1X2, X1(X3 − (q + 1)), X2X3)

which is Cohen–Macaulay ((λ,X1 +X2 +X3, X4, X5, X6) is a regular sequence).

5.4. q = 1 mod l. Suppose that q = 1 mod l. By proposition 5.3, we have already
dealt with the cases in which the eigenvalues of ρ(φ) are distinct. All other cases
are dealt with by the following (after twisting and conjugating ρ). Note that by
lemma 3.7, the only possible types when ρ|P̃F is trivial are τζ,s, τζ,ns and τζ1,ζ2 for
ζ any lath root of unity and ζ1, ζ2 any distinct lath roots of unity.

Proposition 5.8. Suppose that q = 1 mod l and that ρ|P̃F is trivial. Suppose that

ρ(σ) =

(
1 x
0 1

)
and ρ(φ) =

(
1 y
0 1

)
for x, y ∈ F.

(1) If x 6= 0 then R�(ρ, τζ,s) = 0, while R�(ρ, τζ,ns) and R�(ρ, τζ1,ζ2) are
formally smooth over O of relative dimension 4.

If aN is the four-dimensional prime of R�(ρ) corresponding to R�(ρ, τ1,ns)
then we have:

(14) Z4(R�(ρ, τ)) =


0 if τ = τζ,s

[aN ] if τ = τζ,ns

[aN ] if τ = τζ1,ζ2 .

(2) If x = 0 and y 6= 0, then R�(ρ, τζ,s) and R�(ρ, τζ,ns) are formally smooth
over O of relative dimension 4 while

R�(ρ, τζ1,ζ2) ∼= O[[X1, . . . , X5]]/(X2
1X2 − (ζ1 − ζ2)2)

is a complete intersection domain of relative dimension 4 over O.
If anr and aN are the prime ideals of R�(ρ) corresponding to R�(ρ, τ1,s)

and R�(ρ, τ1,ns) respectively, then

(15) Z4(R�(ρ, τ)) =


[anr] if τ = τζ,s

[aN ] if τ = τζ,ns

2[anr] + [aN ] if τ = τζ1,ζ2 .

(3) If x = y = 0, then R�(ρ, τζ,s) is formally smooth over O of relative dimen-

sion 4, R�(ρ, τζ,ns) is a non-Gorenstein Cohen–Macaulay domain of rela-

tive dimension 4 over O, while R�(ρ, τζ1,ζ2) is a non-Gorenstein Cohen–
Macaulay domain of relative dimension 4 over O.

Both R�(ρ, τζ,s) and R�(ρ, τζ,ns) are domains; let the corresponding

primes of R�(ρ) be anr and aN respectively. Then

(16) Z4(R�(ρ, τ)) =


[anr] if τ = τζ,s

[aN ] if τ = τζ,ns

2[anr] + [aN ] if τ = τζ1,ζ2 .
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Proof. Write

ρ�(σ) =

(
1 +A x+B
C 1 +D

)
ρ�(φ) =

(
1 + P y +R
S 1 +Q

)
with A,B,C,D, P,Q,R, S ∈ m and x, y lifts of x, y (taken to be zero if x or y = 0).

First, we have that R�(ρ, τζ,s) = 0 if x 6= 0 and

R�(ρ, τζ,s) ∼= O[[P,Q,R, S]]

otherwise.
Next, we look at R�(ρ, τζ1,ζ2) for ζ1 and ζ2 distinct lath roots of unity. The

condition that ρ�(σ) has characteristic polynomial (t− ζ1)(t− ζ2) is equivalent to
the equations

A+D = ζ1 + ζ2 − 2

and

AD − (x+B)C = (ζ1 − 1)(ζ2 − 1).

Since (t− ζ1)(t− ζ2) | tq−1 − 1, by the Cayley–Hamilton theorem we have

ρ�(σ)q = ρ�(σ)

on R�(ρ, τζ1,ζ2)◦. So the relation φσφ−1 = σq yields:(
1 +A x+B
C 1 +D

)(
1 + P y +R
S 1 +Q

)
=

(
1 + P y +R
S 1 +Q

)(
1 +A x+B
C 1 +D

)
.

Equating coefficients, eliminating D and writing U = P −Q and

F = A−D = 2A− (ζ1 + ζ2 − 2)

we see thatR�(ρ, τζ1,ζ2) is the reduced, l-torsion–free quotient ofO[[B,C, F, P,R, S, U ]]
by the relations:

(x+B)S = (y +R)C(17)

F (y +R) = U(x+B)(18)

FS = UC(19)

(ζ1 − ζ2)2 = F 2 + 4(x+B)C.(20)

If x 6= 0 then these equations are equivalent to U = F (y + R)(x + B)−1, C =
1
4

(
(ζ1 − ζ2)2 − F 2

)
(x+B)−1 and S = C(y +R)(x+B)−1, so that

R�(ρ, τζ1,ζ2) ∼= O[[B,F, P,R]].

If x = 0 and y 6= 0, then F = BU(y + R)−1 and C = BS(y + R)−1 will be a
solution to the equations (17) to (20) provided that

(ζ1 − ζ2)2 =

(
B

y +R

)2

(U2 + 4(y +R)S);

writing (X1, . . . , X5) = (B(y +R)−1, U2 + 4(y +R)S, P,R,U) we get

R�(ρ, τζ1,ζ2) ∼=
O[[X1, . . . , X5]]

X2
1X2 − (ζ1 − ζ2)2
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as claimed. The other statements about R�(ρ, τζ1,ζ2) follow easily.
If x = y = 0, then let A = O[[B,C, F, P,R, S, U ]] and I CA be the ideal:

I =
(
(ζ1 − ζ2)2 − F 2 − 4BC,BS − CR,FR−BU,FS − CU

)
.

Note that the ideal

J = (BS − CR,FR−BU,FS − CU)

is generated by the 2 × 2 minors of

(
B C F
R S U

)
. So, by proposition 2.7, A/J is

a Cohen–Macaulay, non-Gorenstein domain. Since F 2 − 4BC is not zero in the
domain A/J ⊗F, (λ, F 2− 4BC) is a regular sequence in A/J . Hence (F 2− 4BC−
(ζ1 − ζ2)2, λ) is a regular sequence in A/J , and therefore A/I is O-flat, Cohen–
Macaulay and non–Gorenstein. It is reduced because it is Cohen–Macaulay and,
as we shall show in the next paragraph, generically reduced.

To show that A/I is irreducible, it suffices to show that X = Spec(A/I ⊗ E) is
irreducible. This follows if we can show that X is formally smooth and connected.
As F 2− 4BC 6= 0 on X , it is covered by the affine open subsets UB = {B 6= 0} and
UF = {F 6= 0}. By the argument used in the x 6= 0 case, UB is formally smooth. A
similar argument works for UF : the projection map

p : X → Spec

(
O[[F,B,C, U, P ]]

(F 2 + 4BC − (ζ1 − ζ2)2)
⊗ E

)
is an isomorphism from UF onto an open subscheme; but the right hand side is
easily seen to be formally smooth. Hence X is formally smooth. Note that the
composition of the map p with the projection away from U is a continuous map
with connected fibres and connected image, which admits a continuous section
(obtained by taking R = S = U = 0); it follows that X is connected, as required.
Since X is formally smooth it is certainly reduced; therefore A/I is generically
reduced (as it is O-flat), just as we claimed above.

Now we turn to R�(ρ, τζ,ns). By lemma 2.4 we may assume that ζ = 1. The

condition that the characteristic polynomial of ρ�(σ) be (t − 1)2 is equivalent to
the equations:

A+D = 0

AD − (x+B)C = 0.

Writing T = P +Q and U = P −Q, the condition that

q tr(ρ�(φ))2 = (q + 1)2 det(ρ�(φ))

becomes

(q − 1)2(T + 2)2 = (q + 1)2(U2 + 4(y +R)S).

Since tq − 1 ≡ q(t− 1) mod (t− 1)2, the Cayley–Hamilton theorem shows that

ρ�(σ)q − 1 = q(ρ�(σ)− 1)

on R�(ρ, τ1,ns). From φσφ−1 = σq we therefore get the equation

(φ− 1)(σ − 1)− (σ − 1)(φ− 1) = (q − 1)(σ − 1)φ



LOCAL DEFORMATION RINGS FOR GL2 27

on R�(ρ, τ1,ns). Equating coefficients and substituting D = −A we get the equa-
tions

A2 + (x+B)C = 0(21)

(q − 1)2(T + 2)2 = (q + 1)2(U2 + 4(y +R)S)(22)

C(y +R)− S(x+B) = (q − 1)(A(1 + P ) + (x+B)S)(23)

U(x+B)− 2A(y +R) = (q − 1)(A(y +R) + (x+B)(1 +Q))(24)

2AS − CU = (q − 1)(C(1 + P )−AS)(25)

S(x+B)− C(y +R) = (q − 1)(C(y +R)−A(1 +Q)).(26)

After replacing P with T+U
2 and Q with T−U

2 , this is a complete set of equations

for R�(ρ, τ1,ns) in O[[A,B,C,R, S, T, U ]].
We replace equations (23) and (26) by their sum and difference:

(q − 1)(AU + (x+B)S + C(y +R)) = 0(27)

(q + 1)(C(y +R)− (x+B)S) = (q − 1)A(2 + T ).(28)

As R�(ρ, τ1,ns) is λ-torsion free, equation (27) implies that

(29) AU + (x+B)S + C(y +R) = 0.

We could also write this equation as tr((σ − 1)φ) = 0.

Putting α(T ) = (q−1)(2+T )
q+1 , we find that equations (21), (22), (24),(25) and [(28)

and (29)] may respectively be rewritten:

A2 + (x+B)C = 0

4(y +R)S + (U − α(T ))(U + α(T )) = 0

2A(y +R)− (x+B)(U − α(T )) = 0

2AS − C(U + α(T )) = 0

2C(y +R) +A(U − α(T )) = 0

2(x+B)S +A(U + α(T )) = 0.

Let I be the ideal of O[[A,B,C,R, S, T, U ]] generated by these equations and let
R′ = O[[A,B,C,R, S, T, U ]]/I, so thatR�(ρ, τ1,ns) is the maximal reduced l-torsion
free quotient of R′.

If x 6= 0 then C, U and S are uniquely determined by A, B, R and T so that

R�(ρ, τ1,ns) ∼= O[[A,B,R, T ]].

If y 6= 0, then S, C and A are uniquely determined by B, R, T and U so that

R�(ρ, τ1,ns) ∼= O[[B,R, T, U ]].

If x = y = 0, so that x = y = 0, observe that

R′ ∼=
B

J0 + J1

where
B = O[[X1, . . . , X4, Y1, . . . , Y4, T ]],

the ideal J0 is generated by the 2× 2 minors of(
X1 X2 X3 X4

Y1 Y2 Y3 Y4

)
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and J1 = (X1 +Y2, Y3−X4 + 2 q−1q+1 ).1 (The change of variables is X1 = A, X2 = B,

Y1 = C, Y2 = −A, X3 = −2R/(2 + T ), Y4 = 2S(2 + T ), Y3 = (U − α(T ))/(2 + T ),
and X4 = (U+α(T ))/(2+T ).) Then by proposition 2.7, B/J0 is a Cohen–Macaulay,
non-Gorenstein domain. Moreover, (λ,X1 + Y2, X3 − Y4) may be checked to be a
regular sequence on B/J0. Therefore (X1 + Y2, X3 + Y4 + 2 q−1q+1 , λ) is also regular,

and so B/(J0 + J1) is Cohen–Macaulay, O-flat and not Gorenstein. The same is
then true for R′.

We show that R′ ⊗ F is a domain, which implies that R′ is a domain. Let I be
the image of I in F[[A,B,C,R, S, T, U ]]. Then I is homogeneous so gr(R′ ⊗ F) =
F[A,B,C,R, S, T, U ]/I and it suffices to check that this is a domain (by [Eis95]
corollary 5.5). It is therefore sufficient to check that Proj(gr(R′ ⊗ F)) is reduced
and irreducible.2 But it is easy to check this on the usual seven affine pieces. This
argument is from [Tay09].

Next we show that R�(ρ, τ1,ns) is reduced. In fact, we show that

Y = Spec(R�(ρ, τ1,ns)⊗ E)

is formally smooth, which implies that R�(ρ, τ1,ns) is reduced because it is Cohen–
Macaulay and O-flat. For ? = B, C, R, S, U − α(T ) or U + α(T ) let U? = {? 6=
0} ⊂ Y be the corresponding affine open subscheme. Then the U? are an affine
open cover of Y. For ? = B, C, R or S we see that U? is formally smooth by the
same argument as for the cases x 6= 0 and y 6= 0 above. For UU±α(T ), the projection
morphism

p : UU−α(T ) → Spec

(
O[[C,R, S, T ]]

4RS − (U + α(T ))(U − α(T ))
⊗ E

)
is an isomorphism onto an open subscheme. But the right hand scheme is easily
seen to be formally smooth as required.

Finally we calculate the Z4(R(ρ, τ)). We do this when x = y = 0, as the other
cases are similar but easier. We have written each R�(ρ, τ) as the quotient of
F[[A,B,C,R, S, T, U ]] by an ideal which we call I(τ). Let us recall the presenta-
tions:

I(τζ,s) = (A,B,C)

I(τζ,ns) = (A2 +BC, 4RS + U2, 2CR+AU, 2BS +AU, 2AR−BU, 2AS − CU)

I(τζ1,ζ2) = (A2 +BC,BS − CR, 2AR−BU, 2AS − CU)

(using that A + D = 0 in R�(ρ, τ) for each τ , we have eliminated D and written
F = A −D = 2A). We have already shown that I(τζ,s) and I(τζ,ns) are prime —
they are the ideals denoted anr and aN in the statement of the theorem. It is clear
that

Z4(R�(ρ, τζ,s)) = [anr]

and
Z4(R�(ρ, τζ,ns)) = [aN ].

Suppose that p is a prime ideal of F[[A,B,C,R, S, T, U ]] containing I(τζ1,ζ2). We
show that p contains anr or aN . If B,C ∈ p then A ∈ p as A2 + BC ∈ I(τζ1,ζ2),

1There is a typo here in the published version.
2This argument is not quite correct, see Section 7 for a correction. The error originates with

me, not [Tay09].
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and we have anr ⊂ p. Otherwise, suppose that B 6∈ p. As A2 +BC ∈ p, either both
A and C are in p or neither is. If A,C ∈ p then from 2AR − BU ∈ p we deduce
that U ∈ p, while from BS − CR ∈ p we deduce that S ∈ p. It is then easy to see
that aN ⊂ p. If A,B,C 6∈ p then because B(2CR+AU) and C(2BS +AU) are in
I(τζ1,ζ2) we see that 2CR+AU, 2BS+AU ∈ p. This implies that A(4RS+U2) ∈ p,
and so 4RS + U2 ∈ p and hence aN ⊂ p as required.

To finish, it is easy to check that

e(R�(ρ, τζ1,ζ2), anr) = 2

and that

e(R�(ρ, τζ1,ζ2), aN ) = 1,

and so we get equation 16. �

5.5. Cohen–Macaulayness. If τ0 is a semisimple representation of IF over E, let
R(ρ, τ0)′ be the maximal reduced and l-torsion–free quotient of R(ρ) all of whose
E-points give rise to representations ρ of GF with ρ|ssIF ∼= τ0. Then I claim that
R(ρ, τ0)′ is always Cohen–Macaulay. Indeed, if τ0 is non-scalar then we have proved
this above. If τ0 is scalar, then we may twist and assume that it is trivial. If q 6≡ ±1
mod l, this follows from proposition 5.5. If q ≡ 1 mod l then we can deduce the
claim from proposition 5.8 together with exercise 18.13 of [Eis95], which says that
if R/I and R/J are d-dimensional Cohen–Macaulay quotients of a noetherian local
ring R, and dimR/(I + J) = d− 1, then R/(I ∩ J) is Cohen–Macaulay if and only
if R/(I + J) is. We take R = R�(ρ), and I and J to be the ideals cutting out
R�(ρ, τs) and R�(ρ, τns) respectively. Then R/I and R/J are Cohen–Macaulay,
and R/(I+J) is a quotient of the formally smooth ring R/I by the single equation
q tr(ρ�(φ))2 = (q+1)2 det(ρ�(φ)), and so is Cohen–Macaulay. Therefore R/(I ∩J)
is Cohen–Macaulay as required. When q ≡ −1 mod l the claim follows from
proposition 5.6 unless ρ is the direct sum of the trivial and cyclotomic characters,
in which case we use remark 5.7.

For n-dimensional representations the unrestricted framed deformation ringR�(ρ)
is always Cohen–Macaulay (in fact, a complete intersection; this is due to David
Helm, building on work of Choi [Cho09]). It is natural to wonder whether the
rings obtained by fixing the semisimplified restriction to inertia are always Cohen–
Macaulay. Note that they are not always Gorenstein.

For a discussion of how the Cohen–Macaulay property of local deformation rings
can be used to show that certain global Galois deformation rings are flat over O,
see section 5 of [Sno11].

6. Reduction of types – proofs.

The aim of this section is to analyse the reduction modulo l of the K-types σ(τ)
defined in section 3, and in particular to prove lemma 3.9.

6.1. The essentially tame case. Suppose that τ = (rτ , Nτ ) where rτ is a tamely
ramified, semisimple representation of IF . Then σ(τ) is inflated from a represen-
tation of GL2(kF ). We will always use the same notation for a representation of
GL2(kF ) and its inflaton to GL2(OF ). For this subsection let G = GL2(kF ), let B
be the subgroup of upper-triangular matrices, let U be the subgroup of unipotent
elements of B, let Z be the center of G and fix an embedding α : k×L ↪→ G. Fix a
non-trivial additive character ψ of U . Then we have (see e.g. [BH06] chapter 6):
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• If rτ = (rec(χ̃) ⊕ rec(χ̃))|IF and Nτ 6= 0, where χ̃|O×F is inflated from a

character χ of k×F , then

σ(τ) = (χ ◦ det)⊗ St,

where St is the Steinberg representation of G;
• If rτ = (rec(χ̃) ⊕ rec(χ̃))|IF and Nτ = 0, where χ̃|O×F is inflated from a

character χ of k×F , then σ(τ) = χ ◦ det;
• If rτ = (rec(χ̃1) ⊕ rec(χ̃2))|IF , where χ̃1|O×F and χ̃2|O×F are inflated from

distinct characters χ1 and χ2 of k×F , then

σ(τ) = µ(χ1, χ2)

where µ(χ1, χ2) = IndGB(χ1 ⊗ χ2);

• If rτ = (IndGFGL rec(θ̃))|IF where θ̃|O×L is inflated from a character θ of k×L
which is not equal to its Gal(kL/kF ) conjugate θc, then

σ(τ) = πθ

where πθ = IndGZU (θ|Zψ)− IndG
α(k×L )

θ (this virtual representation is a gen-

uine irreducible representation that is independent of the choice of ψ).

The only isomorphisms between these representations are of the form µ(χ1, χ2) ∼=
µ(χ2, χ1) and πθ ∼= πθc .

We want to understand the reductions of these representations modulo l, and
for this see [Hel10]. We will use analagous notation for representations of G in
characteristic zero and in characteristic l; hopefully this will not cause confusion.

If q 6= ±1 mod l, then reduction modulo l is a bijection between irreducible
Fl-representations of G and irreducible E-representations of G, as G has order
q(q + 1)(q − 1)2 which is coprime to l.

If q = 1 mod l, then the distinct irreducible representations of GL2(kF ) over F
are χ◦det and St⊗(χ◦det) for χ : k×F → F×, µ(χ1, χ2) for χ1, χ2 : k×F → F× a pair

of distinct characters, and πθ for θ : k×L → F× character which is not isomorphic to
its conjugate. The notation is all entirely analagous to the characteristic zero case.
Once again, the only isomorphisms are µ(χ1, χ2) ∼= µ(χ2, χ1) and πθ ∼= πθc . The
reductions of the characteristic zero representations are:

• χ ◦ det = χ ◦ det;
• St⊗χ ◦ det = St⊗(χ ◦ det);

• µ(χ1, χ2) = µ(χ1, χ2) if χ1 6= χ2;

• µ(χ1, χ2) = (χ ◦ det)⊕ St⊗(χ ◦ det) if χ1 = χ2 = χ;
• πθ = πθ.

For the last of these, we must observe that θ/θc is a character of k×L /k
×
F , a group

which has order q + 1 and so coprime to l (as l > 2). Therefore if θ 6= θc then

θ 6= θ
c
.

If q ≡ −1 mod l, then the distinct irreducible representations are: χ ◦ det for

χ : k×F → F×, µ(χ1, χ2) for χ1, χ2 : k×F → F× unordered pair of distinct characters,

πθ for θ : k×L → F× a character which is not isomorphic to its conjugate, and

(χ ◦det)⊗π1 for χ : k×F → F× a character. This last needs some explanation: π1 is

the reduction modulo l of πθ for any character θ : k×L /k
×
F → E

×
which is not equal

to θc but whose reduction modulo l is trivial. Once again, the only isomorphisms
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are µ(χ1, χ2) ∼= µ(χ2, χ1) and πθ ∼= πθc . The reductions of the characteristic 0
representations are:

• χ ◦ det = χ ◦ det;
• µ(χ1, χ2) = µ(χ1, χ2);

• πθ = πθ if θ 6= θ
c
;

• πθ = π1 ⊗ (θ|k×F ◦ det) if θ = θ
c
;

• St⊗(χ ◦ det) has π1 ⊗ (χ ◦ det) as a submodule with quotient χ ◦ det.

In particular, comparing this analysis with lemma 3.8 shows that:

Lemma 6.1. If τ = (r, 0) and τ ′ = (r′, 0) are scalar on PF but not on P̃F , then

σ(τ) and σ(τ ′) are irreducible and are isomorphic if and only if r ≡ r′ mod l.

6.2. The wild case. If τ = (r, 0) and all twists of r are wildly ramified (we say
that τ is ‘essentially wildly ramified’), then the following lemma will allow us to

show that σ(τ) is irreducible. If ρ is a Zl-representation of a group H, we write ρ
for ρ⊗ Fl.

Lemma 6.2. Suppose that H C J ⊂ K are profinite groups such that H is open in
K, H has pro-order coprime to l, and J/H is an abelian l-group. Suppose that λ
is a Zl-representation of J , and write η for the restriction of λ to H. Suppose that
η (and hence λ) is irreducible. Suppose that if g ∈ K intertwines η, then g ∈ J .
Then

(1) The representations of J extending η are precisely λi = λ ⊗ νi as νi run

through the characters of J/H. There is an isomorphism IndJH η ⊗ E ∼=⊕
i λi. The unique Fl-representation extending η is λ, and all of the Jordan–

Hölder factors of IndJH η are isomorphic to λ.
(2) A Fl-representation ρ of J contains λ as a subrepresentation if and only if

it contains λ as a quotient.
(3) The representations IndKJ λi and IndKJ λ are irreducible.

Proof. (1) In characteristic 0 we argue as follows. First note that the rep-
resentations λi are distinct, otherwise λ|H would have a non-scalar en-
domorphism, contradicting Schur’s lemma. By Frobenius reciprocity, the
λi are distinct irreducible constituents of IndJH η. Since the sum of their

dimensions is dim IndJH η, they are the only irreducible constituents. By

Frobenius reciprocity, any representation extending η must occur in IndJH η
and so must be one of the λi, as required. In characteristic l, first note that
λ is irreducible since the pro-order of H is coprime to l. It follows from
this and the fact that νi is trivial for all i that the Jordan–Hölder factors
of IndJH η are isomorphic to λ. Frobenius reciprocity then implies that λ is
the unique irreducible representation of J extending H.

(2) It follows from part 1 that HomJ(λ, ρ) 6= 0 if and only if HomJ(IndJH η, ρ) 6=
0. By Frobenius reciprocity, this is equivalent to HomH(η, ρ) 6= 0. But by
the assumption on the pro-order of H, Fl-representations of H are semisim-
ple, and so this is equivalent to HomH(ρ, η) 6= 0, which by the same argu-

ment is equivalent to HomJ(ρ, IndJH η) 6= 0.

(3) First, note that dim HomK(IndKJ λ, IndKJ λ) = 1, by Mackey’s decomposi-
tion formula and the assumption that elements of K \ J do not intertwine

η. Now suppose that ρ is an irreducible subrepresentation of IndKJ λ. By
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Frobenius reciprocity and part 2 we may deduce that ρ is also an irreducible
quotient of IndKJ λ. The composition

IndKJ λ� ρ ↪→ IndKJ λ

is then a non-zero element of HomK(IndKJ λ, IndKJ λ), and is therefore scalar.

But this is only possible if ρ = IndKJ λ, as required. The statement about

IndKJ λi follows. �

Proposition 6.3. Let τ = (r, 0) be an essentially wildly ramified inertial type.
Then there exists a subgroup J ⊂ K, an irreducible representation λ of J , and
a subgroup J̃ C J , such that (J̃ , J,K, λ) satisfy the hypotheses on (H,J,K, λ) in

lemma 6.2 and such that σ(τ) = IndKJ λ.

In particular, σ(τ) is irreducible.

Proof. Suppose first that r is the restriction to IF of a reducible representation of
GF . Then σ(τ) = IndKK0(N) ε⊗ (χ ◦ det) for a character ε of O×F of exponent N ≥ 2

and a character χ of O×F . Let J = K0(N), and let

J̃ =

{(
a b
c d

)
∈ J : a has order coprime to l modulo pF

}
.

Then J̃ , J and ε satisfy all the required hypotheses — the only one to check is that
ε|J̃ is not intertwined by any element of K\J . We deduce this (in somewhat circular

fashion) from the irreducibility of IndKJ (ε), since this is shorter than a direct proof.
If g ∈ K intertwines ε|J̃ , then HomJ̃∩gJ̃g−1(ε, εg) 6= 0. By Mackey’s formula,

dim HomJ̃(ε, IndK
J̃
ε) =

∑
g∈J̃\K/J̃

dim HomJ̃∩gJ̃g−1(ε, εg).

The left hand side is in turn equal to dim HomK(IndK
J̃
ε, IndK

J̃
ε). But IndK

J̃
ε =⊕

i IndKJ εi where εi are the characters of J extending ε|J̃ , and by the appendix

to [BM02], these IndKJ εi are irreducible and distinct. Therefore the left hand side

is equal to (J : J̃). The right hand side has a contribution of 1 from each g ∈ J/J̃ ,
and therefore from no other g, as required.

Now suppose that r is the restriction to IF of an irreducible representation
of GF . Then σ(τ) = IndKJ λ for an irreducible representation λ of J extending
an irreducible representation η of a pro-p normal subgroup J1 of J (see [BH06],
sections 15.5, 15.6 and 15.7 — note that our J is the maximal compact subgroup
of their Jα, but our J1 agrees with their J1

α). We have J/J1 = k×, where k is the

residue field of a quadratic extension of F , and so J has a normal subgroup J̃ of
pro-order coprime to l such that J/J̃ is an l-group. Then (J̃ , J,K, λ) satisfy all
the required hypotheses — the intertwining statement follows from [BH06], 15.6
Proposition 2. �

Proposition 6.4. Let τ = (r, 0) and τ ′ = (r′, 0) be inertial types that are not scalar

on P̃F . If r ≡ r′ mod l, then σ(τ) and σ(τ ′) are isomorphic.

Proof. If either of r and r′ is (after to a twist) tamely ramified, then so is the other
and this is contained in lemma 6.1. Otherwise, by lemma 3.8, we are in one of the
following cases:
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(1) r = (χ1 ⊕ χ2)|IF for characters χ1 and χ2 of GF that are distinct on PF ,
and r′ = (χ′1 ⊕ χ′2)|IF for characters χ′1 and χ′2 of GF with χi ≡ χ′i for
i = 1, 2.

(2) r = (IndGFGL ξ)IF and r′ = (IndGFGL ξ
′)IF for wildly ramified characters ξ and

ξ′ of GL such that ξ ≡ ξ′, and such that ξ|P̃F does not extend to GF .

(3) r|P̃F is irreducible and r′ = r ⊗ χ for a character χ of IF that extends to
GF and such that χ ≡ 1 mod l.

In the first case, we may write χi = rec(εi) and χ′i = rec(ε′i) with εi and ε′i
characters of F× such that εi ≡ ε′i mod l and such that ε = ε1/ε2 has exponent
N ≥ 1. Since ε′ = ε′1/ε

′
2 also has exponent N , we have

σ(τ) = ε2 ⊗ IndKK0(N) ε

≡ ε′2 ⊗ IndKK0(N) ε
′ mod l

= σ(τ ′).

In the second case, by twisting we may reduce to the case where (L/F, rec−1(ξ))
is an unramified minimal admissible pair ( [BH06] paragraph 19.6). Then, following
through the explicit construction of [BH06] paragraphs 19.3 and 19.4, we see that
there are:

(1) a simple stratum (A, n, α) with associated compact open subgroups J1 ⊂
J ⊂ K, with J1 pro-p and J/J1 ∼= k×L ;

(2) a representation η of J1 and extensions λ and λ′ of η to J such that

IndKJ (λ) = σ(τ) and IndKJ (λ′) = σ(τ ′).

Indeed, up to conjugacy (A, n, α), J1 and η are determined by rec−1(ξ)|U1
L

=

rec−1(ξ′)|U1
L

. The representations λ and λ′ are defined in terms of rec−1(ξ) and

rec−1(ξ′) by the formulae of [BH06] 19.3.1 and corollary 19.4 (together with the cor-
rection factor of paragraph 34.4, an unramified twist ∆ξ, that makes no difference
to the argument). It is clear from these that if ξ ≡ ξ′ then λ ≡ λ′ as required.

In the final case, r′ = r ⊗ χ for a character χ of IF that extends to GF . By
compatibility of τ 7→ σ(τ) with twisting,

σ(τ ′) = σ(τ)⊗ rec−1(χ) ◦ det

≡ σ(τ) mod l

as required. �

Proposition 6.5. Let τ = (r, 0) and τ ′ = (r′, 0) be inertial types that are not scalar

on P̃F . If σ(τ) and σ(τ ′) are isomorphic, then r ≡ r′ mod l.

Proof. If one of r and r′ has a twist which is trivial on PF , then so does the other
and in this case the proposition follows from 6.1.

Otherwise may, by twisting, assume that σ(τ) and σ(τ ′) satisfy l(σ) ≤ l(σ ⊗ χ)
for all characters χ of O×F (the definition of l(σ) is as in [BH06] paragraph 12.6). In
this case σ(τ) and σ(τ ′) contain the same, non-empty, sets of fundamental strata
(because this only depends on the restriction to pro-p subgroups).

If one of σ(τ) and σ(τ ′) contains a split fundamental stratum ( [BH06] 13.2) then
so does the other. In this case, [BH06] corollary 13.3 implies that they cannot be

cuspidal types and so we must have σ(τ) = IndKK0(N)(ε) and σ(τ ′) = IndKK0(N ′)(ε
′)
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for some ε and ε′ of exponents N and N ′. It is easy to see that in fact we must
have N = N ′. From lemma 6.2 we deduce that ε ≡ ε′ mod l, and so τ ≡ τ ′ mod l
as required.

Otherwise, σ(τ) = IndKJ λ and σ(τ ′) = IndKJ λ
′ for a simple stratum (A, n, α)

with associated groups J1 ⊂ J and representations λ and λ′ extending the repre-
sentation η of J . From lemma 6.2 we deduce that λ′ = λ ⊗ η for a character η of
J/J1 with η ≡ 1 mod l.

If A is unramified, then by the reverse of the argument in the second case of the
previous proposition we see that τ = (IndGFGL ξ)|IF and τ = (IndGFGL ξ)|IF for ξ and
ξ′ characters of GL with ξ|IL ≡ ξ′|IL , whence the result.

If A is ramified, then η can be regarded as a character of J/J1 ∼= k×M = k×F with
η ≡ 1 mod l for some ramified quadratic extension M/F . I claim that there is a
character χ of O×F with η = χ ◦det and χ ≡ 1 mod l. Indeed, as l > 2 we can take

the inflation to O×F of the character χ of k×F satisfying χ ≡ 1 mod l and χ2 = η.
Then σ(τ) = σ(τ ′)⊗ (χ ◦ det) and so

τ = τ ′ ⊗ rec(χ)

≡ τ ′ mod l

as required. �

7. Erratum

The proof of Proposition 2.7 is not correct; however, the proposition is true
and the results of the paper are unaffected. There is a related gap in the proof of
Proposition 5.8, which we also fill. I am very grateful to Lue Pan for pointing out
the error.

The problem is that Proj(S/(X1 − α1Y1, . . . , Xi − αiYi)) being reduced doesn’t
imply that S/(X1 − α1Y1, . . . , Xi − αiYi) is reduced — there may be nilpotent ele-
ments annihilated by the ‘irrelevant ideal’ generated by positively graded elements.

However, the given reference ( [Eis95] Theorem 18.18) certainly implies that
S/I is Cohen–Macaulay; it follows that the claimed sequence is in fact a regular
sequence, and the characterisation of when S/I is Gorenstein follows as in the given
proof.

Alternatively we can use an argument that I learned from the MathOverflow
posts [hco] and [ah]. It is well-known that R is the homogeneous coordinate ring of
the image X of the Segre embedding of s : P1 × Pn−1 → P2n−1. Then R is Cohen–
Macaulay if and only if Hi(P2n−1, IX(r)) = 0 for all 0 < i < n and all r ∈ Z, and R
is Gorenstein if, in addition, ωX ∼= OP2n−1(r)|X for some r ∈ Z (see [Mig98, pp9-11,
proposition 4.1.1]). From the exact sequence

0→ IX → OP2n−1 → OX ,

the equation s∗OP2n−1(1) ∼= OP1(1) � OPn−1(1) and the Künneth formula we see
that R is Cohen–Macaulay. Since ωX ∼= OP1(−2) � OPn−1(−n), we see that R is
Gorenstein if and only if n = 2.

A similar issue affects the proof of Proposition 5.8, in the sentence “It is therefore
sufficient to check that Proj(gr(R′ ⊗ F)) is reduced and irreducible.”. It is not.
However, the given argument shows that gr(R′ ⊗ F) has a unique minimal prime
ideal and that any nilpotent elements are supported at the irrelevant ideal. But we
know that this ring is Cohen–Macaulay and so has no embedded associated primes.
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It follows that gr(R′ ⊗ F) is reduced with a unique minimal prime ideal, and is
therefore a domain as claimed.
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